macromolecules

52
Macromolecules polyhydroxy aldehydes and ketones sugars: monosaccharides & disaccharides e.g. glucose, fructose, s polysaccharides: e.g. starch, glycogen, Lipids ― soluble in nonpolar solvents fatty acid esters ― steroids ― prostaglanidns ― leukotrienes Protein ― polymers of amino acids enzymes ― transporters ― receptors ― immunoglobulins etc. Nucleic Acid ― polymers of nucleotides DNA: determines sequence RNA RNA: determines sequence of cellular proteins regulates gene expression

Upload: barbra

Post on 23-Feb-2016

18 views

Category:

Documents


0 download

DESCRIPTION

Macromolecules. Carbohydrate ― polyhydroxy aldehydes and ketones sugars: monosaccharides & disaccharides e.g. glucose, fructose, sucrose, lactose - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Macromolecules

Macromolecules

Carbohydrate ― polyhydroxy aldehydes and ketones sugars: monosaccharides & disaccharides e.g. glucose, fructose, sucrose, lactose polysaccharides: e.g. starch, glycogen, cellulose

Lipids ― soluble in nonpolar solvents fatty acid esters ― steroids ― prostaglanidns ― leukotrienes Protein ― polymers of amino acids enzymes ― transporters ― receptors ― immunoglobulins etc. Nucleic Acid ― polymers of nucleotides DNA: determines sequence RNA RNA: determines sequence of cellular proteins regulates gene expression

Page 2: Macromolecules

Do proteins wear out?Car analogy: lease vs. buy

Proteins in cells are on more of a lease system.They are degraded by a structure called the Proteasome …After being tagged for destruction by the protein ubiquitin.

Every Protein has a roughly constant half-life,But like radioactive isotopes their decay is somewhat random.The amino terminal amino acid determines the length of t½.

The rate of breakdown of most proteins balances the rate of synthesis (a steady state) but a change in either synthesis or breakdown can provide a means of regulating protein activity.

Page 3: Macromolecules

Glucose

AcetylCoA

Pyruvate

NADH/FADH2

KrebsCycle

C6

C4

C5

C4

ATP

ADP O2

NAD+/FAD

oxaloacetate

Protein

Amino Acids

Ubiquitin Protein digestion (t1/2)

Page 4: Macromolecules

Ubiquitin is a protein ‘tag’ that marks another protein for proteolytic destruction

Page 5: Macromolecules

UbiquitinUbiquitin activating enzyme (E1): ubiquitin + ATP ubiquitin-AMP + PPi

Ubiquitin-conjugating enzyme (E2): attaches to activated ubiquitin via SH

Ubiquitin-protein ligase (E3): transfers ubiquitin to e-amino of target protein t1/2 & N-terminal rule (e.g. R = 2 min. M = 20 hrs.)

Proteosome: (a 26s protease complex) digests ubiquitin-tagged proteins

Slow (>20 hr.) : Ala, Cys, Gly, Met, Pro, Ser, Thr, Val

Fast (2-20 min.) : Arg, Asx, Glx, His, Ile, Leu, Lys, Phe, Trp, Tyr

Processes regulated by protein destruction gene transcription circadian rhythms inflammatory response antigen processesing tumor supression

Page 6: Macromolecules

Ubiquitin activating enzyme (E1): ubiquitin + ATP ubiquitin-AMP + PPi

Ubiquitin-conjugating enzyme (E2): attaches to activated ubiquitin via SH

Ubiquitin-protein ligase (E3): transfers ubiquitin to e-amino of target protein t1/2 & N-terminal rule (e.g. R = 2 min. M = 20 hrs.)

Page 7: Macromolecules

Urea Cycle

NH4+ + CO2 + 3ATP + Asp + 2 H2O

urea + 2ADP, Pi + AMP, PPi + fumarate

||H2N – C – NH2

O

Detoxification of ammonia

Page 8: Macromolecules

Polymers of Amino AcidsPROTEINS

Protein sequenceYMGCFTSSGLIVVEHY...

Structure

Function

DNA (gene)

mRNA

Page 9: Macromolecules

NUCLEIC ACIDS

DNA RNAencodes genetic information

has both functional & informational rolesin gene expression

Genes code for Cell’s Proteins

polymers of nucleotides

Page 10: Macromolecules

NUCLEOTIDES

Base: Adenine, Guanine, Thymine (Uracil), Cytosine

Sugar: Ribose or deoxy-ribose

Phosphates: 1-3 via phosphate ester bonds

nucleoside = base + sugar

Page 11: Macromolecules

Base name Nucleoside Name Base type

Adenine A adenosine purine

Guanine G guanosine purine

cytosine C cytidine pyrimidine

thymine T thymidine pyrimidine

uracil U uridine pyrimidine

Nucleic Acid Bases

ThymineUracil

CH3

Cytosine

Adenine

Guanine

Page 12: Macromolecules

Pyrimidine Ring

N

N

Purine Ring

NN

N N 12

34

5

6

1

23 4

56

78

9

Page 13: Macromolecules

N2

NH3 or NO3-

soil bacteria

plantsAmino acids

Protein

N - Cpds

1anabolic

includes purine &pyrimidine bases

Page 14: Macromolecules

NADH

ATP

Glucose

Pyruvate

AcetylCoA

Krebs Cycle

C6

C4

C5

C4 FADH2

O2

ADP

Ribose-5-P

Amino Acids

DNARNA

bases

Nucleotides

Protein

Page 15: Macromolecules

Pyrimidine Ring

N

NC C

CC

1 2

34

5

6

Aspartate

carbamoylphosphate

O O || || H2N - C - O - P - O | O

Page 16: Macromolecules

Purine Ring

Glycine

Glutamine

tetrahydrofolate

Aspartate

CO2

NN

N N

CC

CC

C 1

23 4

5 6

78

9

Page 17: Macromolecules

Pyrimidines

N

N

H2N

O

Cytosine

N

NO

O

HUracil

N

NO

O

H CH3

Thymine

Page 18: Macromolecules

Purines

Guanine

NN

N NH2N

O

H

H2N

NN

N N

Adenine

Page 19: Macromolecules

OH

ribose - RNA

2-deoxyribose - DNA

Nucleotide Sugars

123

4

5 OOHHO

HO

Page 20: Macromolecules

OH

OHO

HO

N

N

H2N

O

Cytidine: a nucleosidedeoxycytidine

O O - P - O

dCMP

dCDP

O O - P - O

Page 21: Macromolecules

This structure is …. a) a purine b) a nucleoside c) a nucleotide d) DNA

This structure contains …. a) ribose b) 2´ deoxyribose c) 3´ deoxyribose d) a hemiacetal functional group

This nucleotide is…. a) adenine monophosphate b) guanine monophosphate c) guanosine monophosphate d) AMP

Sugar

Phosphate

Base

2´3´

This bond indicated by the ↓ is … a) covalent b) phosphate ester c) both d) neither

Phosphate ester bonds are also found in a) phosphoglycerides b) activated phosphorylase c) both d) neither

Page 22: Macromolecules

Base name

Nucleoside Name

Base type information

Adenine A adenosine purine D – A – X

Guanine G guanosine purine A – D – D

cytosine C cytidine pyrimidine D – A – A

thymine T thymidine pyrimidine A – D – A

uracil U uridine pyrimidine A – D – A

Nucleic Acid Bases

ThymineUracil

CH3

Cytosine

Adenine

GuanineH

Page 23: Macromolecules

Nucleotides & DNA

Protein sequenceYMGCFTSSGLIVVEHY...

Structure

Function

DNA (gene)

mRNA

Page 24: Macromolecules

O

OH

OA |

O || O - P - | O_

O || O - P - | O_

O ||-O - P - | O_

O-(H+) | O - P - || O

O-

| O - P - || O

O-

|-O - P - || O

O

OH

OC |

Phosphodiester bond formation

3 hydroxyl3

5 phosphate

5

Page 25: Macromolecules

|_ O - P - | O_

O || O - P - O-

| O_

O ||-O - P - | O_

O

O

OA |

O || O - P - | O_

O || O - P - | O_

O ||-O - P - | O_

O

OH

OC |

Phosphodiester bond formation

dinucleotide5’ end

3’ end3-5 phosphodiester bond

Page 26: Macromolecules

P-P-P C S P G

SP A

SP T

SP T

SOH

5

3

Page 27: Macromolecules

1950 ― Erwin Chargaff

In DNA isolated from any species # A = # T & # G = # C A-T : G-C ratio varies

1953 ― Franklin and Wilkins ― Watson & Crick

DNA has double helix structureBases paired in center A=T & GCComplementary strands progress in opposite directions.

5’- C G A T T C AG C - 3’3’- G C T A A G T C G - 5’

Page 28: Macromolecules

P-P-P C S P G

SP A

SP T

SP T

SP

P-P-P A S P A

SP T

SP C

SP G

SP

5

35

3

Page 29: Macromolecules

H2N

NN

N N

AN

N O

O

HCH3

Thymine

NNO

OH

CH

3

ThymineN

NO

O

H CH3

Thymine

Page 30: Macromolecules

H2N

NN

N NNN

O

OH

CH

3 A

T

Page 31: Macromolecules

T A

Page 32: Macromolecules

H2N

NN

N N

A

C

NN

NH2

O

X

X

Page 33: Macromolecules

C A

Page 34: Macromolecules

G

NN

N NH2N

O

H

O

N

NH2

N

C

Page 35: Macromolecules

C G

Page 36: Macromolecules
Page 37: Macromolecules

Can’t have 2 pyrimidines paired :too far apart for H-bonds

T C

2 purines don’t fit inside helix

11 Ao

Page 38: Macromolecules

DNAdouble helix B Form

majorgroove

minor groove

Page 39: Macromolecules

N

NN

N NNN

O

OH

CH

3 A

T

H H

DNA binding proteins that recognize specific sequences of DNA.Transcription factors, RNA Polymerase, restriction endonucleases ….Use amino acid side chains to form specific H-bonds with paired sequences through the major or minor grooves.

Page 40: Macromolecules

G

NN

N N N

O

HO

N

N

N

C

H

H

H

H

Page 41: Macromolecules

Lambda Phage Repressor Protein

Page 42: Macromolecules

Gene Expression

DNA (gene)↓

mRNA↓

Polypeptide chain↓

Folded polypeptide↓

Functional protein

Page 43: Macromolecules

Thymine has an equilibrium between keto & enol forms

N

NO

O

H CH3

ketoN

NO

HO

CH3

enol

1

10,000 or 104

Page 44: Macromolecules

H2N

NN

N N

A

T (enol)

X

X

H3C

NN

O

OH

Page 45: Macromolecules

G

NN

N NH2N

O

H

T (enol)

H3C

NN

O

OH

Page 46: Macromolecules

P-P-P A S P A

SP T

SP C

SP G

SP

P-P-P C S P G

SP G

SP T

SP T

SP

5

35

3

T

G

DNA Pol has proof reading capability

There is a DNA repair system in place in cells to repair DNA structural anomalies that Arise due to replication errors or DNA damage

If a cell cannot keep up with DNA repair – apoptosis (programmed cell death) pathways should prevent cell growth and division.

Page 47: Macromolecules

dsDNA ↔ ssDNA

Which form is favored at elevated temperatures? Why? a) dsDNA b) ssDNA c) the equilibrium will not change with T

DG = DH - TDS

Page 48: Macromolecules

GC richA260

T (ºC)40 50 60 70 80

A=T rich

ssDNA

dsDNA

dsDNA ↔ ssDNA Lower A260 higher A260

Page 49: Macromolecules

DNAdouble helix B Form

majorgroove

minor groove

Page 50: Macromolecules

DNA forms supercoilsExample shown is bacterial plasmid DNA

Supercoiling compacts DNA to take up less spaceThe structural form of DNA influences expression

Page 51: Macromolecules

Eukaryotic DNA forms chromosome structuresThese contain DNA binding protein called histones

NucleosomesDNA wrapped around a histone core structure

Page 52: Macromolecules

NucleosomesDNA wrapped around a histone core structure