mains part 1.pdf-55.pdf · from equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm v v u...

7
www.gradeup.co 1

Upload: others

Post on 16-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 2: mains Part 1.pdf-55.pdf · From equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm V V u u u ? u : We can observe it is less than intrinsic conductivity. 2. An abrupt Ge

www.gradeup.co

2

1. A. Derive the condition for minimum

conductivity in case of a semiconductor

material. Find expression for minimum

conductivity & give relation between

intrinsic conductivity & minimum

conductivity.

B. Find minimum conductivity in case of

a semiconductor which has electron

mobility = 1000 cm2 / V-sec, hole

mobility = 600 cm2 / V-sec and intrinsic

conductivity is 10–6/Ω – cm.

Ans.

A. Conductivity of a semiconductor is

given by,

= +

=2

.........(1)

& ...........( )

n pnq pq

nin mass action law

p

Putting this value in equation (1)

= +2

n pni

q pqp

For minimum conductivity

=

= − + =

=

=

2

2

2

2

0

0

.........( )

n p

p n

n

p

d

dp

d niq q

dp p

niq q

p

p ni ii

From mass action law

2

2

n

p

nin

p

nin

ni

=

=

= ........( )

p

n

n ni iii

∴The condition for minimum conductivity

is

pn

p n

p ni and n ni

= =

Substituting these values in equation (i)

= +

= +

=

min

min

min

. . . .

2

p nn p

n p

n p n p

n p

ni q ni q

niq niq

niq

This is the expression for minimum

conductivity

=+

=+

=+

min

min

min

2

2

2.........( )

n p

i n p

n p

i n p

n p

n p

niq

niqq niq

iiv

B. Given μn = 1000 cm2/ v – sec, μp =

600 cm2 / v – sec & ni = 10–6 / Ω – cm

From equation (iv)

min

7min

2 10 6 1000 600

1000 600

9.68 10 / cm

− =

+

= −

We can observe it is less than intrinsic

conductivity.

2. An abrupt Ge junction diode has NA =

1016 atoms /cm3 and ND = 1014 atoms /

cm3 at room temperature is forward

biased with a 0.15 volt. Plot the carrier

concentration and hole and electron

current densities as a function of

distance. Assume junction area as 2

mm2, diffusion length of electrons and

holes as 0.04 cm and 0.05 cm

respectively.

(Assume Dn = 100 cm2 / sec and Dp =

50 cm2 / sec)

Ans.

NA = 1016 atoms / cm3 and ND = 1014

atoms / cm3

= =2

&n D nn

nin N p

n

Page 3: mains Part 1.pdf-55.pdf · From equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm V V u u u ? u : We can observe it is less than intrinsic conductivity. 2. An abrupt Ge

www.gradeup.co

3

=

=

= =

=

26

14

12 3

2

26

16

6.25 10

10

6.25 10 /

&

6.25 10

10

n

n

p A pp

p

p

p atoms cm

ninow p N n

p

n

∴ np = 6.25 × 1016 atoms / cm3

Now we know that,

Pn (o) = Pno (ev/vT -1)

= 6.25 × 1012 × (e0.15/0.0259 –1)

Pn (o) = 2.04 × 1015

& np(o) = npo (ev/vT -1)

= 6.26 × 1010 (e0.15 / 0.0259–1)

∴ np(o) = 2.04 × 1013

Now Ln = 0.04 cm and Lp = 0.05 cm

∴ np(x) = np(o) e–x/Ln

∴ np(x) = 2.04 × 1013 e–x/0.04

& Pn(x) = Pn(o) e–x/Lp

∴ Pn(x) = 2.04 × 1015 e–x/0.05

Hole diffusion current Ip(o)dP

qDpdx

= −

= −

=

/

–19 15

( 1)

0.02 1.6 10 50 2.04 10

0.05

v vTP no

p

AqD Pe

L

∴ Hole diffusion current IP(o) = 6.53 mA

And IP(x) = IP(o) e–x/Lp

Similarly

Electron diffusion current

In(o) = ndn

qDdx

/

–19 13

( 1)

0.02 1.6 10 100 2.04 10

0.04

v vTn po

n

A q D n e

L

−=

=

∴ Electron diffusion current In(o)

= 0.163 mA

And In(x) = In(o) e–x/ln

3. For the circuit shown transistor θ1 &

θ2 both operate in active region with VBE1

= VBE2 = 0.7 V, β1 = 75 & β2 = 50 then

a) Find the currents IB1, IC1, IE1, IB2, IC2,

IE2, I1, I2

b) Find output voltages Vo1 and Vo2

Applying Thevenin’s theorem we get

= +

= +

21 2

2410

15 10

vccVth R

R R

∴ vth = 9.6V

& Rth = R1 || R2

= 15 || 10

Rth = 6 kΩ

∴ Equivalent circuit will be

Page 4: mains Part 1.pdf-55.pdf · From equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm V V u u u ? u : We can observe it is less than intrinsic conductivity. 2. An abrupt Ge

www.gradeup.co

4

Applying KVL in loop (1)

– 9.6 + (106) IB2 + 0.7 + 0.7 + 0.1 IE1

= 0 (i)

Now IE2 = IB1

∴ (1 + B2) IB2 = IB1

& IE1 = (1+B1) IB1

= (1+B1) (1+B2) IB2

IE1 = 76 × 51 × IB2

∴ IE2 = 3876 IB2

∴ Equation (I) become,

– 9.6 + 106 IB2 + 0.7 + 0.7 + 0.1 ×

3876 IB2 = 0

∴ 493.6 IB2 = 8.2

∴ IB2 = 0.01661 mA

∴ IB2 = 16.61 μA

∴ IC2 = B2 IB2

= 50 × 0.01661

∴ IC2 = 0.83 mA

& IE2 = IB2 + IC2

= 0.01661 + 0.83

IE2 = 0.8472 mA

Now IE2 = IB1

∴ IB1 = 0.8472 mA

∴ IC1 = B1 IB1

= 75 × 0.8472

∴ IC1 = 63.54 mA

& IE1 = IC1 + IB1

= 63.54 + 0.8472

IE1 = 64.38 mA

Now VO1 = VCC – IC1 × 0.2

= 24 – 63.54 × 0.2

∴ VO1 = 11.292 V

And VO2 = IE1 × 0.1

= 64.38 × 0.1

∴ VO2 = 6.438 V

Now again redrawing the given circuit.

Applying KVL in loop (2)

∴ -10 I2 + 100 IB2 + 0.7 + 0.7 + 0.1 IE1

= 0

∴ 10 I2 = 100 × 0.01661 + 0.7 + 0.7 +

0.1 × 64.38

∴ 10 I2 = 9.497

∴ I2 = 0.9497 mA

Now applying KCL at node B

∴ I1 = I2 + IB2

= 0.9497 + 0.01661

∴ I1 = 0.9663 mA

4. A step-graded germanium diode has a

resistivity of 2.5 Ω-cm on the p side and

1.5 Ω-cm on the n side. Calculate the

height of the potential barrier.

For germanium µp = 1800 cm2/V-s and

µn = 3800 cm2/V-s and ni = 2.5 ×

1013/cm2 at 300°K. Prove formula used.

Sol.

Given, step-graded germanium diode

has resistivity ρp = 2.5 Ω-cm

Resistivity of n-side ρn = 1.5 Ω-cm

Mobility of hole = 1800 cm2/V-s,

Mobility of electron = 3800 cm2/V-s

Intrinsic concentration ni = 2.5 ×

1013/cm2

Acceptor concentration NA = ?

σp = pqµp≈NAq µp …………(for p-type)

= =

=

A p Ap p p

19

1 1N qµ N

1

2.5 1.6 10 1800

NA = 1.388 × 1015 atoms/cm3

Donor concentration ND = ?

σ = nqµn≈ ND q µn (for n-type)

= =

=

D n Dn n n

19

1 1N qµ N

1

1.5 1.6 10 3800

Page 5: mains Part 1.pdf-55.pdf · From equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm V V u u u ? u : We can observe it is less than intrinsic conductivity. 2. An abrupt Ge

www.gradeup.co

5

ND = 1.096 × 1015 atoms/cm3

Height of potential barrier

A D0 2

i

N NKTV ln

q n

=

A D0 T 2

i

N NV V ln

n

=

Formula proof

A1 Fp Fi p

i

NE E –E KTln

n

= =

D2 F Fnn i

i

NE E –E KTln

n

= =

⇒ E0(eV) = E1 + E2 = ECp – ECn = EVp –

EVn

( ) A D0 1 2 2

i

N NE eV E E KTln

n

= + =

( ) A D0 T 2

i

N NV V V ln

n

=

EFi→ Fermi level in intrinsic

EFp→ Fermi level in P-type

semiconductor

EFn→ Fermilevel in n-type semiconductor

( )

=

15 15

o 213

1.388 10 1.096 10V 0.026ln

2.5 10

= 0.2027 V

5. For the circuits in fig. µn COX = 2.5 µp

COX = 20µA/V2, tV 1V= , λ = 0, γ = 0, L

= 5 µm, and W = 15 µm, unless

otherwise specified. Find the labelled

currents and voltages.

Sol.

(a)

Q2, Q1 operating in saturation iD1 = iD2

Also VGS1 = VGS2

∴ 3V = VGS1 + VGS2⇒ VGS1 = VGS2 = 1.5V,

V2 = 1.5V

( )= =2

11 15

I 20 1.5 –1 7.5µA2 5

(b)

Both transistors have VD = VG and

therefore they are operating in

saturation iD1 = iD2

( ) ( )2 2

n OX 4 p OX 41 W 1 Wµ C V –1 µ C 3– V –1

2 L 2 L=

∴ 2.5 (V4 – 1)2 = (2 – V4)2

1.58 (V4 – 1)2 = ±(2 – V4) ⇒ V4 = 1.39

V4 ≃ 1.4V

( )= =2

31 15

I 20 1.39 –1 4.6µA2 5

Page 6: mains Part 1.pdf-55.pdf · From equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm V V u u u ? u : We can observe it is less than intrinsic conductivity. 2. An abrupt Ge

www.gradeup.co

6

(c)

= =1

1

W 37.57.5

L 5

= =2

2

W 153

L 5

= 1 2

1 2

W W2.5

L L

=2 1n OX p OX

2 1

W WNow µ C µ C

L L

So iD1 = iD2

GS1 GS2 53

V V 1.5V V2

= = = =

( )= =2

61 15

I 20 1.5 –1 7.5µA2 5

Page 7: mains Part 1.pdf-55.pdf · From equation (iv) min 7 min 2 10 6 1000 600 1000 600 9.68 10 / cm V V u u u ? u : We can observe it is less than intrinsic conductivity. 2. An abrupt Ge

www.gradeup.co

7