magnesia-carbon refractories for the lining of ... · magnesia (sintered or fused with purity up to...

26
1 Magnesia-carbon refractories for the lining of gasification chambers: technical capabilities and limitations M. Hampel*, P. Gehre, T. Schemmel, C.G. Aneziris 5th International Freiberg Conference on IGCC & XtL Technologies 21 – 24 May 2012, Leipzig TU Bergakademie Freiberg I Institut für Keramik, Glas- und Baustofftechnik Deutsches EnergieRohstoff-Zentrum I Agricolastraße 17 I 09596 Freiberg Telefon +49 (0) 3731 39 - 4036 I Fax +49 (0) 3731 39 - 2419 I www.energierohstoffzentrum.de

Upload: others

Post on 24-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Magnesia-carbon refractories for the lining of gasification chambers: technical capabilities and limitations

    M. Hampel*, P. Gehre, T. Schemmel, C.G. Aneziris

    5th International Freiberg Conference on IGCC & XtL Technologies21 – 24 May 2012, Leipzig

    TU Bergakademie Freiberg I Institut für Keramik, Glas- und BaustofftechnikDeutsches EnergieRohstoff-Zentrum I Agricolastraße 17 I 09596 Freiberg

    Telefon +49 (0) 3731 39 - 4036 I Fax +49 (0) 3731 39 - 2419 I www.energierohstoffzentrum.de

  • 2

    Gasification Chambers with brick lining

    S. Stoye, 2009

    T = 1200 – 1600 °C

    p = 25 – 40 bar

    liquid slag

    alkaline corrosion

    atmosphere CO, H2, CO2, H2O

    C + H2O(g) CO + H2

  • 3

    Why not using Magnesia-carbon refractories for the lining of gasification chambers?

  • 4

    Properties of MgO-C-refractories

    Raw Materials

    Magnesia (sintered or fused with purity up to 98 %)

    Graphite (purity up to 95 %)

    Bonding agent (phenolic resin or coal tar pitch)

    Additives for manipulation of properties:

    Metals: Al, Mg, Si, …

    Carbides and Nitrides: SiC, B4C, …

    Oxides: Al2O3, ZrO2, …

    Fibres: carbon, heat resisting steel

  • 5

    Properties of MgO-C-refractories

    Strength

    Franklin et al: British Ceramic Transactions 94 (1995) 4, pp. 151-156.

  • 6

    Properties of MgO-C-refractories

    Thermal Conductivity

    Zoglmeyer: Stahl und Eisen 100 (1980) 15, pp. 822-832.

  • 7

    Properties of MgO-C-refractories

    Creep under Load

    Jansen et al: IAS Steelmaking Seminar, Buenos Aires (2001) pp. 315-322.

  • 8

    Properties of MgO-C-refractories

    Density and Porosity respectively

    Porosity is caused by

    manufacturing process (incomplet filled pores)

    cracking of organic bonding agent (into volatiles and carbon)

    expansion or shrinkage (most it is insignificant)

    chemical reactions of additives

  • 9

    Properties of MgO-C-refractories

    Density and Porosity respectively

    the average porosity of standard bricks is approx. 8…10 %

    nearly no closed pores

  • 10

    Wear of MgO-C-bricks in metallurgical converters and ladles

    The complex interaction of brick and melt

  • 11

    Magnesia brick without Carbon

    good wettability of bricks

    high infiltration depth of slag

    pick up of iron oxide of magnesia (formation of MgO·FeO)

    increasing viscosity of slag

    but: creep of refratory lining

    and: structural spalling due to changing the temperature

    Wear of MgO-C-bricks in metallurgical converters and ladles

  • 12

    Magnesia-Carbon-Brick

    poor wettability of bricks

    low infiltration depth of slag

    reduction of iron oxide to metallic iron

    CaO·FeO·SiO2 Eutectic ~ 1300°C

    CaO·SiO2 + Fe Eutectic > 1650°C

    increasing viscosity of slag

    protective layer for preventation of oxidation of carbon

    increasing of lining lifetime

    Wear of MgO-C-bricks in metallurgical converters and ladles

    + Carbon

    Mörtl et al: Berg- und Hüttenmännische Monatshefte 137 (1992) pp. 196.

  • 13

    + Carbon

    Barthel: Stahl und Eisen 86 (1966) pp. 81.

  • 14

    Refractoriness of MgO-C-bricks

    is limited by carbothermic

    reaction

    MgO(s) + C(s) → Mg(g) + CO(g)

    1830°C at atmospheric pressure

    gasification of bricks

    higher pressures are

    advantageous for the stability

    Thermodynamic stabilityof MgO-C-bricks

  • 15

    The alkaline corrosion of MgO-C-bricks

    1 bar

    vapor-pressure

  • 16

    The alkaline corrosion of MgO-C-bricks

    MgO-C-Crucible height 50 mm x diameter 50 mm

    Alkaline sample

    Encapsulation by dense refractory castable

    Test procedure

    firing embedded in coke grit

    100 hours at 1100°C / 1500°C

  • 17

    The alkaline corrosion of MgO-C-bricks

    variation of the kind of alkaline salt

    coarse grain and fine grain refratories with 10 wt.-% graphite

    100 hours / 1100°C

    KCl

  • 18

    The alkaline corrosion of MgO-C-bricks

    variation of the kind of alkaline salt

    coarse grain and fine grain refratories with 10 wt.-% graphite

    100 hours / 1100 C

    KCl K2CO3

  • 19

    The alkaline corrosion of MgO-C-bricks

    variation of the kind of alkaline salt

    coarse grain and fine grain refratories with 10 wt.-% graphite

    100 hours / 1100 C

    KCl K2CO3 Na2CO3

  • 20

    The alkaline corrosion of MgO-C-bricks

    variation of the kind of alkaline salt

    coarse grain and fine grain refratories with 10 wt.-% graphite

    100 hours / 1100 C

    KCl K2CO3 Na2CO3 K2SO4

  • 21

    The alkaline corrosion of MgO-C-bricks

    variation of temperature

    coarse grain refratories with 10 wt.-% graphite

    K2CO3 for 100 hours

    1100 C 1500 C

  • 22

    The alkaline corrosion of MgO-C-bricks

    variation of graphite content

    coarse grain refratory samples

    K2CO3 for 100 hours / 1100 C

    15 wt.-% 10 wt.-% 5 wt.-%

  • 23

    Magnesia

    sodium and potassium seems to be not critical

    formation of sulfates < 1050 C

    bursting

    Graphite

    potassium: formation of C8K, C16K, …

    bursting

    sodium: no appreciable reaction

    The use of other carbon sources seems to be successfull.

    The alkaline corrosion of MgO-C-bricks

  • 24

    e.g.: basic electric filter ash, basicity ~ 2,0

    1500°C / 10 hours / CO-atmosphere

    slags with other basicities and alkaline contents

    show comparably behaviour

    The corrosion of MgO-C-bricks by coal slag

    Oxide wt.-% Oxide wt.-%

    CaO 36,0 Al2O3 2,0

    SiO2 26,1 K2O 0,5

    SO3 14,0 TiO2 0,2

    Fe2O3 9,0 P2O5 0,2

    MgO 8,5 MnO 0,1

    Na2O 3,3 BaO 0,1

  • 25

    Limitations of the application of MgO-C-refractories

    the possible gasification of the carbon source of the bricks

    depends on temperature of the lining

    the formation of protective layers (glaze, slag) is possible

    the hydration of the magnesia leads to bursting

    depends on temperature and partial pressure of water

    large crystal and grain sizes are more stable

    dry installation of lining

  • 26

    AcknowledgmentThis publication has been funded by the German Centre for Energy Resources, support code

    03IS2021A. We would like to thank the Federal Ministry for Education and Research (BMBF) and our

    partners from the industry for funding this project.