main linac simulation - main linac alignment tolerances - from single bunch effect ilc-mdir workshop...

14
Main Linac Simulation - Main Linac Alignment Tole rances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO erences: TESLA TDR ILC-TRC-2 Report (2003) Interim reports by K.Kubo http://lcdev.kek.jp/~kkubo/reports/MainLinac-simulation/lcsimu-20050325a http://lcdev.kek.jp/~kkubo/reports/MainLinac-simulation/lcsimu-20050516.

Upload: erin-miller

Post on 17-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Main Linac Simulation - Main Linac Alignment Tolerances

- From single bunch effectILC-MDIR Workshop 20050622

Kiyoshi KUBOReferences:

TESLA TDRILC-TRC-2 Report (2003)Interim reports by K.Kubohttp://lcdev.kek.jp/~kkubo/reports/MainLinac-simulation/lcsimu-20050325a.pdfhttp://lcdev.kek.jp/~kkubo/reports/MainLinac-simulation/lcsimu-20050516.pdf

Page 2: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

• Only single bunch effects were considered• Only vertical motion (no horizontal)• Short range wakefunctions in TESLA-TDR were used.• Tracking simulation using “SLEPT”. • Considered errors:• Offset misalignment of quads, • Offset misalignment of cavities, • Tilt misalignment of cavities (rotation around x axi

s), • quad-BPM offset (unknown error of quad-BPM cwn

ter)• BPM resolution (measurement by measurement err

or) • Each quad has BPM and steering corrector• Average of vertical emittance at the end of the linac over 100 different

random seeds will be presented for each condition.

Main Linac Simulation

Page 3: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Initial and final beam energy 5 GeV 250 GeV

Gradient 35 MV/m

Bunch intensity 2E10

Bunch length 0.3 mm (rms)

Initial momentum spread 2.8 % (rms)

Initial normailized emittance 2E-8 m

Beam parameters

Weaker focus Stronger focus

5 – 125 GeV 2 modules/quad 1 module/quad

125 – 250 GeV 3 modules/quad 2 modules/quad

cavities/module 10 cavities/module

phase advance /6 / FODO cell

Optics (two cases)

Page 4: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Sqr

t(be

ta_y

) (m

)

s (m)

Square root of beta-function of three models; (a) 35 MV/m weak focussing from 5 GeV to 125 GeV: 2 modules/quad from 125GeV to 250 GeV: 3 modules/quad(b) 35 MV/m strong focussing from 5 GeV to 125 GeV: 1 modules/quad from 125GeV to 250 GeV: 2 modules/quad

(a) Weaker focus

(b) Stronger focus

Optics

(a) Will be better

Page 5: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Emitttance vs. cavity offset, quad offset and cavity tilt. No correction.

2 10-8

2.5 10-8

0 200 400 600 800 1000

Weak focusStrong focus

(

m)

Cavity misalignment (m)

These give tolerances in time scalefaster than corrections in the main linacand slower than orbit feedback at IP.

2 10-8

2.5 10-8

3 10-8

3.5 10-8

4 10-8

4.5 10-8

5 10-8

5.5 10-8

0 2 4 6 8

weaker focusstronger focus

(

m)

Cavity tilt (micro-rad)

2 10-8

2.5 10-8

3 10-8

3.5 10-8

4 10-8

4.5 10-8

5 10-8

5.5 10-8

6 10-8

0 0.2 0.4 0.6 0.8 1

weaker focusstronger focus

(

m)

Quad offset (micron)

(a) (b)

(c)

Page 6: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Use steering, or correction coils of quads.Every quad has a BPM and a correction coils.

Correction (A): One - to - oneMinimize BPM readings.

Correction (B): Kick minimization

Correction (C): Combined (A) and (B)

Steering corrections for static misalignment

Minimize i ki yi 2

i ,

i : kick angle of steering at i - th quad

yi : BPM reading at i - th quad

ki : K- value of the i - th quad

Minimize r2yi2

i i kiyi 2

i ,

r : Weight ratio. = 10 3

(A) is too simple (big emittance dilution)(B) and (C) give similaremittance, but(B) gives big orbit

Page 7: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Orbit correction (C)

Orbit correction (B)

line: beam orbitpoint: Quad center

Examples of orbit after correction (B) and (C).Quad misalignment 0.3 mm, Quad-BPM offset 20 m

s (m)

Fig.3

Page 8: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Correction (C)

Emittance vs. Quad and Cavity misalignment (the same rms for quads and cavities). Quad-BPM offset 20 m.

Emittance vs. Quad-BPM offset. Quad and Cavity misalignment 0.3 mm (the same rms for quads and cavities).

Correction (C)

These give static alignment (offset) tolerances.

2 10-8

2.5 10-8

3 10-8

3.5 10-8

4 10-8

4.5 10-8

5 10-8

0 10 20 30 40 50

Weaker focusStronger focus

Quad-BPM offset (m)

2 10-8

2.5 10-8

3 10-8

3.5 10-8

4 10-8

0 200 400 600 800 1000

Weaker focusStringer focus

Quad and Cavity misalignment (m)

(

m)

Page 9: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Use steering, or correction coils of quads.Every quad has a BPM and a correction coils.

Steering Correction

3

222

10= ratio. Weight :

quadth - theof value-K :

quadth -at reading BPM :

quadth -at steering of anglekick :

, Minimize

r

ik

iy

i

ykyr

i

i

i

iiii

ii

Not very effective for cavity tilt.

Page 10: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

(1)Perform steering correction

(2) Turn off RF of cavities in one FODO cell (40 or 60 cavities for weaker focus optics), scale the strength of magnets and accelerating voltage of downstream RF cavities to the beam energy, and measure orbit difference from nominal orbit.

Then, set two steerings (at quad in the cell) to compensate the difference.

Perform this for every cell.

(3) Perform steering correction again keeping the compensation,

(4) Iterate (2) and (3) four times for better compensation

Tilt Compensation + Steering Correction

quadth -at on compensatit cavity tilfor anglekick :

, Minimize 222

i

ykyr

ti

iiitii

ii

Page 11: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

RF off

Scale down strength of magnets to beam energy

Use several(10) downstream BPMs for calculation of compensation

Use two steering for compensation

Scale down accelerating voltage to beam energy

Tilt Compensation

beam

Page 12: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

2 10-8

2.5 10-8

3 10-8

3.5 10-8

4 10-8

0 100 200 300 400 500 600

Tilt compensation + Steering CcorrectionSteering Correction only

(

m)

Cavity tilt (micro-rad)

Emittance vs. cavity tilt angle.Quad offset 300 micron, Cavity offset 300 micronQuad-BPM offset error 20 micron, BPM resolution 3 micron

Page 13: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Emittance vs. BPM resolution.Quad offset 300 micron, Cavity offset 300 micronQuad-BPM offset error 20 micron, Cavity tilt 300 micro-rad

Tilt Compensation + Steering Correction

2 10-8

2.5 10-8

3 10-8

3.5 10-8

0 5 10 15 20

(

m)

BPM resolution (micron)

Page 14: Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop 20050622 Kiyoshi KUBO References: TESLA TDR ILC-TRC-2

Static misalignment (Slower than the correction in the main linac)

[additional 5% emittance dilution]

Quad offset 400 m

Cavity offset 1 mm

Cavity tilt 150 rad

Quad - BPM offset 15 m

Fast movement (Faster than the correction in the main linac but slower than the orbit feedback at IP) [10% emittance di

lution]

Quad offset 0.4 m

Cavity offset 600 m

Cavity tilt 2 rad

Mmeasurement by measurement[additional 5% emittance dilution]

BPM Resolution 10 m

Rough tolerances.