magnetic-levitation679-111007073157-phpapp01.pdf

Upload: adrianvill

Post on 05-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    1/23

    MechatronicsMagnetic Levitation System

    K. Craig1

    MechatronicsMagnetic Levitation System

    Dynamic System Investigation

    Kevin CraigRensselaer Polytechnic Institute

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    2/23

    MechatronicsMagnetic Levitation System

    K. Craig2

    Electromagnet

    Infrared LED

    Phototransistor

    Levitated Ball

    Magnetic Levitation System A Genuine Mechatronic System

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    3/23

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    4/23

    MechatronicsMagnetic Levitation System

    K. Craig4

    Dynamic System Investigation

    PhysicalSystem

    ExperimentalAnalysis Comparison

    MathematicalAnalysis

    MathematicalModel

    PhysicalModel

    DesignChanges

    Parameter Identification

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    5/23

    MechatronicsMagnetic Levitation System

    K. Craig5

    • This system is both inherently nonlinear andopen-loop unstable .

    • Steps for a Dynamic System Investigation

    – Physical System Description – Physical Modeling (Truth Model vs. Design Model) – Model Parameter Identification

    – Mathematical Modeling – Dynamic System Behavior Prediction – Experiments to Validate Analytical Model – Feedback Control System Design and Implementation – Testing to Evaluate System Performance

    – Determine Design Improvements

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    6/23

    MechatronicsMagnetic Levitation System

    K. Craig6

    Required Background

    • Electromechanics: Elementary Electromagnet• Linearization of Nonlinear Physical Effects• Electronic Components

    – Resistor, Capacitor, Inductor

    – Electrical Impedance & Analogies – Potentiometer and Voltage Divider – Op-Amp Basics + Buffer, Summer, Difference, Inverting

    – Active Lead / Lag Controller – Diode and Light-Emitting Diode (LED) – Transistor: npn BJT, pnp BJT, Phototransistor

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    7/23

    MechatronicsMagnetic Levitation System

    K. Craig7

    Physical System Description

    • The Magnetic Levitation System consists of the

    following subsystems: – Electromagnet Actuator mounted in a stand – Ball-position Sensor: Infrared LED and

    Phototransistor, positioned in the stand – Analog Circuitry on a breadboard

    • Lead Controller (analog implementation)

    • Current Amplifier • Assorted op-amps, resistors, capacitors, potentiometers, and

    diodes for controller implementation, sensor adjustment,buffering, gain adjustment, summing, and inverting.

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    8/23

    MechatronicsMagnetic Levitation System

    K. Craig8

    • Required Power Supplies include:

    – ± 15 volts for op-amps – + 15 volts for electromagnet and phototransistor – + 15 volts for command and bias voltage generation

    – + 5 volts for infrared LED – Current requirements: 300 mA maximum

    • Microcontroller for Digital ControlImplementation – Blue Earth Micro 485

    • Microprocessor: Intel 8051 - 12 MHz

    • Digital I/O: 27 bi-directional TTL-compatible pins• Analog Inputs: 4 12-bit, 0-5 V, A/D converter channels• Serial Communication: RS 232• 128K battery-backed RAM; 32K ROM

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    9/23

    MechatronicsMagnetic Levitation System

    K. Craig9

    Electromagnet

    Infrared LED

    Phototransistor Vsensor = 5.44 V At Equilibrium

    Levitated Ballm = 0.008 kg

    r = 0.0062 m = 0.24 in

    Magnetic Levitation System A Genuine Mechatronic System

    Equilibrium Conditionsx0 = 0.003 mi0 = 0.222 A

    +x

    i

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    10/23

    MechatronicsMagnetic Levitation System

    K. Craig10

    • Electromagnet Actuator – Current flowing through the coil windings of the

    electromagnet generates a magnetic field. – The ferromagnetic core of the electromagnet provides

    a low-reluctance path in the which the magnetic field

    is concentrated. – The magnetic field induces an attractive force on the

    ferromagnetic ball.

    f x i C ix

    ( , ) = F H I K

    2

    Electromagnetic ForceProportional to the square

    of the currentand

    Inversely proportional to thesquare of the gap distance

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    11/23

    MechatronicsMagnetic Levitation System

    K. Craig11

    Core Windings

    1.4"

    1.5"

    2.6"

    0.25"

    – The electromagnet uses a ¼ - inch steel bolt as the core withapproximately 3000 turns of 26-gauge magnet wire wound

    around it. – The resistance of the electromagnet at room temperature is

    approximately 32 Ω.

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    12/23

    MechatronicsMagnetic Levitation System

    K. Craig12

    InfraredLED

    +15V

    Phototransistor

    +5V

    +

    -

    Unity Gain

    Buffer Op-Amp

    Vsensor 62 Ω

    1 K Ω

    200 K Ω

    Emitter Detector

    Ball-Position Sensor LED Blocked: Vsensor = 0 V

    LED Unblocked: Vsensor = 10 VEquilibrium Position: Vsensor ≈ 5.40 VKsensor ≈ 4 V/mm Range ± 1mm

    iemitter = 15 mA

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    13/23

    MechatronicsMagnetic Levitation System

    K. Craig13

    • Ball-Position Sensor – The sensor consists of an infrared diode (emitter) and

    a phototransistor (detector) which are placed facingeach other across the gap where the ball is levitated.

    – Infrared light is emitted from the diode and sensed atthe base of the phototransistor which then allows aproportional amount of current to flow from thetransistor collector to the transistor emitter.

    – When the path between the emitter and detector iscompletely blocked, no current flows.

    – When no object is placed between the emitter anddetector, a maximum amount of current flows.

    – The current flowing through the transistor isconverted to a voltage potential across a resistor.

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    14/23

    MechatronicsMagnetic Levitation System

    K. Craig14

    – The voltage across the resistor, V sensor , is sent through

    a unity-gain, follower op-amp to buffer the signal andavoid any circuit loading effects. – Vsensor is proportional to the vertical position of the ball

    with respect to its operating point; this is compared tothe voltage corresponding to the desired ball position. – The emitter potentiometer allows for changes in the

    current flowing through the infrared LED which affectsthe light intensity, beam width, and sensor gain. – The transistor potentiometer adjusts the phototransistor

    current-to-voltage conversion sensitivity and allowsadjustment of the sensor’s voltage range; a 0 - 10 voltrange allows for maximum sensor sensitivity withoutsaturation of the downstream buffer op-amp.

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    15/23

    MechatronicsMagnetic Levitation System

    K. Craig15

    From Equilibrium: As i ↑, x↓, & Vsensor ↓ As i ↓, x ↑, & Vsensor ↑

    +-

    Vdesired G c(s)

    Controller

    Vbias

    +

    +Current

    Amplifier G(s)

    Magnet + Ball

    H(s)

    Sensor

    Vactual X

    i

    Magnetic Levitation SystemBlock Diagram

    Linear Feedback Control System

    to Levitate Steel Ballabout an Equilibrium Position

    Corresponding to Equilibrium Gap x 0and Equilibrium Current i 0

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    16/23

    MechatronicsMagnetic Levitation System

    K. Craig16

    Command and Error SignalGeneration

    From Equilibrium: As i ↑, x↓, & Vsensor ↓ As i ↓, x ↑, & Vsensor ↑

    +

    -Vsensor

    Vcommand

    -Verror

    DifferenceOp-Amp

    +

    -

    Unity GainBuffer Op-Amp

    Vcommand

    +15V

    10 K Ω

    100 K Ω

    100 K Ω

    100 K Ω

    100 K Ω

    VoltageDivider

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    17/23

    MechatronicsMagnetic Levitation System

    K. Craig17

    ActiveLead Controller

    control 2 1 1 4 4

    error 1 2 2 3 3

    V R R C s 1 R R 0.01s 1

    V R R C s 1 R R 0.001s 1

    + + = − − = − + +

    Vcontrol

    -Verror

    Lead Controller

    +

    -

    InvertingOp-Amp

    -

    +

    1R 100 K = Ω

    1C 0.1 F= µ

    2R 100 K = Ω

    2C 0.01 F= µ

    51 K Ω 1.6 K Ω

    3R 1.6 K = Ω

    4R 50 K = Ω

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    18/23

    MechatronicsMagnetic Levitation System

    K. Craig18

    +

    -

    Vbias

    Vcontrol

    Vbias +

    VcontrolSummingOp-Amp

    +

    -

    Vbias withUnity Gain

    Buffer Op-Amp

    Vbias

    +15V

    Unity GainInvertingOp-Amp

    -

    +

    10 K Ω

    10 K Ω

    10 K Ω

    10 K Ω

    5.1 K Ω

    10 K Ω

    10 K Ω

    5.1 K Ω

    VoltageDivider

    Vbias Generation &

    Summation with V control

    Vbias = 1.77 V At Equilibrium

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    19/23

    MechatronicsMagnetic Levitation System

    K. Craig19

    R1

    +

    -

    Vcontrol+

    Vbias +

    -

    npn BJTTransistor

    pnp BJTTransistor

    R 2

    R3

    Electro-Magnet

    +Vsupply

    diode

    ( ) 2em control bias1 3

    R i V V R R = +

    iem

    1

    2

    3

    R 1000

    R 510

    R 17.8 (20W)

    = Ω

    = Ω

    = Ω 0

    0

    i 0.222 A

    x 3.0 mm

    =

    =

    Current Amplifier

    R em = 32 Ω

    Vsupply = 15 V

    supplysat

    em 3

    Vi

    R R =

    +

    > 9.65 V

    > 9.65 V

    < 9.93 mA

    < 9.93 V

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    20/23

    MechatronicsMagnetic Levitation System

    K. Craig20

    +x

    i

    mg

    f x i C i

    x

    ( , ) = F

    H

    I

    K

    2

    Electromagnet

    Ball (mass m)

    Magnetic Levitation System

    Control System Design

    Linearization:

    2 2 2

    2 2 3 2

    i i 2 i 2 i ˆˆC C C x C ix x x x

    ≈ − +

    Equation of Motion:

    2

    2

    imx mg C

    x

    = −

    2 2

    2 3 2

    i 2 i 2 i ˆˆ ˆmx mg C C x C i

    x x x

    = − + −

    At Equilibrium:2

    3 2

    2 i 2 i ˆˆ ˆmx C x C ix x

    = −

    2

    2

    img C

    x

    =

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    21/23

    MechatronicsMagnetic Levitation System

    K. Craig21

    +-

    Vdesired G c (s)

    Controller

    Vbias

    ++

    CurrentAmplifier

    G(s)Magnet + Ball

    H(s)Sensor

    Vactual X

    i

    2

    2

    img C

    x

    =

    m 0.008

    g 9.81

    x 0.003

    i 0.222

    ====

    C 1.4332E 5= −

    2

    3 22 i 2 i ˆˆ ˆmx C x C ix x

    = −

    ˆx 6540x 88iˆ ˆ= − ( )2

    x 88ˆˆ s 6540i

    −=−

    Kamp = 0.0287 A/V

    Ksensor ≈ 4 V/mm

    88

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    22/23

    MechatronicsMagnetic Levitation System

    K. Craig22

    ( ) ( )( )288

    0.0287 3000s 6540−

    Open-LoopTransfer Function

    4

    3

    R 0.01s 1 0.01s 14R 0.001s 1 0.001s 1 + + = + +

    Controller

  • 8/16/2019 magnetic-levitation679-111007073157-phpapp01.pdf

    23/23

    MechatronicsMagnetic Levitation System

    K. Craig23

    • Digital Implementation of Controller – The analog controller has a high bandwidth needed to

    compensate for inherent instability and nonlinearities. – Digital controllers have an advantage in that the control system

    is implemented in software rather than in hardware, and is

    therefore much easier to modify. – However, a controller implemented digitally has the

    disadvantages of quantization and limited sampling rate, whichcan adversely affect system performance.

    -Verror Scaling

    Circuit0 – 5 V

    12-bit A/D

    Digital

    Controller G c(z)

    8-bit D/ADAC 08

    Microcontroller With

    A/D Converter

    Scale &

    OffsetCircuitryTs

    ToBuffer Op-Amp