ma4248 weeks 8-9. topics generalized forces, velocities, and momenta; lagrange’s,...

20
MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the sum of the work done by the applied and inertial forces in a virtual disp. = 0 0 con iner app W W W i app i app r N i i F W 1 i i i iner r N i i r m W 1

Upload: veronica-edwards

Post on 05-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta;Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations

1

D’Alembert’s Principle the sum of the work done bythe applied and inertial forces in a virtual disp. = 0

0 coninerappWWW

i

appi

apprNi

i FW

1

ii

i

inerrNi

i rmW

1

Page 2: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

GENERALIZED FORCES

2

If the 3N particle coordinates are expressedin terms of a set of f generalized coordinates

N,...,1i),t;q,...,q(rr f1ii f1 q,...,q

N,...,1ii ,qf

1 q

irr

then

N,...,1ii ,r

q

f

1QW

app

where

f,...,1appi ,Ni

1i q

irFQ

are called generalized forces.

Page 3: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

GENERALIZED VELOCITIES

3

Chain-rule gives derivatives of the particle velocities

and the kinetic energy

N,...,1i,0t

ir

q

irf

1qri

f,...,1;N,...,1i,q

ir

q

ir

q

f,...,1,q

irNi1i ii rm

qT

Ni1i iii2

1 rrmT

with respect to the generalized velocities

Page 4: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

GENERALIZED MOMENTA

4

f,...,1,qTp

222 zyxmrrmT21

21

We define generalized momenta

Example (linear momenta) for unconstrained motionof a single particle with generalized coordinates x,y,z

,zmzT,ym

yT,xm

xT

are components of the linear momentum vector rm

and the generalized momenta

Page 5: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

GENERALIZED MOMENTA

5

22mT21

Example (angular momenta) for motion of a particle in

a circle with radius with generalized coordinate

2mT

the generalized momentum

is the angular momentum

Page 6: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

TIME DERIVATIVES OF GENERALIZED MOMENTA

6

torqueF2

mTdtd

Example (linear momenta)

.etc,netxFxmxm

dtd

xT

dtd

Example (angular momentum)

These consequences of Newton’s laws motivate us toconsiderer the quantities

qT

dtdp

Page 7: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

TIME DERIVATIVES OF GEN. MOMENTA

7

The Eq. on page 3 and Leibniz’s formula yield

Ni

1i iiNi1i ii q

ir

q

ir

dtdrmrm

Ni

1i iiNi1i ii q

ir

q

irrmrm

qTNi

1i ii q

irrm

Ni

1ii

ii q

r

dtd

qT

dtdp rm

Page 8: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

LAGRANGE’S EQUATIONS

8

Combining these equations yields

q

q

irNi

1irmW ii

f

1iner

q

qT

qTf

1 dtd

Therefore

0qqT

qTQ

f

1 dtd

f,...,1,QqT

qT

dtd

Page 9: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

EULER-LAGRANGE EQUATIONS

9

If the applied forces are conservative, then

f,...,1,qV

Q

Therefore

f,...,1,0qL

qL

dtd

where )fq,...,1q(VV is the potential energy

where

is the Lagrangian (it may or may not depend on t)

)t,fq,...,1q,fq,...,1q(LVTL

Page 10: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

EXAMPLE: PLANE PENDULUM

10

θsinmgθL

cosmgV potential energy

Lagrangian

θ g

m

kinetic energy 22m2

1T

cosmgm21L

22

θmθL 2

θsin-mgθm 2

Page 11: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

EXAMPLE: SPHERICAL PENDULUM

11

θsinmg-cosθsinmθL22

Lagrangian

θ g

m

cosmgsinm21L 2222

θmθL2

0L

θsinmL22

θsinmg-cos θsinmθm222

0θsinmdtd 22

Page 12: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

MOMENT OF INERTIA

12

For a particle with mass m andposition vector that rotateswith angular velocity abouta line through the origin

r

r

rrvhence with respect to orthonormal coordinates x, y, z

z

y

x

z

y

x

0xy

x0z

yz0

v

v

v

Page 13: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

MOMENT OF INERTIA

13

Therefore the kinetic energy of the particle equals

where I is the 3 x 3 inertia matrix for the particle

IvvmvvmT TT

21

21

21

22

22

22

yxyzxz

yzzxxy

xzxyzy

mI

Page 14: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

MOMENT OF INERTIA

14

For a rigid body with density (mass per volume)

dxdydz)z,y,x(

2y2xyzxz

yz2z2xxy

xzxy2z2y

I

If ze

dMr

21T 22then

where (see Calkin, page 38)

dxdydz)z,y,x(222 dM,yxr

Page 15: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

CENTER OF MASS

15

The center of mass of a system of N particles withmasses and positions is N1 m,...,m

dxdydz)z,y,x(

M1R

z

y

x

MrmrmR NN11

N1 r,...,r

N1 mmM For a rigid body with density (mass per volume)

dxdydz)z,y,x(M

Page 16: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

HAMILTONIAN

16

A function of

satisfies

f1f1 q,...,q,q,...,q

dtdLq

qLq

dtdH

ii

i ii q

Ldtd

The Hamiltonian

is said to be “conserved” if its time derivative is zero

LqLqH

i ii

tL

dtdLq

qLq

ii

i ii q

L

hence is conserved iff L does depend explicitly on t

Page 17: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

HAMILTONIAN AND ENERGY

17

For scleronomic (time independent) holonomic constraints

N,...,1i),q,...,q(rr f1ii

N

1k kj

k

i

kij m

qr

qr

A

T is a quadratic form in the generalized velocities

f

1j,i ij21 AqqT ji

Page 18: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

HAMILTONIAN AND ENERGY

18

Therefore, for scleronomic holonomic constraints

and the hamiltonian

i

f

1jij

iqA

qT

VT)VT(T2LqLqH

i ii

is the total energy

Page 19: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

HAMILTONIAN AND ENERGY

19

For a bead with mass m on a horizontal wire rotating withangular speed and distance q from the center

therefore

)

222 qq(2mTL

and qm

qL

)222 qq(

2mH

is conserved but LEH This is an example of a rheonomic (time dependent)constraint in which the constraint (wire) can do work

Page 20: MA4248 Weeks 8-9. Topics Generalized Forces, Velocities, and Momenta; Lagrange’s, Lagrange-Euler’s, and Hamilton’s Equations 1 D’Alembert’s Principle the

EULER’S EQUATION

20

Let F be a function of 3 variables and for any smooth function

define R]1,0 tt[:q 1

0

t

tdt)t,q,q(F)q(I

Then for any smooth and small R]1,0 tt[:q

1

0

t

tdtq

qFq

qF)q(I)qq(I

1

0

1

0

ttq

F |qt

tqdt

qF

dtd

qF