mainstreaming ecosystem services into future farming

8
40 |  Solutions  |  March-April 2016 |  www.thesolutionsjournal.org Feature Mainstreaming Ecosystem Services into Future Farming by Harpinder Sandhu, Steve Wratten, John R. Porter, Robert Costanza, Jules Pretty, and John P. Reganold In Brief Agriculture has made remarkable advances in fulfilling the food and nutritional requirement of expanding human  numbers worldwide. There are several sustainable farming systems that contribute to overall biodiversity conservation  and associated ecosystem services. Yet agricultural practices that have come to predominate since the second half of  the 20 th century have led to the overuse of fossil fuel-based inputs, unsustainable exploitation of natural resources,  and loss of biodiversity. These outcomes also have high costs to human health and the environment. Continuing with  largely energy-intense, wasteful, polluting, and unsustainable agriculture is no longer a viable option for future world  food security and human well-being. There is an urgent need for forms of agricultural production that improve natural  capital and ecosystem services (ES) in food systems worldwide. Mainstreaming ES into future agriculture requires protocols to replace some of the nonrenewable resources (e.g.  fossil fuel-based pesticides and fertilizers) with renewable resources (ES such as biological control of insect pests or nitro- gen fixation by legumes). The protocols presented here have been tested in different agricultural systems that enable  farmland to simultaneously provide food and a range of ecosystem services. Recent research demonstrates that managed  systems with these protocols exhibit higher economic value of ecosystem services. Thus, there is need to support the  deployment of these protocols through various policy mechanisms for the long-term sustainability of agriculture. Sandhu, H. et al. (2016). Mainstreaming Ecosystem Services into Future Farming. Solutions 7(2): 40–47. https://thesolutionsjournal.com/article/mainstreaming-ecosystem-services-into-future-farming/ Stefano Lubiana Sheep are employed to graze on headland between rows of planted grapes on a vineyard in southern Tasmania.

Upload: thesolutionsjournal

Post on 28-Jul-2016

215 views

Category:

Documents


1 download

DESCRIPTION

Volume 7, Issue 2 Feature

TRANSCRIPT

Page 1: Mainstreaming Ecosystem Services into Future Farming

40  |  Solutions  |  March-April 2016  |  www.thesolutionsjournal.org

Feature

Mainstreaming Ecosystem Services into Future Farming

by Harpinder Sandhu, Steve Wratten, John R. Porter, Robert Costanza, Jules Pretty, and John P. Reganold

In BriefAgriculture has made remarkable advances in fulfilling the food and nutritional requirement of expanding human numbers worldwide. There are several sustainable farming systems that contribute to overall biodiversity conservation and associated ecosystem services. Yet agricultural practices that have come to predominate since the second half of the 20th century have led to the overuse of fossil fuel-based inputs, unsustainable exploitation of natural resources, and loss of biodiversity. These outcomes also have high costs to human health and the environment. Continuing with largely energy-intense, wasteful, polluting, and unsustainable agriculture is no longer a viable option for future world food security and human well-being. There is an urgent need for forms of agricultural production that improve natural capital and ecosystem services (ES) in food systems worldwide.

Mainstreaming ES into future agriculture requires protocols to replace some of the nonrenewable resources (e.g. fossil fuel-based pesticides and fertilizers) with renewable resources (ES such as biological control of insect pests or nitro-gen fixation by legumes). The protocols presented here have been tested in different agricultural systems that enable farmland to simultaneously provide food and a range of ecosystem services. Recent research demonstrates that managed systems with these protocols exhibit higher economic value of ecosystem services. Thus, there is need to support the deployment of these protocols through various policy mechanisms for the long-term sustainability of agriculture.

Sandhu, H. et al. (2016). Mainstreaming Ecosystem Services into Future Farming. Solutions 7(2): 40–47.

https://thesolutionsjournal.com/article/mainstreaming-ecosystem-services-into-future-farming/

Stefano Lubiana Sheep are employed to graze on headland between rows of planted grapes on a vineyard in southern Tasmania.

Page 2: Mainstreaming Ecosystem Services into Future Farming

www.thesolutionsjournal.org  |  March-April 2016  |  Solutions  |  41

Although global policies to    reduce poverty, ensure       food security, and improve 

environmental protection are in place, a new paradigm shift is required to fast-track sustainable development.1 This requires a new vision in global efforts and contributions by all sectors of the global economy, including agriculture.2 The agricultural sector supports 45 percent of the global population as farmers, laborers, and agribusiness organizations and also contributes to the above global goals through the provision of ecosystem goods and services (ES) and by improving natural capital.3,4 It con-tributes on average approximately six percent to the global gross domestic product (GDP), ranging from only one percent in advanced economies to 40 percent in the least developed ones.5 Agriculture occupies approximately 38 percent of the global land area and houses the largest managed ecosys-tems on Earth.6

One way that agriculture can contribute to the global agenda of sustainable development is main-streaming ES into current and future farming systems.7,8 This will ensure employment for large populations, improve food security, and deliver multifunctional landscapes benefit-ting not only farm communities but also society at large. Here, we propose that such a goal comprise sustainable intensification through the develop-ment of ES-providing and enhancing practices as part of modified farming systems.9,10 It will require payment mechanisms and market-based instru-ments to support the adoption of these ES-enhancing protocols.11 The latter need to be presented to farmers and advisors in a form that facilitates uptake.

Farmland Ecosystem Services and ProductivityEcosystem services on farmland need to be enhanced as part of global food policy as increasingly dysfunctional 

biomes and ecosystems are appear-ing. Moreover, the agriculture, which largely created the problem, has become more intensive in terms of its enhanced use of nonrenewable resources, driven by consumption patterns of a world population likely to reach nine billion people by 2050.12 Therefore, the need for enhanced biodiversity-driven ES in global agriculture is urgent.

Here, we show how simple agro-ecological approaches can be used to demonstrate that ES can benefit modern farming and be adopted to improve productivity. These involve agroecological experiments to mea-sure ecosystem functions combined with value transfer techniques to calculate their economic value. These studies demonstrate that some current farming practices have much higher ES values than suggested in previous work.13 For example, recent data show 

that the combined value of only two ES—nitrogen mineralization and bio-logical control of a single pest by one guild of invertebrate predators—can have values of USD$197, $271, and $301 per hectare per year in terms of avoided costs for conventional,7 organic,14 and integrated (e.g. combin-ing food and energy production, or CFE) arable farming systems,15 respectively. Conventional farming systems depend on high rates of syn-thetic inputs, such as pesticides and fertilizers, to control pests, maintain soil fertility along with improved seed, heavy machinery, and irrigation to produce maximum outputs per hectare.8 Organic agriculture is a pro-duction system that virtually excludes synthetic fertilizers and pesticides. It emphasizes on building up the soil with composts and green manures, managing pests using natural pest control and crop rotations.8 The CFE system is a production system which is a net energy producer and is man-aged organically. 15 It produces more energy in the form of renewable bio-mass than consumed in the planting, growing, and harvesting of the food and fodder. The bioenergy component is represented by belts of fast-growing trees (willows, alder, and hazel) that are planted orthogonally to fields that contain cereal and pasture crops. The total value of these two ES to global agriculture, if used on only 10 percent of total area, exceeds the combined cost of pesticides and fertilizers.8 The above values comprise reduced vari-able costs (labor, fuel, and pesticides) and lower external costs to human health and the environment. Although paying for these variable costs does contribute to GDP, it is a poor indica-tor of sustainability and of human well-being.16 Instead, the expenditure on cleaning up those externalities should be subtracted from the GDP.

We think that a better understand-ing of ecological processes and their economic contribution in agroeco-systems can help develop protocols, 

Key Concepts

• Many current agricultural practices suppress vital ecosystem services (ES), thereby limiting the ability of agriculture to feed the increasing human population.

• Sustainable intensification by deploy-ing agroecological approaches can be used to enhance ES that can benefit agriculture to improve productivity.

• Well-designed agricultural systems have the ability to increase the concurrent supply of ES and food production.

• Agricultural policy needs to evaluate, enhance, and internalize the value of ES in food production systems for their long-term sustainability.

• Reshaping of global agricultural goals is required in order to utilize biodiversity and ES to increase productivity, protect the environment, and contribute to human well-being.

Page 3: Mainstreaming Ecosystem Services into Future Farming

42  |  Solutions  |  March-April 2016  |  www.thesolutionsjournal.org

which do not require major farming system changes, but enhance ES by returning selective functional agri-cultural biodiversity to agriculture.17 Functional agricultural biodiversity is defined as the biodiversity in and around agricultural landscapes that enhances ES and thereby benefits food production. In addition, it can facilitate sustainable intensification and have positive spin-offs for the society.9,10 For example, nutrient cycling, including the role of legumi-nous crops in nitrogen fixation, is a well-known enhancement of farmland ES and can have a value of USD$1200 per hectare per year.18,19 More recent ES improvements are illustrated by 

agroecological research on biological control of insect pests. In New Zealand and Australia, strips of flowering buck-wheat Fagopyrum esculentum (Moench) between vine rows provide nectar and other nutrients in an otherwise virtual monoculture, and thereby improve the ecological fitness and efficacy of parasitoid wasps that attack grape-feeding caterpillars (see box). This in turn leads to the pest population being brought below the economic threshold. An investment of USD$3 per hectare per year in buckwheat seed and minimal sowing costs have been shown to lead to savings in variable costs of USD$200 per hectare per year, fewer pesticide residues,20 and 

can aid the conservation of endemic butterfly species.21 Such protocols have been taken up by grape growers in New Zealand, as in the above case.20 However, for rapid adoption and uptake, further research is required to understand the full costs and benefits of such protocols for different farming systems.8,9,10

There are other examples of pro-tocols not requiring a major farming system change. With biological con-trol of weeds in Australia, returns on investment of up to 300:1 have been achieved following the introduction of appropriately selective biodiversity in the form of insects for weed biological control.22 In Africa, the development of ‘push-pull’ eco-technologies, whereby plant and insect chemistry is used to deter pests (‘push’) and attract pests’ natural enemies (‘pull’), has improved yields to such an extent that milk production has increased and benefits have been community-wide.23 Fungicide use in vines can also be avoided if such eco-technologies are deployed. The life cycle of botrytis (Botrytis cinerea) disease on grapes can be disrupted by the appropriate use of mulches below vines. The resulting enhanced ES in this case can save USD$570 per hectare per year in fungi-cide and associated costs.24

Vineyard management practices, such as growing strips of flowering buckwheat between vine rows, decrease the mean number of leafroller (Epiphyas postvittana) caterpillars in grape bunches in New Zealand. These practices help to keep the caterpillars below the economic threshold for managing them with pesticides. The strips of flowering buckwheat provide nectar for parasitoid wasps that attack grape-feeding caterpillars, which in turn leads to the pest population being brought below the economic threshold. A service providing unit (SPU; see text) has been developed for easy uptake of this protocol.

Jean-Luc Dufour, Accolade Wines Vineyard with flowering buckwheat between vine rows at a winery in New Zealand.

Page 4: Mainstreaming Ecosystem Services into Future Farming

www.thesolutionsjournal.org  |  March-April 2016  |  Solutions  |  43

Scalability of Future FarmingAlthough the eco-technologies now exist to improve farming sustainabil-ity when the negative consequences of a continued reliance of oil-based inputs are well recognized,17,25 farmers are commonly risk-averse.26 In indus-trialized countries, they have tended to reject the notion that noncrop biodiversity on their land can improve production and/or minimize costs. However, farmers in many developing countries tend to agree and utilize this farm biodiversity.9 The challenge now for agroecologists and policymakers is to use a range of market-based instru-ments or incentives, government interventions, and enhanced social learning among growers to accelerate the deployment of sound, biodiversity-based ES-enhancement protocols for farmers.26 These protocols need to be framed in the form of service-provid-ing units,11 which precisely explain the necessary ES-enhancement procedures and should ideally include cost–ben-efit analyses. Such a requirement invites the design of new systems of primary production that are species-diverse, have low inputs, and provide a diverse suite of ES including a positive net carbon sequestration.

A comparison of the economic values of ES associated with farming in organic, conventional, and a com-bined food and energy system indicate that well-designed agricultural systems have the potential to produce multiple ES in addition to food and fodder (see Figure 1).7,15 Any potential loss in farm income under these sys-tems can be compensated with sound market mechanisms, such as payment for ecosystem services (PES) schemes and tax deductions.23 In this approach, those that benefit from the provision of ES make payments to those that supply them, thereby maintaining ES. Examples of informal functioning PES schemes in different areas of the world are summarized in Table 1. The current focus of these schemes is on water, carbon, and biodiversity in 

addressing environmental problems through positive incentives to land managers.25 Such schemes not only help to improve the environment and human well-being but also ensure food security and long-term farm sustainability.2 For example, beetle banks on arable land in the European Union deliver vertebrate conserva-tion ES, which builds on the original pest management intention of these banks.27

The Way ForwardThe extensive Millennium Ecosystem Assessment (MEA) of global eco-systems provided a framework for analyzing socio-ecological processes and suggested that agriculture may be the “largest threat to biodiversity and ecosystem function of any single human activity.”28 The MEA raised awareness of ecosystems and their services, but the global environment continues to degrade because of a lack 

Harpinder Sandhu Figure 1. Proportion of four different categories of ecosystem services provided by organic fields, con-ventional fields, and combined food and energy systems (CFE).7,15 Food and fodder production is included in provisioning services. Organic and conventional fields produce comparable provisioning services at the expense of regulating services and cultural services. However, CFE systems are able to balance food production and bio-energy production with minimizing impacts on regulating services and cultural services. Supporting services, such as nutrient cycling, pollination, and biological control of insect pests, which are necessary for the production of provisioning services, are also higher in CFE systems.

Page 5: Mainstreaming Ecosystem Services into Future Farming

44  |  Solutions  |  March-April 2016  |  www.thesolutionsjournal.org

of any coherent plan of action. Recently, the United Nations established the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to translate ecosystem science into action and to track the drivers and consequences of ecosystem change worldwide.29 This action plan is focused on strengthening assessment, relevant policy, and associated science at spatial and temporal scales. The United Nations has recently set up the global Sustainable Development Goals (SDGs) to increase food produc-tion and to achieve food security and poverty alleviation by 2030, among other development goals.30 However, growing sufficient and nutritious food for nine billion plus people worldwide 

by 2050 will need greater coherence in global efforts, partnerships with developed and developing countries, and careful planning and implementa-tion of the required programs with science and policy collaboration. It also requires assessment and valuation of ES in agriculture to understand inter-dependencies and trade-offs between production and the environ-ment, as advocated by The Economics of Ecosystems and Biodiversity for Agriculture and Food, a project of the United Nations Environment Program.31 Achievement of human well-being as agreed by the SDGs is not possible without clear pathways for the design of future agroecosystems and new agricultural policies. Efforts 

to intensify agriculture since the 1960s partly succeeded due to technology transfer to farmers and support of and financial investments in agricultural research, extension networks, and governments at regional and national levels. Here, we provide some recom-mendations to the agricultural science, farming, and policy communities, which might be useful in shaping global agricultural goals by utilizing biodiversity and ES to increase produc-tivity, protect the environment, and contribute to human well-being:

•  Global agriculture needs to embrace and implement the value of biodiversity and ES into farming. This requires designing farming 

Hanne Lipczak Jakobsen, Copenhagen UniversityA CFE system showing shelterbelts.

Page 6: Mainstreaming Ecosystem Services into Future Farming

www.thesolutionsjournal.org  |  March-April 2016  |  Solutions  |  45

systems that can use ES through sustainable intensification, reduce or eliminate fossil fuel-based inputs to increase productivity, and enhance efficiencies of other inputs, such as water and nutrients.

•  Agroecology has potential to enhance productivity and farm sustainability through adoption of ES. Agricultural research should focus more on developing and refining agroecological techniques to enhance farmland ES, such as natural pest control, managing habitat for wild pollinators, increasing soil organic matter, and improving nutrient cycling, so that they can be integrated into the current farming systems. These techniques can also help improve vital natural capital in agriculture.

•  Social capital in agriculture that includes contributions from farmers and farming families should be acknowledged and rewarded by recognizing their value in achieving the SDGs. This can help future-proof farming and the livelihoods of millions of farmers.

•  The livelihood of farming communities should be protected by agricultural policy while developing long-term strategies for sustainable intensification.

•  Country level and global studies are required to estimate the value of all environmental benefits and costs of current and alternative agricultural systems. This economic valuation will provide policy makers with a tool that can guide policy development to incentivize ES-enhancing agricultural practices and to penalize detrimental practices.

•  Current agricultural systems can be diverted toward sustainable intensification by governments developing and adopting appropriate policy responses at regional and national levels, matched by financial investments.

•  Various UN efforts in tackling climate change and protecting biodiversity and ES should focus on the agriculture sector for positive spin-offs for the environment, economy, and society.32  

References1.  United Nations. The future we want. United Nations 

Conference on Sustainable Development [online] 

(2012) http://www.un.org/en/sustainablefuture/.

2.  Schutter, O.D. Right to food. Report submitted by 

the special rapporteur, United Nations, New York 

[online] (2010) http://www2.ohchr.org/english/

issues/food/docs/A-HRC-16–49.pdf.

3. Ecosystem Services in Agricultural and Urban

Landscapes (eds Wratten, S., H. Sandhu, R. Cullen, 

and R. Costanza) (Wiley-Blackwell, Oxford, 2013).

4.  Fenichel, E.P. et al. Measuring the value of 

groundwater and other forms of natural capital. 

Proceedings of the National Academy of Sciences 113 

(2016): 2382–2387.

5.  World Bank. Agriculture: value added (% of GDP) 

[online] (2015) http://data.worldbank.org.

6.  Food and Agriculture Organization of the United 

Nations. FAOSTAT online database [online] (2016) 

http://faostat.fao.org/site/377/default.aspx#ancor.

7.  Sandhu, H.S., S.D. Wratten, R. Cullen, and B. Case. 

The future of farming: the value of ecosystem 

services in conventional and organic arable land. 

An experimental approach. Ecological Economics 64 

(2008): 835–848.

8.  Sandhu, H. et al. Significance and value of non-traded 

ecosystem services on farmland. PeerJ 3, e762 (2015).

9.  Pretty, J., C. Toulmin, and S. Williams. Sustainable 

intensification in African agriculture. International

Journal of Agricultural Sustainability 9 (2011): 5–24.

10. Pretty, J. and Z.P. Bharucha. Sustainable 

intensification in agricultural systems. Annals of

Botany 114 (2014): 1571–96.

11. Luck, G.W., G.C. Daily, and P.R. Ehrlich. Population 

diversity and ecosystem services. Trends in Ecology

and Evolution 18 (2003): 331.

12. Foley, J.A. et al. Global consequences of land use. 

Science 309 (2005): 570–4.

13. Costanza, R. et al. The value of the world’s 

ecosystem services and natural capital. Nature 387 

(1997): 253–60.

14. Lampkin, N. Organic Farming (Farming Press, 

Ipswich UK, 1991).

15. Porter, J., R. Costanza, H. Sandhu, L. Sigsgaard, and S. 

Wratten. The value of producing food, energy and 

ecosystem services within an agro-ecosystem. Ambio 

38 (2009): 186–93.

16. Kubiszewski, I. et al. Beyond GDP: Measuring 

and achieving global genuine progress, Ecological

Economics 93 (2013): 57–68.

17. Gurr, G.M., S.D. Wratten, and M.A. Altieri (eds). 

Ecological Engineering for Pest Management: Habitat

Manipulation for Arthropods (CSIRO Publishing, 

Australia, 2004).

18. Sandhu, H., V.V.S.R. Gupta, and S. Wratten. Ch.11 in 

Soil Microbiology & Sustainable Crop Production (eds 

Dixon, G.R. and E. Tilston) (Springer, Dordrecht, 

2010).

19. Herridge, D.F., M.B. Peoples, and R.M. Boddey. Global 

inputs of biological nitrogen fixation in agricultural 

systems. Plant Soil 311 (2008): 1–18.

20. The Bio-Protection Research Centre, Sustainable 

bioprotection [online] (2009) www.bioprotection.

org.nz.

21. Gillespie, M., S.D. Wratten, R. Cruickshank, B.H. 

Wiseman, and G.W. Gibbs. Incongruence between 

morphological and molecular markers in the 

butterfly genus Zizina (Lepidoptera: Lycaenidae) 

in New Zealand. Systematic Entomology 38 (2013): 

151–63.

22. Economic impact assessment of Australian weed 

biological control [online] (2009) http://www.weeds.

crc.org.au/index_noflash.html.

23. International Association for the Plant Protection 

Sciences. ICIPE develops safe new methods for 

controlling stem borers, termites and striga. Crop

Protection 20 (2001): 269–72.

24. Jacometti, M.A., S.D. Wratten, and M. Walter. 

Understorey management increases grape quality, 

yield and resistance to Botrytis cinerea. Agriculture

Ecosystems & Environment 122 (2007): 349–56.

25. Food and Agriculture Organization. The State of Food

and Agriculture: Paying Farmers for Environmental

Services (FAO, Rome, 2007).

26. Warner, K.D. Extending agroecology: Grower 

participation in partnerships is key to social 

learning. Renewable Agriculture and Food Systems 21 

(2006): 84–94.

27. MacLeod, A., S.D. Wratten, N.W. Sotherton, and M.B. 

Thomas. ‘Beetle banks’ as refuges for beneficial 

arthropods in farmland: long-term changes in 

predator communities and habitat. Agricultural and

Forest Entomology 6 (2004): 147–54.

Achievement of human well-being as agreed by the SDGs is not possible without clear pathways for the design of future agroecosystems and new agricultural policies.

Page 7: Mainstreaming Ecosystem Services into Future Farming

46  |  Solutions  |  March-April 2016  |  www.thesolutionsjournal.org

28. Millennium Ecosystem Assessment. Millennium

Ecosystem Assessment Synthesis Report (Island Press, 

Washington, 2005).

29. Intergovernmental Platform for Biodiversity and 

Ecosystem Services (IPBES). United Nations [online] 

(2010) http://www.ipbes.net/.

30. Sustainable Development Goals. United Nations 

[online] (2015) https://sustainabledevelopment.

un.org.

31. TEEB for agriculture & food: an interim report. 

United Nations Environment Programme [online] 

(2015) http://img.teebweb.org/wpcontent/

uploads/2015/12/TEEBAgFood_Interim_

Report_2015_web.pdf.

32. UN Framework on Climate Change (UNFCCC). 

Conference of the Parties 21, Paris [online] (2015) 

http://www.cop21paris.org/.

33. Costa Rica–National Payment for Environmental 

Services (PES) programme. International Institute 

for Environment and Development [online] (2012) 

http://www.watershedmarkets.org/casestudies/

Costa_Rica_National_PES_eng.html.

34. Rewarding poor rural people for nurturing the 

land. Rural Poverty Portal, International Fund for 

Agricultural Development [online] (2012) http://

www.ruralpovertyportal.org/country/voice/tags/

china/rupes.

35. China–Sloping Lands Conversion Programme 

(SLCP). International Institute for Environment 

and Development [online] (2012) http://www.

watershedmarkets.org/casestudies/China_SLCP_

eng.html.

36. Environmental Planning and Coordination 

Organization (EPCO) [online] http://www.epco.in/.

37. Pro-poor Rewards for Environmental Services in 

Africa 2008–2011. PRESA [online] (2011) http://

www.fidafrique.net/IMG/pdf/PRESA_2011.pdf.

38. Agri-environment measures. European Commission 

[online] (2015) http://ec.europa.eu/agriculture/

envir/measures/index_en.htm.

39. Conservation Reserve Program. United States 

Department of Agriculture Farm Service Agency 

[online] (2016) https://www.fsa.usda.gov/

programs-and-services/conservation-programs/

index.

Harpinder Sandhu A conventional wheat field.

Page 8: Mainstreaming Ecosystem Services into Future Farming

www.thesolutionsjournal.org  |  March-April 2016  |  Solutions  |  47

PES Scheme Location Ecosystem Services Provided

National PES Program33 Costa Rica Functioning watersheds, carbon sequestration, aesthetics in the form of landscape attractiveness

Rewarding the Upland Poor for the Environmental Services (RUPES)34

The Philippines, Indonesia, and Nepal

Functioning watersheds

The Chinese Sloping Lands Conversion Program (SLCP)35

Yangtze and Yellow Rivers regions, China

Reduced flood risk

Madhya Pradesh Lake Conservation Authority36

India Water quality improvement, organic agriculture support

Pro-Poor Rewards for Environmental Services in Africa (PRESA)37

Kenya and Tanzania

Watershed function, carbon capture, water quality improvement

Agri-Environmental Measures38 European Union Environmentally favorable extensions of farming, management of low-intensity pasture systems, integrated farm management and organic agriculture, preservation of landscape and historical features, conservation of high-value habitats and their associated biodiversity, beetle banks

The US Conservation Reserve Program39

USA Soil erosion reduction, water quality improvement, wildlife habitat enhancement

CFEES15 Denmark Biological control of pests, nitrogen regulation, soil formation, carbon accumulation, hydrological flow, pollination, aesthetics

Table 1. Summary of key “payment for ecosystem services” (PES) schemes associated with agroecosystems. In these schemes, those that benefit from the provision of ES, such as consumers, make payments to those that supply the services, such as farmers, to improve the environment and human well-being. Such PES schemes not only help to improve the environment and human well-being but also ensure food security and long-term farm sustainability.