magnonic wiedemann-franz law

25
Kouki Nakata University of Basel All the responsibilities of this slide rest with Kouki Nakata (Dec. 2016) Enjoy also talk by DL : https://www.youtube.com/watch?v=56T4CmjkA5c&list=PLS3nw8GL8hAXeJFCXcziJMHB1Yb_HLncd Magnonic Wiedemann-Franz Law KN, P. Simon, and D. Loss: Phys. Rev. B 92, 134425 (2015) See also [KN, J. Klinovaja & D. Loss (2016), arXiv:1611.09752] & review article [KN, P. Simon & D. Loss, arXiv:1610.08901]

Upload: kouki-nakata

Post on 18-Feb-2017

60 views

Category:

Science


1 download

TRANSCRIPT

Page 1: Magnonic Wiedemann-Franz Law

Kouki Nakata

University of Basel

All the responsibilities of this slide rest with Kouki Nakata (Dec. 2016) Enjoy also talk by DL : https://www.youtube.com/watch?v=56T4CmjkA5c&list=PLS3nw8GL8hAXeJFCXcziJMHB1Yb_HLncd

Magnonic Wiedemann-Franz Law

KN, P. Simon, and D. Loss: Phys. Rev. B 92, 134425 (2015) See also [KN, J. Klinovaja & D. Loss (2016), arXiv:1611.09752] & review article [KN, P. Simon & D. Loss, arXiv:1610.08901]

Page 2: Magnonic Wiedemann-Franz Law

Magnon Carries 𝜇B & 𝑘B

≤ ≪

Magnon 𝜇B 𝑘B

Low-energy collective mode in insulating magnet

Page 3: Magnonic Wiedemann-Franz Law

Yes !

QUESTION

Can magnon 𝜇B (boson) transport be similar to electron 𝑒 (fermion) transport ?

Page 4: Magnonic Wiedemann-Franz Law

Electron 𝑒 = Fermion

Magnon 𝜇B = Boson

Wiedemann-Franz (WF) law Franz and Wiedemann, Annalen der Physik (1853)

Magnonic Wiedemann-Franz law KN, P. Simon & D. Loss, PRB (2015)

Superconductors

Onnes (1911)

Quasi-equilibrium magnon condensate Demokritov et al., Nature (2006)

Condensed magnon current Hillebrands-group, Nat. Phys. (2016)

Josephson effect Josephson, Phys. Lett. (1962)

Magnonic Josephson effect KN, K. A. van Hoogdalem, P. Simon & D. Loss, PRB (2014)

KN, P. Simon & D. Loss, PRB (2015)

Quantum Hall effetc (QHE) Klitzing et al., PRL (1980)

Magnonic QHE KN, J. Klinovaja & D. Loss (2016), arXiv:1611.09752

QUESTION

Can magnon 𝜇B (boson) transport be similar to electron 𝑒 (fermion) transport ?

See review article [KN, P. Simon & D. Loss, arXiv:1610.08901]

Page 5: Magnonic Wiedemann-Franz Law
Page 6: Magnonic Wiedemann-Franz Law

Universal Thermomagnetic Relation of Magnon Transport

GOAL

for electron transport in metals

Wiedemann-Franz Law

Y. Kajiwara et al., Nature 464, 262 (2010)

Page 7: Magnonic Wiedemann-Franz Law

Wiedemann-Franz Law in Metals Franz and Wiedemann, Annalen der Physik 165, 497 (1853)

Universal Lorenz number:

At low temperature 𝑇 ≪ 𝜖F/𝑘B~104 K

𝐾: Thermal conductivity 𝜎: Electrical conductivity

Page 8: Magnonic Wiedemann-Franz Law

Thermoelectrics in Metal

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

? ?

Charge

Heat

Page 9: Magnonic Wiedemann-Franz Law

Charge

Heat

K

Thermal Conductivity 𝐾 ≈ 𝐿22 for Fermions

Seebeck & Peltier

WF law (Low temp.)

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

? ?

?

*Lifshitz & Pitaevskii (Vol. 10)

*

Page 10: Magnonic Wiedemann-Franz Law

Magnon

Thermal Conductivity 𝐾 ≠ 𝐿22 for Magnons KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

K

? ?

*

*Lifshitz & Pitaevskii (Vol. 10)

Heat

Page 11: Magnonic Wiedemann-Franz Law

Thermal Conductivity 𝐾 ≠ 𝐿22 for Magnons

Textbook by Ashcroft & Mermin Eq. (13.56): K is measured under conditions of no quasi-particle current

𝐈m = 𝐿11𝜵𝐵 −𝐿12𝜵𝑇 = 0 𝜵𝐵∗ =𝐿12

𝐿11𝜵𝑇

!

𝐈𝑄 = 𝐿21𝜵𝐵∗− 𝐿22𝜵𝑇 = −(𝐿22− 𝐿21𝐿12/𝐿11)𝜵𝑇

Thermal conductivity 𝐾: 𝐈𝑄 ≡ −𝐾 ∙ 𝜵𝑇 with !

𝐈m = 0

K

Magnetization gradient

Johnson & Silsbee (1987) Basso et al. (2016)

Magnon K

Heat

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 12: Magnonic Wiedemann-Franz Law

Thermomagnetics in Ferromagnetic Insulator (FI)

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

? ?

*

*Lifshitz & Pitaevskii (Vol. 10)

Magnon

Heat

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 13: Magnonic Wiedemann-Franz Law

Magnon

Heat

Thermomagnetics in Ferromagnetic Insulator (FI)

Magnon Seebeck 𝒮

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

? ?

*

*Lifshitz & Pitaevskii (Vol. 10)

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 14: Magnonic Wiedemann-Franz Law

Magnon

Heat

Magnon Peltier: Π

Thermomagnetics in Ferromagnetic Insulator (FI)

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

? ?

*

*Lifshitz & Pitaevskii (Vol. 10)

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 15: Magnonic Wiedemann-Franz Law

Magnon

Heat

Onsager relation

Thermomagnetics in Ferromagnetic Insulator (FI)

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

? ?

*

*Lifshitz & Pitaevskii (Vol. 10)

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 16: Magnonic Wiedemann-Franz Law

Magnon

Heat

Thermomagnetics in Ferromagnetic Insulator (FI)

Seebeck & Peltier

WF law (Low temp.)

?

?

Electron = Fermion Magnon = Boson Textbook by Ashcroft & Mermin

Lorenz number =

= =

=

WF

? ?

*

*Lifshitz & Pitaevskii (Vol. 10)

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 17: Magnonic Wiedemann-Franz Law

QUESTION

Magnonic Wiedemann-Franz Law

Magnon 𝜇B : Boson

Electron 𝑒 : Fermion

Bose-Einstein statistics vs Fermi-Dirac statistics

Specific heat of electrons:

𝒞el ∝ 𝑇 Specific heat of phonons:

𝒞ph ∝ 𝑇3

WELL-KNOWN: Qualitatively different behavior at low temperature

Q. Still, Linear-in-𝑇 behavior for bosons ? Universal ?

Page 18: Magnonic Wiedemann-Franz Law

Magnon current:

Heat current:

Onsager matrix 𝐿𝑖𝑗 :

System: Ferromagnetic Insulating Junction

Driving forces: ≪ 𝐵 ≪ 𝑇

𝜔𝑘L(R) = 2𝐽𝑆𝑎2𝑘2+𝑔𝜇𝐵𝐵L(R)

Tunneling:

Weak coupling :

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 19: Magnonic Wiedemann-Franz Law

Magnon & Heat Currents

Magnon current

Heat current

𝜏: Magnon lifetime: Phenomenologically introduced

Linear response

Bose function

Onsager relation:

Page 20: Magnonic Wiedemann-Franz Law

Onsager Matrix 𝐿𝑖𝑗

Polylogarithm function:

Exponential integral:

Euler constant: Cross-section area of the junction interface:

𝐿𝑖𝑗 depends on material

Onsager relation

Magnon current

Heat current

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 21: Magnonic Wiedemann-Franz Law

Onsager Matrix 𝐿𝑖𝑗

Polylogarithm function:

Exponential integral:

Euler constant: Cross-section area of the junction interface:

𝐿𝑖𝑗 depends on material

Onsager relation

Magnon current

Heat current

NOTE: 𝑏 𝑇 ≡𝑔𝜇B𝐵

𝑘B𝑇↗ at low temperature

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 22: Magnonic Wiedemann-Franz Law

𝑔𝜇B𝐵

𝑘B𝑇

Magnetic conductance 𝐺:

: For fermions

Thermal conductance 𝐾 for magnons (bosons)

Magnon WF law

Wiedemann-Franz Law for Magnons

Magnon current

Heat current

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 23: Magnonic Wiedemann-Franz Law

Wiedemann-Franz Law for Magnons

Low temp.:

Magnon Lorenz number: UNIVERSAL

Independent of materials

e.g., 𝜏 = 100ns, 𝑇 ≤ 1K & 𝐵 = 5T

(If omitted the off-diagonal 𝐿21 & 𝐿12 The WF law is not reproduced)

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 24: Magnonic Wiedemann-Franz Law

Note: 1) We checked that 3- and 4-magnon processes are negligible at low temp.

KN et al., PRB 92, 134425 (2015)

2) At 𝑇 = 𝒪(10−1) K, phonon contributions are negligible

Adachi et al., APL 97, 252506 (2010)

3) The WF law holds in dipole-dipole int. (YIG)

Wiedemann-Franz Law for Magnons

e.g., 𝜏 = 100ns, 𝑇 ≤ 1K & 𝐵 = 5T

(If omitted the off-diagonal 𝐿21 & 𝐿12 The WF law is not reproduced)

Low temp.:

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Page 25: Magnonic Wiedemann-Franz Law

VS

(Free electron at low temp.) Low temp.:

Electron (metal) Magnon (FI)

R. Franz and G. Wiedemann, Annalen der Physik 165, 497 (1853)

KN, Simon, and Loss, Phys. Rev. B 92, 134425 (2015)

Fermion Boson Statistics

Lorenz number

WF law (Low temp.)

SUMMARY

Onsager-Thomson relation

Seebeck & Peltier

Ratios of 𝐿𝑖𝑗 , WF law, Seebeck, and Peltier coefficients are material independent

Magnonic Wiedemann-Franz Law: KN, P. Simon, and D. Loss, Phys. Rev. B 92, 134425 (2015) See also [KN, J. Klinovaja & D. Loss (2016), arXiv:1611.09752] & review article [KN, P. Simon & D. Loss, arXiv:1610.08901]