mactaquac aquatic ecosystem study report series 2016-044

27
Mactaquac Aquatic Ecosystem Study Report Series 2016-044 PRELIMINARY CHARACTERIZATION OF PLANKTON COMMUNITIES IN THE MACTAQUAC HEADPOND AND DOWNSTREAM SAINT JOHN RIVER Huy Nguyen, Allen Curry, Caitlin Tarr, Samantha Pettey, Mouhamed Ndong March 29, 2017

Upload: others

Post on 18-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MactaquacAquaticEcosystemStudyReportSeries2016-044

PRELIMINARYCHARACTERIZATIONOFPLANKTONCOMMUNITIESINTHEMACTAQUACHEADPONDANDDOWNSTREAMSAINTJOHNRIVER

HuyNguyen,AllenCurry,CaitlinTarr,SamanthaPettey,MouhamedNdong

March29,2017

Page 2: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

TABLEOFCONTENTS

EXECUTIVESUMMARY....................................................................................................................................3

1. Introduction.................................................................................................................................................1

2. Methodology................................................................................................................................................2

1.1. Fieldwork...............................................................................................................................................2 1.2. LaboratoryANALYSES.......................................................................................................................5 1.3. Statisticalanalysisandbio-indexcalculations........................................................................6 1.3.1. Variationamongwaterlayers:...........................................................................................6 1.3.2. Variationbetweenheadpondandriverhabitats:.....................................................6 1.3.3. Planktonandwaterconditions:.........................................................................................6 1.3.4. Summary......................................................................................................................................6

3. Results............................................................................................................................................................7

3.1. Waterconditions..................................................................................................................................7 3.1.1. Depth.............................................................................................................................................7 3.1.2. Temperature..............................................................................................................................8 3.1.3. Conductivity...............................................................................................................................8 3.1.4. DissolvedOxygen.....................................................................................................................9 3.1.5. pH..................................................................................................................................................10 3.1.6. Turbidity....................................................................................................................................11 3.1.7. Salinity........................................................................................................................................12

3.2. Phytoplankton.....................................................................................................................................12 3.2.1. Biodiversity...............................................................................................................................12 3.2.2. Variationofphytoplankton................................................................................................14

3.3. Zooplankton.........................................................................................................................................18 3.3.1. Biodiversity...............................................................................................................................18 3.3.2. Variationofzooplankton....................................................................................................18

4. DISCUSSION...............................................................................................................................................19

5. ACKNOWLEDGEMENTS........................................................................................................................21

6. References..................................................................................................................................................22

Correctcitationforthispublication:NguyenH.,CurryA.,TarrC.,PetteyS.,andNdongM.,2016.PreliminarycharacterizationofplanktoncommunitiesintheMactaquacHeadpondanddownstreamSaintJohnRiver.MactaquacAquaticEcosystemStudyReportSeries2016-044.CanadianRiversInstitute,UniversityofNewBrunswick.

Page 3: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

EXECUTIVESUMMARY

ThisreportprovidesageneraloverviewofthediversityandspatialvariationtheplanktoncommunitiesandtheirassociationswiththeenvironmentalparametersintheMactaquacHeadPond(HP)anddownstreamSaintJohnRiver(RIV)tothecityofFrederictonmeasuredfromJunetoOctoberin2015and2016.MostofthewaterqualityconditionsoftheHPandRIVsitesaresimilarinboththeHPstratificationandnon-stratificationperiods.Thedifferenceswhenobserved(DO,conductivityandtemperature)aremostprobablyrelatedtothetwodifferenthabitats,e.g.,differencesinwaterdepthandflowthatwouldaffectthephysico-chemicalprocesses.Therewereanestimated341phytoplanktonand73zooplanktonspeciesobserved.In2016,theaveragenumberofphytoplanktoncellsintheHPhabitatis1.98E+09±3.63E+09cells/m3andthatinRIVhabitatis4.08E+08±2.76E+08cells/m3(p>0.05).TheH’indexofdiversityforphytoplanktonrangedfrom0.17to2.78,inwhichtheaveragevaluesfortheHPandRIVsitesare1.5±0.5and2.0±0.4,respectively(p<0.05).Duringthenon-stratificationtimeintheHP,aseriesofstatisticaltestsshowthatthemixingofwatercolumnscanleadtothemixtureofthephytoplanktoncommunitiesinbothabundanceandtaxarichness(p’s>0.05).Similarly,duringHPstratification,thedifferenceinwaterqualityconditionsamonglayerswasnotenoughtocausesignificantvariationofthephytoplanktoncommunitiesinhabitingeachlayerintermsofthetaxarichnessandnumberofcells(p>0.05).Zooplanktonanalyseswillbecompleteinspring,2017.Thenon-significantresultsofthestatisticaltests(p>0.05)supportthehypothesisthatinthemainriveraftertheMD,theriverplanktoncommunityaremostlysupplementedbythosefromtheMH.However,ANOSIManalysisshowedthatthevariationoftheplanktonassemblagesbetweentheHPandRIVissignificantlydifferentwitheitherofthevariationswithineachhabitat(p<0.05).BasedonDCAandRDAanalysis,wefoundthesignificantimportanceofthetemperature,conductivity,andDOforthephytoplanktoncommunitystructure(p<0.05).Thezooplanktonassemblagehadastrongassociationwithtemperature,conductivity,andpH(p<0.05).

Page 4: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

1|P a g e

1. INTRODUCTIONFreshwaterplanktonaresmallorganismsatthebaseofaquaticfoodwebswheretheyplayanessentialrolefortheecologicalfunctionsofreservoirandriverecosystems(Likens2010;Wetzel2001).Planktonbiologyandecologyarewellstudiedforlakes,rivers,andlake-riverinteractions(e.g.,Jones2010;Likens2010;Wetzel2001).Phytoplankton,oralgae,arehighlydiverseinfreshwaterbodies,displayingeffectiveresponsemechanismstoenvironmentalchangesthroughtheutilizationofvariousadaptivestrategies.Asaphotoautotrophicorganism,algaecapturelighttoconvertinorganicelementsintoorganiccompoundsandthusrepresentthebasisofmostallaquaticfoodwebs;theyalsoproduceoxygen(Krienitz2009).Conversely,excessivealgalbloomsorextremeproductionofalgaecannegativelyaffectfishandmacroinvertebratescreatingpoisonousorbioactivesubstancescausingdeathordisease,oralteringhabitat,e.g.,changesinwaterchemistryandwaterclarityaffectingphotosyntheticallyactiveradiation(PAR)andultraviolet(UV)penetration.Othermajorchallengesofalgalbloomsincludetoxicitytoanimalsincludinghumansandthusaffectingrecreationalactivitiessuchasfishing,boating,swimming.Bloomscanalsothreatenwatersupplies,increasingthecostofwatertreatmentandmanagement(Burkholder2009).Zooplanktoncomprisefourmaingroups:Protozoa,Rotifera,Copepoda,andCladocera.Theycanbeherbivores,carnivores,oromnivores,inhabitingmultipletrophiclevelsinlacustrineecosystems(Sterner2009).Zooplanktonfunctionasacrucialintermediatetrophicstageintheenergyflowfromprimaryproducerstotopconsumerssuchasfishandlargeraquaticanimals(Sterner2009).Ithasbeendemonstratedthatachangeinzooplanktoncompositionand/orabundancecaninfluencetrophicstructureinlakeecosystems,includingaffectingnitrogenandphosphorous(Andersen&Hessen1991;Downing&McCauley1992;Williamson&Reid2010).Planktonarewellstudiedinstandingwaterssuchaslakesandreservoirs.Thedynamicflowingwatersofriversarelesssuitedtopelagicplanktonproductionandspeciescomposition,andabundanceistypicallyrelatedtobenthicproductionandoccurrencesofeitherstandingwater,e.g.,inlets,orslowflowconditions(Basuetal.2000;C.Reynolds2000;Wetzel2001).StudiesofplanktoninlargeriversystemsarefewintheAtlanticCanadaregion(Locke&Klassen2010).OnlythestudiesofAubéetal.(2005);Duerden(1973);andWattandDuerden(1974)existandfocusonplanktonofimpoundedwaterbodiesintheregion.TheSaintJohnRiver(SJR),thelongestriverintheAtlanticCanadaat~650kmlong,hascontributedconsiderablytothedevelopmentofagriculture,forestry,transportation,andelectricityintheregion(Cunjak&Newbury2005).Theriverhasfivemajorhydropowerdams,thelargestistheMactaquacHydroelectricFacilityandDam(MD)builtinlate1960s(Cunjak&Newbury2005;Watt1973).ThestudyofplanktonintheSJRconsistsofabriefdescriptionofdiversity,biomass,seasonalpatterns,andrelationshipswithsomeenvironmentalparametersinassociationwiththewater-mixingperiodfortheMDreservoirintheearly1970s(Watt1972,1973;Watt&Duerden1974).TherehasyettobeassessmentsofthetemporalandspatialplanktondistributionsinSJR,e.g.,the

Page 5: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

2|P a g e

seasonalverticaldistributionsassociatedwithstratificationandmixing,oranypossibleeffectsoftheMDondownstreamplanktoncommunities.ThisreportisapartoftheMAESprojectandaimstocharacterizeplanktoncommunitiesoftheMactaquacHeadPondanddownstreamSJRfromtheMDtotheCityofFredericton.ItisthefirstcomprehensiveresearchontheSJRplanktoncommunitiessincethe1970s.Thisreportcomprisesthefollowing:

1. Descriptionsoftheplanktoncommunities:biodiversity,andspatialvariationsinHPanddownstreamSJR.

2. Therelationshipbetweentheplanktoncommunitiesandenvironmentalparameters.2. METHODOLOGY1.1. FIELDWORKFrom2014to2016,atotalof17siteswereinvestigatedfortoassessplanktonabundanceanddiversityandthephysico-chemicalcharacteristicsofthereservoir(N=13,HPhabitat)andriver(N=4,RIVhabitat)(Figure1andTable1).MoredetailsaboutthefeaturesofcollectingsitescouldbeassessedviatheMAESwebpagesinCanadianRiversInstitutewebsite(http://canadarivers-gis.maps.arcgis.com/home/index.html).

Figure1.ThemapshowingthecollectionsitesinthestudiedareaoftheMactaquacHeadPond(HP)andSaintJohnRiver(RIV)from2014-16.

Page 6: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

3|P a g e

Table1.CharacteristicsofthestudysitesintheMactaquacHeadPond(HP)andSaintJohnRiver(RIV).

No.Site Coordinates Limnologysurvey PlanktonsurveyNewnames

Othernames Latitude Longitude 2014 2015 2016 2014 2015 2016

1. HP1 HP30-C 46.00012 -66.9173 x x --- x x ---2. HP30-L 46.0016 -66.9152 x x --- --- --- ---3. HP30-R 45.99953 -66.9185 x x --- --- --- ---4. HP2 HP1 45.97403 -66.88643 --- --- x --- --- x5. HP3 HP35-C 45.99953 -66.91852 --- x --- --- x ---6. HP35-L 45.96067 -66.87749 --- x --- --- --- ---7. HP35-R 45.95911 -66.88314 --- x --- --- --- ---8. HP4 HP40-L 45.94762 -66.8739 x x --- --- --- ---9. HP40-C 45.94717 -66.8739 x x --- x x x10. HP40-R 45.94644 -66.8711 x x --- --- --- ---11. HP2 45.94891 -66.87474 --- x --- --- x ---12. HP5 HP50-R 45.92163 -66.8933 x --- --- --- --- ---13. HP50-C 45.91996 -66.8904 x --- --- --- --- ---14. HP50-L 45.91889 -66.8879 x --- --- --- --- ---15. HP3 45.91681 -66.89414 --- --- x --- --- x16. HP6 HP20-L 45.87516 -66.8995 x --- --- --- --- ---17. HP20-C 45.87588 -66.8992 x --- --- --- --- ---18. HP20-R 45.87644 -66.8986 x --- --- --- --- ---19. HP7 HP60-R 45.87978 -66.9179 x x --- --- --- ---20. HP60-C 45.88094 -66.9211 x x --- --- x ---21. HP60-L 45.88185 -66.9247 x x --- --- --- ---22. HP8 Longs-C 45.86466 -66.9132 x x --- --- x ---23. HP9 HP4 45.88589 -66.97754 --- --- x --- --- x24. HP10 HP70-C 45.90372 -67.0154 x x --- x x ---25. HP70-R 45.90101 -67.0166 x --- --- --- --- ---26. HP70-L 45.90701 -67.0127 x --- --- --- --- ---27. HP11 HP10-C 45.94509 -67.1053 x x --- --- x ---28. HP10-R 45.94331 -67.1076 x x --- --- --- ---29. HP10-L 45.94793 -67.1022 x x --- --- --- ---30. HP12 HP80-L 45.98351 -67.1967 x x --- --- --- ---

Page 7: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

4|P a g e

No.Site Coordinates Limnologysurvey PlanktonsurveyNewnames

Othernames Latitude Longitude 2014 2015 2016 2014 2015 2016

31. HP80-C 45.98052 -67.1975 x x --- x x ---32. HP80-R 45.97913 -67.1998 x x --- --- --- ---33. HP13 Lotic-R 45.97913 -67.1998 x --- --- --- --- ---34. Lotic-C 45.95523 -67.2883 x x --- --- --- ---35. Lotic-L 45.95695 -67.2881 x --- --- --- --- ---36. RIV1 --- 45.9611 -66.83986 --- x x --- x x37. RIV2 --- 45.98984 -66.80491 --- --- x --- --- x38. RIV3 RIV2 45.98984 -66.80491 --- x x --- x x39. RIV4 --- 45.96766 -66.66050 --- x x --- x xNotes:C-center;L-left;R-right;x-conductingsurvey

WedeterminedthethermalstratificationperiodintheHPbeginsinJulyandlastsuntilSeptember(2014and2015results).ThestrongeststratificationoccurredfromHP3toHP12(Figure1).Preliminaryanalysesindicatedthattheplanktoncommunitieswere>65%similarintermoftaxarichnessandabundanceinboththeHPorRIVhabitats.Weintensifiedsamplingtofewersitesin2016:4sitesintheHPand4sitesintheRIV-HP2,HP4,HP5,HP9,RIV1,RIV2,RIV3,andRIV4(Table2).Table2.Fieldsamplingprotocolfor2016

Site

Stratificationperiod Non-stratificationperiodReservoir Downstream Reservoir Downstream

HP2,HP3,HP5,HP9 RIV1,RIV2,RIV3,RIV4 HP2,HP3,HP5,HP9 RIV1,RIV2,RIV3,RIV4

MonthJuly June

August NovemberMethod Sample3water

layersbySchindler-Patalastrap:Epilimnion,Metalimnion,Hypolimnion.

Sample2layersbySchindler-Patalastrap:Surface,Bottom.

Samplebyverticaltowedmethod:Towplanktonnetfrombottomtothesurfaceataconsistentrate.

Samplebyverticaltowedmethod:Towplanktonnetfrombottomtothesurfaceataconsistentrate.

Environmentalparameters

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,Secchidepth,T-N,T-P.

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,andSecchidepth,T-N,T-P.

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,Secchidepth,T-N,T-P.

-T0C,pH,turbidity,Depth,Conductivity,Salinity,DO,andSecchidepth,T-N,T-P.

-Chlorophyll-a,Phycocyanin

-Chlorophyll-a,Phycocyanin

-Chlorophyll-a,Phycocyanin

-Chlorophyll-a,Phycocyanin

Page 8: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

5|P a g e

DepthandotherenvironmentalparametersweremeasuredusingaYSI6600V2SondecoupledwithvariousprobesconnectedtoaYSI650handheldunitwhichdisplaysprofiledata(Chateauvert2015),includingTemperature(0C),pH,turbidity(NTU),Depth(m),Conductivity(µS/cm),Salinity(ppt),DissolvedOxygen(mg/L).Secchidiskdepthisalsorecordedateverysite(1cm).Ateachsite,watersampleswerealsocollectedandsentforanalysesofTotalDissolvedPhosphorus(TDP),SolubleReactivePhosphorus(SRP),Nitrite+Nitrate,Ammonia(NH3),andTotalDissolvedNitrogen(TDN)(BiogeochemicalAnalyticalServiceLaboratory,UniversityofAlberta,http://www.biology.ualberta.ca/basl).Pigmentconcentrations,Chlorophyll-aandPhycocyaninweremeasureddirectlyinthefieldusingtheAMISCIENCE®HandheldFluorometer(http://www.amiscience.com).Inaddition,thepigmentsweredeterminedinvitrobythefluorescencemethodinthelaboratory(Arar&Collins1997).Planktonsamplesarecollectedfromeitherindividualwaterlayersduringthestratificationperiodorbyasingleverticaltowtocreateaconsolidatedverticalsampleinnon-stratificationtime.Duringstratification,eachlayer(epi-,meta-,andhypolimnion)wassampledusingthreeSchindler-Patalasplanktontrapsamplesthatwerecombinedintoasinglesample.Thevolumecaptureofthetrapis12LwithNitex®filternetand35µmmeshsize.ThelayerwasidentifiedusingtheYSISondeandthetargetedsamplepositionwasthemiddleofthethermallayer.Inthenon-stratifiedperiod,anintegratedwatercolumnsamplewascollectedusingaconicalplanktonnetwith35µmmesh.Thenetwasdeployedabout1mabovethesubstrateandretrievedataconsistentrateof~15cm/s(Chateauvert2015;Keen2013).Anadditionalweightcanbeaddedtothetrapandplanktonnettoensurethevertical-towedprocessindeeperwaters(typically>10m)orintheriverlocationswherethevelocitycancausesomeeffectsonthetowingprocess.Thetowedsamplevolume,V,wascalculatedas:V=π*r2.*d,wherer=radiusofthenetrim,d=depththatthenetwaspulled.Planktonsampleswerestoredinpre-labelledplasticjars(125or500mL)preservedinfullLugol’ssolutionwithafinalconcentration1%.

1.2. LABORATORYANALYSESInthefirsttwoyears(2014and2015),planktonsampleswereidentifiedtothespecieslevelorotherhighertaxonomicformsandnumeratedbyEcoAnalysts,Inc.,USA.The2016sampleswereidentifiedandquantifiedinhouseatCRI@UNB,DepartmentofBiology,Fredericton.Theplanktonsamplesareidentifiedtothespeciesorgenuslevelbasedonvariouskeydocuments(e.g.,Baker2012;Bellinger&Sigee2010,2015;Brandlovaetal.1972;Chengalath1971;Haney;Lerback2013;Nuttall1971;Prescott1964,1980;Serediak&Huynh2011;Smith1978;Suárez-Morales&Reid1998;Suthers&Rissik2009;Thorp&Covich2001;Wehr&Sheath2003;Witty2004).Thezooplanktondensity(individuals/m3)isenumeratedbyapplyingthechamber-basedcountingmethod(APHA2005;Stemberger1979).Thequantificationofphytoplanktonabundance(numberofnaturalunits/m3andnumberofcells/m3)isachievedbytheUtermohl

Page 9: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

6|P a g e

method(AWWA2010;Utermöhl1958;Weber1973).Theplanktoncountingerrorislessthan20%(AWWA2010;Harrisetal.2000).

1.3. STATISTICALANALYSISANDBIO-INDEXCALCULATIONSCharacterizationsofplanktoncommunitiesweredescribedas:Taxarichness=numberofspecies;Shannon-WeaverIndex(H’)=biodiversityindex;andPielou(J’)=evennessindex(Krebs1989).Theseindexesarecalculatedfortheindividuals/m3forzooplanktonandthecells/m3forphytoplankton.Theuncertaintaxaofplanktonwereexcludedinthestatisticalanalysisandindexcalculations.

1.3.1. Variationamongwaterlayers:

Weusedtwo-wayANOVAstotestthehypothesisthatthereisdifferenceinplanktoncommunitiesamongthreewaterlayersintheHP(epi-,meta-,andhypo-limnion)andbetweenthesurfaceandbottomlayersinRIVhabitat(duringthestratificationperiod).WhentheANOVAassumptionsarestronglyviolated,weusethenon-parametrictests,includingthetwo-wayANOVAequivalentScheirer-Ray-HareTestwiththeBonferronicorrection;one-wayANOVAequivalentKruskal-WallisorMann-Whitney-Wilcoxontests(Dytham2011).

1.3.2. Variationbetweenheadpondandriverhabitats:

Weusedasetofone-wayANOVAstoassessthepotentialeffectoftheheadpondplanktoncommunityontherivercommunitybycomparingthetwosites,onedirectlyupstreamoftheMactaquacDam(HP4)andonedownstreamSJR(RIV1)intermofthetaxarichnessandabundance(Figure1).Propernon-parametrictesteswillbeperformedincasetheANOVAassumptionsareviolated.Additionally,theANOSIM(AnalysisofSimilarity)wasappliedtodetectthedifferencebetweenthetwohabitatplanktonassemblages.

1.3.3. Planktonandwaterconditions:

RelatingplanktoncommunitiestothewaterqualityconditionswasconductedusingacombinationofDCA(DetrendedCorrespondenceAnalysis)andRDA(RedundancyAnalysis)basedonspeciesscoresforcenteringandsymmetryscaling(Quinn&Keough2002).ToavoidmodeloverfittinginRDAanalysis,weappliedtherulethatthenumberofenvironmentalvariableswasreducedto½thenumbersofthespeciesorcollectingsites,dependentonwhichissmaller.EnvironmentalvariablesweretestedbyPearsonCorrelationAnalysissuchthatcorrelationswithr>0.60resultedinoneofthetwovariablesbeingremoved(Draper&Smith1998).Furthermore,afterRDAperformance,onlyvariableswithVIF(VarianceInflationFactor)<10wereretainedintheanalysis(Tuetal.2005).

1.3.4. Summary

Theplanktonabundance(cells/m3forphytoplanktonandindividuals/m3forzooplankton),andenvironmentalparameters(exceptpH)weretransformedpriorbytheformulaoflog10(X+1)to

Page 10: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

7|P a g e

reducetheeffectsofextremevaluesandtheunitdifferencesofenvironmentalvariables.InANOSIManalysis,theplanktonabundancedataisrankedbytheBray-Curtissimilarityprocess.ThesignificanceofRDAmodelandANOSIMwasachievedbyusingperpermutationtestswith999trials.Weseta=0.05.Statisticalanalysesandindicesforphytoplanktoncalculationsarebasedonthe2016data.WeexcludedatacollectedinJuneforRDAanalysisbecausewelackedconductivityandturbiditymeasures.Zooplanktonanalyseswon’tbecompleteuntilspring2017.Intheanalysesofthisreport,dataof6sitescollectedinOctoberandNovember,2015areincluded(HP1,HP3,HP10,RIV1,RIV3,andRIV4).ThesoftwareofRprogramv.3.3.2coupledwithvariouspackages,Primer™v.6,Microsoft®Excel™v.2010wereusedfortheanalyses.Wereportaverages±1standarddeviation.3. RESULTS3.1. WATERCONDITIONS

3.1.1. Depth

Duringthestratificationtime,thedepthoftheupperMDhabitat(HP)hadahighrangefrom13.8m(HP1)to39.4m(HP5),whereas,therangeoftheRIVhabitatisfrom2.2m(RIV3)to4.7m(RIV4).Innon-stratificationtime,thedepthintheHPhabitatvariesfrom13.7m(HP1)to38.0m(HP5)andintheRIVhabitatisabout4.4m(RIV2)to7.1m(RIV1).Table3providesmoredetails.Table3.Depth(m)variationinthecollectingsitesbetweenthestratificationandnon-

stratificationtime.Site Stratificationtime Non-StratificationtimeHP1 13.8 13.7HP2 19.7 19.1HP3 27.1 ---HP4 37.5 35.1HP5 39.4 38.0HP6 24.5 ---HP7 37.9 ---HP8 26.1 ---HP9 35.3 34.5HP10 33.8 29.1HP11 29.3 ---HP12 23.0 ---HP13 27.0 ---RIV1 3.4 7.1RIV2 3.4 4.4

Page 11: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

8|P a g e

Site Stratificationtime Non-StratificationtimeRIV3 2.2 6.8RIV4 4.7 5.7

3.1.2. Temperature

Theaveragetemperatureintheheadpondsites=19.9±1.2oCduringthestratificationperiodand12.8±3.1oCduringthenon-stratificationperiod(Table4).Temperaturefortheriversitesaveraged21.0±0.4oCand12.6±1.0oCinstratificationandnon-stratificationperiods,respectively.Table4.Watercolumntemperature(0C)amongthecollectingsitesduringstratificationandnon-

stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-StratificationtimeSite Min(0C) Max(0C) Average(0C) Min(0C) Max(0C) Average(0C)HP1 15.3 24.6 19.7 10.3 11.1 11.0HP2 15.1 25.2 20.9 15.4 17.2 15.6HP3 8.8 21.8 19.4 --- --- ---HP4 10.5 24.1 18.2 9.4 16.9 12.9HP5 10.6 24.3 18.9 11.4 17.6 14.9HP6 15.2 24.4 20.2 --- --- ---HP7 11.2 23.3 19.6 --- --- ---HP8 17.0 24.5 20.8 --- --- ---HP9 11.0 24.7 17.4 12.0 18.1 14.9HP10 14.8 22.1 20.2 6.6 9.3 7.6HP11 12.6 22.6 20.6 --- --- ---HP12 15.4 23.2 21.4 --- --- ---HP13 17.0 23.9 21.0 --- --- ---RIV1 20.4 22.8 21.2 12.3 15.9 13.7RIV2 20.0 22.7 21.2 10.3 18.2 11.3RIV3 19.8 24.0 21.1 11.3 15.1 12.5RIV4 19.0 23.2 20.5 10.3 15.3 12.9

3.1.3. Conductivity

Theaverageconductivityfortheheadpondisaveraged133.4±32.1µS/cmduringthestratificationperiodand113.2±18.9µS/cmduringthenon-stratificationperiod.Intheriverhabitats,theaverage=123.6±38.9µS/cmand108.5±19.5µS/cmforthestratificationandnon-stratificationperiods,respectively(Table5).

Page 12: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

9|P a g e

Table5.Conductivity(µS/cm)variationamongthecollectingsitesduringstratificationandnon-stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-Stratificationtime

Site Min(µS/cm) Max(µS/cm) Average(µS/cm)Min

(µS/cm)Max

(µS/cm) Average(µS/cm)HP1 52.0 89.0 73.4 75.2 80.1 79.0HP2 83.8 349.6 210.3 69.6 114.5 112.1HP3 95.1 123.1 116.6 --- --- ---HP4 92.0 423.6 157.4 75.5 130.1 119.3HP5 92.3 334.8 149.3 79.0 117.8 111.7HP6 96.0 125.0 109.1 --- --- ---HP7 99.4 139.0 120.9 --- --- ---HP8 110.0 140.0 125.0 --- --- ---HP9 93.2 232.8 160.6 92.1 124.5 121.2HP10 109.0 138.0 128.2 130.2 139.0 135.7HP11 105.6 138.0 123.3 --- --- ---HP12 112.9 142.0 128.0 --- --- ---HP13 111.2 145.0 132.5 --- --- ---RIV1 113.7 368.0 181.5 70.8 127.9 120.3RIV2 96.2 104.6 97.8 56.0 83.0 79.4RIV3 106.9 109.8 107.9 71.8 128.3 117.8RIV4 105.9 109.3 107.2 70.6 126.4 116.5

3.1.4. DissolvedOxygen

TheDissolvedOxygen(DO)measurementsofthecollectingsitesintwoseasonsareprovidedinthetable6.IntheHPsites,theDOaveragesofthestratificationandnon-stratificationtimeare6.4±0.6mg/Land8.5±1.4mg/L.ThesevaluesintheRIVsitesare8.5±0.5mg/L(stratificationperiod)and9.5±0.5mg/L(non-stratificationperiod).

Page 13: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

10|P a g e

Table6.DO(mg/L)variationamongthecollectingsitesduringstratificationandnon-stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-Stratificationtime

SiteMin

(mg/L)Max

(mg/L)Average(mg/L)

Min(mg/L)

Max(mg/L)

Average(mg/L)

HP1 0.7 9.7 5.4 9.0 10.2 9.3HP2 5.4 9.5 7.5 7.6 10.3 8.2HP3 1.6 8.5 6.8 --- --- ---HP4 3.5 9.8 7.1 3.5 9.8 8.3HP5 3.4 9.5 7.0 2.8 10.6 6.8HP6 2.6 10.0 5.9 --- --- ---HP7 2.2 9.6 6.2 --- --- ---HP8 2.7 9.6 6.3 --- --- ---HP9 5.8 8.8 7.1 2.7 12.1 7.7HP10 0.2 8.8 5.8 10.0 11.3 10.8HP11 0.2 8.4 5.9 --- --- ---HP12 0.3 8.5 6.1 --- --- ---HP13 0.2 9.4 6.1 --- --- ---RIV1 7.8 8.9 8.5 8.5 11.2 9.0RIV2 6.7 8.5 8.1 9.0 10.1 10.0RIV3 8.9 9.4 9.1 8.7 11.4 9.3RIV4 7.6 8.4 8.1 9.7 11.0 9.9

3.1.5. pH

ThevariationofpHamongthecollectingsitesareshowninthetable7.Duringthestratificationtime,theaveragevaluesofHPandRIVhabitatsare7.2±0.2and7.2±0.2.Incontrast,thosevaluesinnon-stratificationtimeare6.9±0.2and6.8±0.9.Table7.pHvariationamongthecollectingsitesduringstratificationandnon-stratification

periodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1. Stratificationtime Non-Stratificationtime Site Min Max Average Min Max AverageHP1 6.0 8.1 7.0 6.8 7.3 7.1HP2 6.7 7.9 7.1 6.6 8.3 6.7HP3 6.2 7.9 7.2 --- --- ---HP4 6.2 8.3 7.1 6.2 8.2 7.0HP5 6.2 8.1 7.2 6.2 8.6 6.8HP6 6.7 8.4 7.4 --- --- ---HP7 6.4 8.4 7.2 --- --- ---HP8 6.6 8.4 7.3 --- --- ---

Page 14: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

11|P a g e

Stratificationtime Non-Stratificationtime Site Min Max Average Min Max AverageHP9 6.2 7.4 6.7 6.2 7.9 6.7HP10 6.8 7.9 7.4 6.9 7.3 6.9HP11 6.2 8.0 7.2 --- --- ---HP12 6.0 8.6 7.2 --- --- ---HP13 6.4 8.3 7.4 --- --- ---RIV1 7.1 8.0 7.4 6.1 8.8 7.7RIV2 7.1 7.6 7.3 5.1 7.5 5.5RIV3 7.1 7.4 7.2 6.8 7.9 7.0RIV4 6.1 7.8 6.9 6.3 7.6 6.9

3.1.6. Turbidity

Inthestudiedarea,theaverageoftheturbidity(Turbid)oftheHPsitesis1.3±0.5pptinthestratificationmonths,whereasthevalueofRIVsitesis1.1±0.4ppt.Inthenon-stratificationmonths,thosevaluesoftheHPandRIVsitesare0.9±0.4and1.3±0.3ppt,respectively.Table8providesmoredetailsabouttherecordedturbidityparameter.Table8.Turbidity(ppt)variationamongthecollectingsitesduringstratificationandnon-

stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1.

Stratificationtime Non-StratificationtimeSite Min(ppt) Max(ppt) Average(ppt) Min(ppt) Max(ppt) Average(ppt)HP1 0.3 4.7 1.5 1.3 2.1 1.5HP2 0.0 2.2 0.7 0.5 1.3 0.8HP3 0.4 31.1 0.9 --- --- ---HP4 0.0 4.5 0.8 0.0 1.7 0.8HP5 0.0 3.4 1.2 0.2 1.7 0.6HP6 0.9 15.4 1.7 --- --- ---HP7 0.3 7.5 1.4 --- --- ---HP8 0.4 5.5 1.6 --- --- ---HP9 0.0 1.3 0.4 0.1 1.7 0.6HP10 1.4 4.5 1.9 0.7 1.7 1.1HP11 0.4 3.6 1.4 --- --- ---HP12 0.9 4.5 1.7 --- --- ---HP13 0.9 6.5 1.8 --- --- ---RIV1 0.3 1.0 0.5 0.2 1.4 0.9RIV2 0.9 2.0 1.6 1.4 2.0 1.7RIV3 0.1 2.5 1.2 0.2 2.0 1.4RIV4 0.2 3.0 1.0 0.2 9.2 1.2

Page 15: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

12|P a g e

3.1.7. Salinity

Thesalinity(Sal)wasmeasuredatsomecollectingsitesfrom2014to2016anddisplayedinthetable9.Ofwhich,theaveragevalueofHPhabitatinstratificationperiodis0.09±0.01pptandinnon-stratificationperiodis0.05±0.01ppt.TheaverageoftheRIVsitesis0.06±0.01pptrecordedinthestratificationmonthsand0.05±0.01pptinnon-stratificationmonths.Table9.Salinity(ppt)variationamongthecollectingsitesduringstratificationandnon-stratificationperiodsintheMactaquacHeadPond(HP)andSJR(RIV)–seealsoFigure1. Stratificationtime Non-StratificationtimeSite Min(ppt) Max(ppt) Average(ppt) Min(ppt) Max(ppt) Average(ppt)HP10 ---- --- --- 0.06 0.07 0.06HP9 0.04 0.11 0.08 0.05 0.06 0.06HP5 0.04 0.16 0.08 0.05 0.06 0.05HP4 0.04 0.20 0.11 0.05 0.06 0.06HP2 0.04 0.17 0.10 0.05 0.05 0.05HP1 --- --- --- 0.03 0.04 0.04RIV1 0.05 0.18 0.09 0.05 0.06 0.06RIV2 0.04 0.05 0.05 0.04 0.04 0.04RIV3 0.05 0.05 0.05 0.05 0.06 0.06RIV4 0.05 0.05 0.05 0.05 0.06 0.06

3.2. PHYTOPLANKTON

3.2.1. Biodiversity

Thetotalnumberofphytoplanktonspeciesrecordedwas341,including152Chlorophyta,62Bacillariophyta,82Cyanophyta,17Chrysophyta,14Cryptophyta,6Euglenophyta,4Rhodophyta,and4Dinophyta.Intheheadpond,therewere13(HP8)to185(HP4)species;thenumberofspeciesintheriverrangedfrom140(RIV2)to171(RIV4).In2016,weobserved288phytoplanktonspecies,ofwhichthevariationoftaxarichness,numberofcells,andH’andJindexeswasshownintheFigure2,3and4,andTable10.

Page 16: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

13|P a g e

Figure2.Variationofthespeciesnumberamongthecollectingsitesin2016.

Figure3.Thenumberofcells/m3estimatedamongthecollectingsitesof2016–alldata(leftpanel)andafterremovingtheoutliersatHP2.

Page 17: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

14|P a g e

Figure4.ThevariationsoftheH’andJ’indicesofdiversityamongthecollectingsitesin2016.Table10.Thetestingresults,usingOne-wayANOVAorKruskal-Wallistest,forthedifferenceofthetaxarichness,numberofcells,JandH’indexesbetweenHPandRIVhabitatsbasedonthe2016samples. Stratificationtime Non-stratificationtimeTaxarichness H=0.03,1d.f.,p>0.05 F1,14=4.64,p<0.05Numberofcells H=1.90,1d.f.,p>0.05 H=0.04,1d.f.,p>0.05Jindex H=8.56,1d.f.,p<0.05 H=3.19,1d.f.,p>0.05H’index H=6.45,1d.f.,p<0.05 H=4.42,1d.f.,p<0.05

3.2.2. Variationofphytoplankton

DifferentamongEpi-.Meta-,andhypo-limnion:NointeractionsweredetectedintheScheirer-Ray-HareTestbetweenthewaterlayersandsitesintermsofthetaxarichnessornumberofcells.Thetestalsorevealednosignificantdifferencesinthetaxarichnessorthenumberofcellsamongthewaterlayer.However,asignificantvariationwasrecordedintermofthenumberofcellsamongtheHPsites(Table11).

Page 18: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

15|P a g e

Table11.TheresultsoftheScheirer-Ray-HareTestforthedifferenceofthewaterlayers(Epi:Epilimnion,Meta:Metalimnion,Hypo:Hypolimnion)intheHPhabitatsbasedonsamplesfrom2016.

Scheirer-Ray-HareTestTaxarichness Layer:H=0.43,1d.f.,p>0.05 Site:H=0.31,1d.f.,p>0.05 Interaction:H=0.05,1d.f.,p>0.05Numberofcells Layer:H=2.53,1d.f.,p>0.05 Site:H=8.81,1d.f.,p<0.05 Interaction:H=0.03,1d.f.,p>0.05

PhytoplanktonvariationamongtheHPsites:EventheaboveScheirer-Ray-HareTestshowedthesignificantdifferenceamongsitesinthestratificationtime(Table11),furtherMann-Whitney-WilcoxonTestswiththeBonferronicorrection(αlevel=0.05/6=0.008)revealednosignificantvariationsamongtheHPsitesinstratificationtime.Similarly,duringnon-stratification,nosignificantdifferencesweredetected.Table12showsthemoredetailaboutthesetests.Table12.Theresultsofone-wayANOVAsandMann-Whitney-WilcoxontestswiththeBonferronicorrection(αlevel=0.008)forthedifferenceamongtheHPsites.

Stratificationtime Non-stratificationtime

Taxarichness F3,28=0.211,p>0.05 F3,4=0.14,p>0.05Numberofcells HP2-HP4:W=35,p>0.008 F3,4=0.64,p>0.05 HP2-HP5:W=27,p>0.008 HP2-HP9:W=34,p>0.008 HP4-HP5:W=18,p>0.008 HP4-HP9:W=32,p>0.008 HP5-HP9:W=32,p>0.008

Differentbetweensurfaceandbottomlayersinriverhabitats:BasedontheScheirer-Ray-HareTest,nosignificantinteractionsordifferenceswereobservedbetweensurfaceandbottomsamplesofthephytoplanktonintheriverlocations(Table13).

Page 19: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

16|P a g e

Table13.TheresultsoftheScheirer-Ray-HareTestforthedifferencebetweensurfaceandbottomintheriverhabitatssampledin2016.

Scheirer-Ray-HareTestTaxarichness Layer:H=0.10,1d.f.,p>0.05 Site:H=1.17,1d.f.,p>0.05 Interaction:H=0.00,1d.f.,p>0.05Numberofcells Layer:H=0.01,1d.f.,p>0.05 Site:H=1.17,1d.f.,p>0.05 Interaction:H=0.06,1d.f.,p>0.05

VariationalongtheRIV:NosignificantdifferenceswerefoundamongtheRIVsitesintermsofthetaxarichnessandthenumberofcellsfromtheaboveScheirer-Ray-HareTest(Table13).Thesameresultswererecordedduringthenon-stratificationtimeandshownintable14.Table14.One-wayANOVAresultsoftestingthevariationalongtheSJR.

Non-stratificationtimeTaxarichness F3,4=0.49,p=0.78Numberofcells F3,4=1.08,p=0.45

Influenceofthedamonriverplankton:Wefoundnosignificantdifferencesbetweenthetwosites,HP4andRIV1,inbothofstratificationandnon-stratificationperiodsintermsofthetaxarichnessandthenumberofcells.Table15providesmoredetails.However,regardingtothewholehabitatvariation,theresultfromANOSIManalysis(p<0.05)indicatedthattherewasasignificantdifferencebetweenHPandRIVphytoplanktonassemblages.Table15.TheresultsoftheOne-wayANOVAstestingthedifferencebetweentwosites,HP4andRIV1,in2016.

Stratificationtime Non-stratificationtimeTaxarichness F1,6=0.08,p>0.05 F1,2=0.18,p>0.05Numberofcells F1,6=4,24,p>0.05 F1,2=0.84,p>0.05

InDCAanalysis,asthevalueofthefirstaxislengthis<2(DCA1=1.84),weapplyRDAforthenextanalysis.WeremovetheenvironmentalparametersofDepth,SalandpHasthesearehighlycorrelatedwithotherparameters(r>0.6),theremainingparametersfortheRDAanalysisincludeTemp,Cond,DO,andTurbid.ThefirstthreeRDAaxescanexplain≈89.40%ofconstrainedvariancewhereasonly15.08%ofunconstrainedvarianceisexplainedbythesefirst

Page 20: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

17|P a g e

threeaxes.TheANOVAtestshows3significantresultsforTemp(F1,43=1.71,p<0.05),Cond(F1,43=2.47,p<0.05),andDO(F1,43=1.80,p<0.05)butTurbid(F1,43=1.42,p<0.05).TheRDAplotisillustratedinFigure5.

Figure5.PlotfortheRDAanalysisbetweenthephytoplanktoncommunitiesandfourselected

environmentalparameters(Cond=Conductivity,Temp=Temperature,DO=DissolvedOxygenandTurbid=Turbidity).

Page 21: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

18|P a g e

3.3. ZOOPLANKTON

3.3.1. Biodiversity

Thetotalspeciesnumberofzooplanktonrecordedinthestudiedarea=73,including2phyla,e.g.,Rotifera,43species(59%)andArthropoda,30species(41%).Thespeciesnumbersvaryfrom15(HP13)to46(HP4)intheHPsitesandfrom12(RIV3)to18(RIV1)intheRIVsites.

3.3.2. Variationofzooplankton

NosignificantresultsoftheANOSIMwerefoundforthezooplanktonassemblagesamongthelayers,e.g.,inHP:R=-0.38,p>0.05;inRIV:R=-0.19,p>0.05.Bycontrast,wefoundasignificantdifferencebetweenHPandRIVhabitatswithR=0.59,p<0.05.Figure6.PlotfortheRDAanalysisbetweenthezooplanktoncommunitiesandselected

environmentalparameters(Cond:Conductivity,Turbid:Turbidity,Temp:Temperature).

Page 22: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

19|P a g e

ThevaluesofthefirstDCAlengthis2.09,weapplyRDAforthefurthermultivariateanalysis.CorrelationanalysisshowedhighcorrelationsbetweenConductivityandSalinity(r>0.6);otherhighcorrelationswereDOwithbothTemperatureandTurbidity(r>0.6).Consequently,weremovebothDOandSal.ThefirstthreeRDAaxescanexplain94.30%ofconstrainedvarianceand56.25%unconstrainedvariance.ThetestofsignificanceshowsthatTemp(F1,12=3.32,p<0.05),Cond(F1,12=9.89,p<0.05)andpH(F1,12=4.23,p<0.05)contributesignificantlytotheexplanationofthezooplanktonvarianceintheRDAaxesbutDepthandTurbid(p>0.05).Figure6illustratestheRDAplotforthezooplankton.4. DISCUSSIONHeadPondandRiverEnvironments:Averagetemperaturesintheheadpondtendtobelowerthaninriversiteswhichreflectsthedeeperwater,layering/isolation,andinsolationeffectsintheheadpond.TheDOlevelsintheriverarehigherandmoreverticallystablethanthoseintheheadpond.Thisreflectsthemixing(flowingandshallowerwatercolumn).Theremainingparameterswereaswouldbeexpectedforreservoirandriverenvironments(e.g.,Watt1973;Watt&Duerden1974;Wetzel2001).Biodiversity:ThePlanktonCommunitiesThenumberofphytoplanktonspecies,about314species,washigherthanreportedintheearly1970s,i.e.,only128phytoplankton(Watt1973,1974).Amongthephytoplankton,weobservedanumberofcyanobacteriasomespecieswhichhavebeenlinkedtoharmfulblooms(Paerletal.2001).Forexample,thereisanapparentoutlierwiththenumberofthecellsrecordedatheadpondsiteHP2,theareawherewasrecordedanalgalbloomingaboutfiveyearsago(J.O’Keefe,NBEnvironment,pers.comm.),whichappearstobeapossiblebloomingofAphanocapsaholsatica.Thisspeciesfavorstothehabitatofshort,nutrientrichcolumns(Reynoldsetal.2002).Thenumberofthezooplanktonspeciesfoundinourstudyishigherthanreportedinthe1970s(Watt&Duerden1974)withasignificantsupplementofRotifers,whichwasexcludedinthe1970sresearch.Weobserved73speciesincomparisonto53speciesrevealedinthewholeSJRreportin1970s,ofwhichmorethan18speciescommonlyfoundinthestudiedarea.Wehaveyettocompletethefullzooplanktontaxonomyandabundanceanalyses,butalreadythenumberofspeciesandabundanceappearstohaveincreasedovertime.EffectsofStratificationInbothheadpondandriverhabitats,fullmixingofthewatercolumnwassuggestedbecausetheplanktondistributionisverticallyhomogenous.Similarly,duringthestratificationperiod,thethermaldifferenceofamongwaterlayerswasnotenoughtocausesignificantdifferencesofthephytoplanktoncommunitiesintermsofthetaxarichnessandnumberofcells.Wemightexpecta

Page 23: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

20|P a g e

significantdifferenceinzooplanktoncommunitiesinstratificationtimeintheHPwhenwatercolumnswerestronglycategorized.PlanktondistributionpatternsalongRIVandHPhabitatsInbothhabitats,thewatercolumnsarenotstatic;therearecontinuousmovementsofwaterwithinthetwohabitatsatmostofthesites,evenintheHP.Consequently,nosignificantdifferenceswerefoundintermsofthetaxarichnessandnumberofphytoplanktoncells.Zooplankton,ontheotherhand,mighthaveadifferentdistributionpatternandtheresultwillberevealedafterthecompletionoflaboratorywork.Theeffectofthereservoirontheriver:Thenon-significantresultsoftheANOVAtests(p>0.05)supportthehypothesisthatriverplanktoncommunityaremostlysupplementedbytheMactaquacGeneratingStation,atleastinthemainriverandwithin20kmofthedam.Nevertheless,theplanktoncommunitiesdependonthedistancefromthedamandphysicalconditionsofthelittoralzonesandbackwaters,e.g.,watervelocity,depth,andmacrophyteoccurrence(e.g.,Walks&Cyr2004).Normally,largeplanktonassemblagesoccurinimpoundmentswithlowerconcentrationsinlow-flowmarginsofrunningwaters,likeriversandstreams(e.g.,Rojoetal.1994).Onceintheriver,theriverineplanktonrelyonotherphysicalfactors,e.g.,watervelocityandwaterturbidityinfluencingUVpermeation.Additionally,Jones(2010)foundaspatialrelationshipbetweenthedistanceofaplanktoncommunityfromthereservoirandthereservoirsinfluenceonthatpopulation,i.e.communitiesfurtherdownstreamofareservoirarelessinfluencedthanthoseproximaltothereservoir.Additionally,theSJRisprovidedbyaplanktonsupplementtotheSJRfromtheKeswickRiver.Consequently,adifferentplanktonassemblageoftheRIVhabitattothatintheHPhabitatisestablishedpossiblyresultingfromthevariationofthephysiochemicalconditionsalongtheriverreachwestudied,fromtheMDtothecityofFredericton,coupledwiththeplanktoncontributionoftheKeswickRiver.Essentialenvironmentalparameters:Physiochemicalparametersplayanessentialroleincontrollingtheplanktondynamicsinfreshwaters(Wetzel2001).Inthestudiedarea,wefoundthesignificantimportanceoftheTemp,Cond,andDOwiththephytoplanktonpattern.However,theseparameterscontributeasmallpercentagetovarianceofthephytoplankton,suggestingthatotherfactorsmightplayanmoreimportantrole.WemightexpectmoresignificantresultswhenNitrogenandPhosphoruscomponentsareincludedintheRDAanalysisasinthefreshwater,phosphorusisthelimitinggrowthfactorandnitrogenistheessentialpartofthephytoplanktondynamicsandproductivity(Raven&Maberly2009;C.S.Reynolds2009).InvestigationsbyWatt(1972,1973)revealedsignificantcorrelationsbetweenphosphorousconcentrationandthemaximumphytoplanktonpopulationdensityaswellasthe%biomassofDinobryonsertulariaandD.bavaricumintheMH.Moreover,changesofthephytoplanktonalsoreplyonthedynamicsofzooplankton(Sterner

Page 24: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

21|P a g e

2009),wewilladdspeciesnumberandabundanceofzooplanktonastwoadditionalfactorsinfurtheranalysis.TheRDAanalysisrevealsthatthezooplanktonassemblagehasastrongassociationwithTemp,CondandpH.However,theresultmightbechangedasthisistheprimaryanalysisbasedononefieldworksampling.FurtherRDAwillbeappliedtothefulldatasetfrom2016fieldwork.Aszooplanktonfeedmostlyonthephytoplankton,anecologicalfactor,wecanseethosefactorsofthenumberofthephytoplanktonnaturalunitsorcells,andchlorophyll-a(Sterner2009),possiblyplayaroleonthedistributionpatternsofthezooplanktoncommunities.Additionally,depthmightalsohaveasignificantimpactonthemigrationabilityofthezooplanktonandcontributetothedistributionpatterns.Ongoinglaboratoryanalyses:Assomelaboratoryworkandanalysisareongoingandwillbecompletelaterin2017.o biovolumeestimationforphytoplankton.o taxonomyandnumerationofzooplanktonsamplescollectedin2016.o measurethepigmentconcentrations,i.e.,Chlorophyll-aandPhycocyanin.o determinethetrophicstatusofHPandSJRbasedonphytoplanktonbioindicatorsand

concentrationsofthenitrogenandphosphoruscomponents.o performfullstatisticalanalysisforzooplanktonrerunstatisticalanalysisforphytoplankton

inassociationwiththeecologicalfactors.5. ACKNOWLEDGEMENTSTheauthorswouldliketorecognizethefundingforthisprojectthatisreceivedfromNBPowerandNSERC’sCollaborativeResearchandDevelopmentprogramme(CRDPJ:462708-13).WealsothankTheorenEllis,JaimeLeavitt,StevePetetin,andCraigWallfortheirfieldandlaboratoryassistance.WeexpressourspecialthankstoPaulHamilton,PhycologicalCurator,CanadianMuseumofNaturalHistoryandProfessorDavidGarbary,SaintFrancisXavierUniversityfortheirhelpinverifyingalgaetaxonomyandintensivetrainingcourses.

Page 25: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

22|P a g e

6. REFERENCES

Andersen,Tom,&Hessen,DagO.(1991).Carbon,nitrogen,andphosphoruscontentoffreshwaterzooplankton.LimnologyandOceanography,36(4),807-814.

APHA.(2005).Standardmethodsfortheexaminationofwaterandwastewater.AmericanPublicHealthAssociation(APHA):Washington,DC,USA.

Arar,E.J.,&Collins,G.B.(1997).Method445.0InVitroDeterminationofChlorophyllaandPheophytinainMarineandFreshwaterAlgaebyFluorescence.Washington,DC:U.S.EnvironmentalProtectionAgency.

Aubé,CIsabelle,Locke,Andrea,&Klassen,GregJ.(2005).ZooplanktoncommunitiesofadammedestuaryintheBayofFundy,Canada.Hydrobiologia,548(1),127-139.

AWWA.(2010).Manual57-AlgaeSourcetoTreatment.Denver,Colorado,USA:AWWA(AmericanWaterWorksAssociation).

Baker,A.L.etal.(2012).Phycokey:AnimagebasedkeytoAlgae(PSProtista),Cyanobacteria,andotheraquaticobjects.2015,fromhttp://cfb.unh.edu/phycokey/phycokey.htm

Basu,BenK,Kalff,J,&Pinel-Alloul,B.(2000).TheinfluenceofmacrophytebedsonplanktoncommunitiesandtheirexportfromfluviallakesintheStLawrenceRiver.FreshwaterBiology,45(4),373-382.

Bellinger,EdwardG.,&Sigee,DavidC.(2010).FreshwaterAlgae:IdentificationandUseasBioindicators:Wiley-Blackwell.

Bellinger,EdwardG.,&Sigee,DavidC.(2015).FreshwaterAlgae:Identification,EnumerationandUseasBioindicators:Wiley-Blackwell.

Brandlova,J,Brandl,Z,&Fernando,CH.(1972).TheCladoceraofOntariowithremarksonsomespeciesanddistribution.CanadianJournalofZoology,50(11),1373-1403.

Burkholder,J.M.(2009).Harmfulalgalblooms.InG.E.Likens(Ed.),PlanktonofInlandWaters:AcademicPress.

Chateauvert,A.(2015).Methodpaper:SamplingPhysicalLimnologyandPlanktonintheMactaquacHeadPondMactaquacAquaticEcosystemStudyReportSeries2015-007(pp.5):CanadianRiversInstitute,UniversityofNewBrunswick.

Chengalath,R.(1971).TheplanktonicrotiferaofOntariowithkeystogeneraandspecies.Waterloo,Ontario:UniversityofWaterloo.

Cunjak,RichardA.,&Newbury,RobertW.(2005).AtlanticcoastriversofCanada.InA.C.Benke&C.E.Cushing(Eds.),RiversofNorthAmerica:ElsevierAcademicPress.

Downing,JohnA,&McCauley,Edward.(1992).Thenitrogen:phosphorusrelationshipinlakes.LimnologyandOceanography,37(5),936-945.

Draper,NormanRichard,&Smith,Harry.(1998).Appliedregressionanalysis(Vol.3):WileyNewYork.

Duerden,FrankC.(1973).ZooplanktonoftheSaintJohnRiverheadponds:areportpreparedfortheSaintJohnRiverBasinBoard.Frederiction:TheSaintJohnRiverBasinBoard.

Dytham,Calvin.(2011).Choosingandusingstatistics:abiologist'sguide:JohnWiley&Sons.Haney,J.F.etal.).An-Image-basedKeytotheZooplanktonofNorthAmerica,version5.0.

Retrieved12Nov2015,fromhttp://cfb.unh.edu/cfbkey/html/index.htmlHarris,Roger,Wiebe,Peter,Lenz,Jurgen,Skjoldal,Hein-Rune,&Huntley,Mark.(2000).ICES

zooplanktonmethodologymanual:Academicpress.

Page 26: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

23|P a g e

Jones,NicholasE.(2010).Incorporatinglakeswithintheriverdiscontinuum:longitudinalchangesinecologicalcharacteristicsinstream-lakenetworks.CanadianJournalofFisheriesandAquaticSciences,67(8),1350-1362.

Keen,Eric.(2013).Apracticaldesigner’sguidetomesozooplanktonnets.RetrievedMarch23,2016,fromhttp://acsweb.ucsd.edu/∼ekeen/resources/Choosing-a-Net.pdf

Krebs,CharlesJ.(1989).Ecologicalmethodology:Harper&RowNewYork.Krienitz,L.(2009).Algae(includingcyanobacteria):planktonicandattached.InG.E.Likens(Ed.),

Planktonofinlandwaters:AcademicPress.Lerback,Jory.(2013).OstracodaTaxonomicIndetificationGuide.NationalParkService,Denver,

Colorado:Geoscientists-In-the-Parksdocument-GUMO.Likens,GeneE.(2010).Planktonofinlandwaters:AcademicPress.Locke,Andrea,&Klassen,GregJ.(2010).Zooplankton(Rotifera,Cladoreca,Copepoda)ofthe

AtlanticMaritimeEcozone.InD.F.MacAlpine&I.M.Smith(Eds.),AssessmentofSpeciesDiversityintheAtlanticMaritimeEcozone(pp.333-369).Ottawa,Canada:NRCResearchPress.

Nuttall,PeterM.(1971).AguidetotheidentificationofthefreshwaterostracodaofOntariowithaprovisionalkeytothespecies.Waterloo,Ontario:UniversityofWaterloo.

Paerl,HansW,Fulton,RollandS,Moisander,PiaH,&Dyble,Julianne.(2001).Harmfulfreshwateralgalblooms,withanemphasisoncyanobacteria.TheScientificWorldJournal,1,76-113.

Prescott,G.W.(1964).Howtoknowthefresh-wateralgae;anillustratedkeyforidentifyingthemorecommonfresh-wateralgaetogenus,withhundredsofspeciesnamedandpicturedandwithnumerousaidsfortheirstudy.Dubuque,Iowa:BrownCo.

Prescott,G.W.(1980).Howtoknowthefreshwateralgae.Dubuque,Iowa:Wm.C.BrownCompanyPublishers.

Quinn,GerryP,&Keough,MichaelJ.(2002).Experimentaldesignanddataanalysisforbiologists:CambridgeUniversityPress.

Raven,J.A.,&Maberly,S.C.(2009).Phytoplanktonnutritionandrelatedmixotrophy.InG.E.Likens(Ed.),Planktonofinlandwaters:AcademicPress.

Reynolds,Huszar,Vera,Kruk,Carla,Naselli-Flores,Luigi,&Melo,Sergio.(2002).Towardsafunctionalclassificationofthefreshwaterphytoplankton.Journalofplanktonresearch,24(5),417-428.

Reynolds,C.S.(2009).PhytoplanktonPopulationDynamicsinNaturalEnvironments.InG.E.Likens(Ed.),Planktonofinlandwaters:AcademicPress.

Reynolds,CS.(2000).Hydroecologyofriverplankton:theroleofvariabilityinchannelflow.HydrologicalProcesses,14(16-17),3119-3132.

Rojo,Carmen,Cobelas,MAlvarez,&Arauzo,Mercedes.(1994).Anelementary,structuralanalysisofriverphytoplankton.Hydrobiologia,289(1-3),43-55.

Serediak,N.,&Huynh,M.(2011).AlgaeIdentification:Labguide:AgricultureandAgri-FoodCanada.

Smith,Kristin.(1978).AguidetothefreshwatercalanoidandcyclopoidcopepodcrustaceaofOntario.Waterloo,Ontario:UniversityofOntario.

Stemberger,RichardS.(1979).AguidetoRotifersoftheLaurentianGreatLakes.Ohio:UnitedStatesEnvironmentalProtectionAgency.

Sterner,R.W.(2009).Roleofzooplanktoninaquaticecosystems.InG.E.Likens(Ed.),PlanktonofInlandwaters:AcademicPress.

Suárez-Morales,E,&Reid,JW.(1998).Anupdatedlistofthefree-livingfreshwatercopepods(Crustacea)ofMexico.TheSouthwesternNaturalist,256-265.

Page 27: Mactaquac Aquatic Ecosystem Study Report Series 2016-044

MAES Report Series 2016-044

24|P a g e

Suthers,IainM.,&Rissik,David.(2009).Plankton:Aguidetotheirecologyandmonitoringforwaterquality.Australia:CSIROPublishing.

Thorp,JamesP.,&Covich,AlanP.(2001).EcologyandClassificationofNorthAmericanFreshwaterInvertebrates:AcademicPress.

Tu,Yu-Kang,Kellett,Margaret,Clerehugh,Val,&Gilthorpe,MarkS.(2005).Problemsofcorrelationsbetweenexplanatoryvariablesinmultipleregressionanalysesinthedentalliterature.Britishdentaljournal,199(7),457-461.

Utermöhl,H.(1958).ZurVervollkommnungderquantitativenPhytoplankton-Methodik.InternationalenVereinigungderTheoretischenundAngewandtenLimnologie,9,1-38.

Walks,DJ,&Cyr,H.(2004).Movementofplanktonthroughlake-streamsystems.FreshwaterBiology,49(6),745-759.

Watt,W.D.(1972).SummerHeadpondEcologyintheSaintJohnRiverBasin.NovaScotia:SaintJohnRiverBasinBoard.

Watt,W.D.(1973).AquaticEcologyofTheSaintJohnRiver(Vol.I).NovaScotia:TheSaintJohnRiverBasinBoard.

Watt,W.D.(1974).PhytoplanktonoftheSaintJohnRiverheadponds:areportpreparedfortheSaintJohnRiverBasinBoard.Fredericton:TheSaintJohnRiverBasinBoard.

Watt,W.D.,&Duerden,FrankC.(1974).AquaticecologyoftheSaintJohnRiver(Vol.II).NovaScotia:SaintJohnRiverBasinBoard.

Weber,C.I.(1973).Biologicalfieldandlaboratorymethodsformeasuringthequalityofsurfacewatersandeffluents.Ohio:NationalEnvironmentalResearchCenter.

Wehr,JohnD.,&Sheath,RobertG.(2003).FreshwaterAlgaeofNorthAmericaEcologyandClassification:AcademicPress.

Wetzel,RobertG.(2001).Limnology:lakeandriverecosystems:GulfProfessionalPublishing.Williamson,C.E.,&Reid,J.W.(2010).Copepoda.InG.E.Likens(Ed.),Planktonofinlandwaters:

Academicpress.Witty,LynneM.(2004).Practicalguidetoidentifyingfreshwatercrustaceanzooplankton:

CooperativeFreshwaterEcology.