makoto tsubota- quantum turbulence: from superfluid helium to atomic bose-einstein condensates

49
4XDQWXP7XUEXOHQFH 4XDQWXP7XUEXOHQFH - -From Superfluid Helium to Atomic From Superfluid Helium to Atomic Bose Bose- -Einstein Condensates Einstein Condensates- Makoto TSUBOT A Department of Physics, Osaka City University, Japan Thanks to: M. Kobayashi, S. Kida and many friends Review article: M. Tsubota, arXive: 0806.2737 (J. Phys. Soc. Jpn . (in press)) Progress in Low Temperature Physics, vol.16 (Elsevier), eds. W. P. Halperin and M. Tsubota QuickTimeý Dz YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB QuickTimeý Dz YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Upload: qmdhidnw

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 1/49

4XDQWXP7XUEXOHQFH4XDQWXP7XUEXOHQFH--From Superfluid Helium to AtomicFrom Superfluid Helium to Atomic

BoseBose--Einstein CondensatesEinstein Condensates--

Makoto TSUBOTADepartment of Physics,

Osaka City University, JapanThanks to: M. Kobayashi, S. Kida and many friends

Review article: M. Tsubota, arXive: 0806.2737 (J. Phys. Soc. Jpn. (in press))

Progress in Low Temperature Physics, vol.16 (Elsevier), eds. W. P. Halperin and M. Tsubota

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý Dz YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 2: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 2/49

My message

1. Quantum turbulence (QT) has recently become one of the most important fields in

low-temperature physics.

2. QT consists of quantized vortices, which are stabletopological defects. Since each ³element´ is clear and

well-defined, QT is able to give a much simpler prototype

than classical turbulence.

3. QT has been studied in superfluid helium for more than

50 years. Since the mid 90s, QT research has tended

toward a new direction, now involving atomic Bose-

Einstein condensates (BECs) too.

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 3: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 3/49

 Another Da Vinci code Another Da Vinci code

Leonardo Da Vinci

(1452-1519) Da Vinci observed turbulent flow

in water and found that turbulence

consisted of many vortices.

Turbulence is not a simple disordered state but 

rather it consists of some structures with vortices.

Page 4: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 4/49

Turbulence appears to have many vortices«

Turbulence in the wake of a dragonfly:

«however, these vortices are unstable

- they repeatedly appear, diffuse and disappear.

http://www.nagare.or.jp/mm/2004/gallery/iida/dragonfly.html

QuickTimeý DzêLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ«ÇÕïKóvÇ-ÇÅB

Page 5: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 5/49

A quantized vortex is a vortex of superflow in a BEC.

Any rotational motion in superfluid is sustained by

quantized vortices.(i) The circulation is quantized.

(iii) The core size is very small.

v s d s ! On´ n = 0,1,2,

A vortex with n2 is unstable.

(ii) Free from the decay mechanism of the viscous diffusion of the vorticity.

Every vortex has the same circulation.

The vortex is stable.

s

(r )

rot v

sThe order of the coherence

length.

O ! h / m

Page 6: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 6/49

C lassical Turbulence ( C T) vs. Quantum Turbulence (QT)C lassical Turbulence ( C T) vs. Quantum Turbulence (QT)

Classical turbulence Quantum turbulence

- The vortices are unstable. Not easy

to identify each vortex.

-The circulation varies with time.

- it is not conserved.

- Quantized vortices are stable

topological defects.- Each vortex has the same

circulation.

- Circulation is conserved.

Motion of 

vortex

cores

QT is much simpler

than CT, because eachelement of turbulence

is definite and clear.

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 7: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 7/49

Contents of this talk:Contents of this talk:

1.1. History of QT researchHistory of QT research

2.2. Recent QT studies in superfluid heliumRecent QT studies in superfluid helium

3.3. QT in atomic BoseQT in atomic Bose--Einstein condensatesEinstein condensates

Research into QT can make a breakthrough into one of the

great mysteries of nature.

Page 8: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 8/49

1. History of QT research

Liquid 4He enters the superfluid state below 2.17 K (P point)

with Bose-Einstein condensation (BEC).

Its hydrodynamics are well described by the two-fluid model:

QuickTimeý DzBMP êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ«ÇÕïKóvÇ-ÇÅB

Temperature

 point

The two-fluid model

The system is a mixture of inviscid

superfluid and viscous normal fluid.

 V ! V s

Vn

 j ! V sv

 s Vnvn

Density Velocity Viscosity Entropy

Superfluid 0 0

 Normal fluid

 V sT 

 Vn T 

v sr

vnr L

nT  sn T 

Page 9: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 9/49

The two-fluid model can explain various experimentally

observed phenomena of superfluidity (e.g., thethermomechanical effect, film flow, etc.)

However, «

Page 10: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 10/49

(ii) v > vs c

vs

A tangle of quantized vortices develops. The two fluids

interact through mutual friction generated by tangling, and

the superflow decays.

v = 0s

Superfluidity breaks down in fast flow

(i) v < vs c

vs

The two fluids do not interact so that the superfluid canflow forever without decaying.

vst p g

(some critical velocity)

Page 11: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 11/49

1955: Feynman proposed that ³superfluid turbulence´ consists

of a tangle of quantized vortices.

1955 ± 1957: Vinen observed ³superfluid turbulence´.

Mutual friction between the vortex tangle and the normalfluid causes dissipation of the flow.

Progress in Low Temperature Physics

Vol. I (1955), p.17

Such a large vortex should

 break up into smaller vortices

similar to the cascade processin classical turbulence.

Page 12: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 12/49

Many experimental studies were conducted chiefly on thermal

counterflow of superfluid 4He.

1980s K . W. Schwarz Phys. Rev. B38, 2398 (1988)Performed a direct numerical simulation of the three-dimensional

dynamics of quantized vortices and succeeded in quantitatively

explaining the observed temperature difference (T .

Vortex tangle

Heater 

 Normal flow Superflow

Page 13: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 13/49

 Development of a vortex tangle in a thermal counterflow

Schwarz, Phys. Rev. B38, 2398 (1988).

Schwarz obtained numerically the

statistically steady state of a vortex

tangle, which is sustained by the

competition between the appliedflow and the mutual friction. The

calculated vortex density  L(vns, T )

agreed quantitatively with

experimental data.

vs vn

Counterflow turbulence has been

successfully explained.

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 14: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 14/49

What is the relation between superfluid

turbulence and classical turbulence

Most studies of superfluid turbulence have focused onthermal counterflow.

No analogy with classical turbulence

When Feynman drew the above figure, he was thinking of a

cascade process in classical turbulence.

Page 15: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 15/49

How can we study

the similarities and differences between QT and CT?

One of the best ways is to focus on the most importantstatistical law in CT, namely, Kolmogorov¶s law:

 E (k ) ! C I2 / 3k 5 / 3

Page 16: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 16/49

 E nergy spectrum of fully developed turbulence

Energy-

containing

range

Inertial

range

Energy-dissipative

range

 E nergy spectrum of turbulence

 Kolmogorov¶s law

Energy spectrum of the velocity field

Energy-containing range

Energy is in jected into the system at .k } k 0 !1/ "0

Inertial range

Dissipation does not work. The nonlinear

interaction transfers energy from low k region

to high k  region.

K olmogorov¶s law : E ( k  )=C 2/3 k -5/3

Energy-dissipation range

Energy is dissipated at a rate I at the

K olmogorov wavenumber, k c = (I/R3 )1/4.

 Richardson cascade process

 E !1

2v´

2

d r ! E (k )d k ´

Page 17: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 17/49

Everybody believes

that turbulence issustained by

Richardson cascade.

However, this is only

based on an image ;nobody has ever

clearly confirmed it.

One reason is that it is

too difficult toidentify each eddy in

a classical fluid.

Page 18: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 18/49

For QT to be a simple model of turbulence,

it should show express the essence of turbulence.

 Based on this motivation, QT studies have Based on this motivation, QT studies have

entered a new stage since the mid 1990s!entered a new stage since the mid 1990s!

Page 19: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 19/49

Recent studies on energy spectra of superfluid heliumExperimental confirmation of the Kolmogorov spectra:

J. Maurer and P. Tabeling, Europhy. Lett. 43, 29 (1998) 1.4 K < T < T 

S.R. Stalp, L. Skrbek and R.J. Donnely, PRL 82, 4831 (1999) 1.4 < T < 2.15 K 

D.I. Bradley, D.O. Clubb, S.N. Fisher, A. M. Guenault, R.P. Haley, C.J.

Matthews, G.R. Pickett, V. Tsepelin, and K. Zaki, PRL 96, 035301 (2006) 3He

Theoretical consideration of QT at finite temperatures:

W.F. Vinen, Phys. Rev. B 61, 1410 (2000)D. Kivotides, J. C. Vassilicos, D. C. Samuels, C. F. Barenghi, Europhy. Lett. 57, 845 (2002)

What happens to QT and energy spectra at very low

temperatures?

2. Recent QT studies of superfluid helium

Page 20: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 20/49

Decaying K olmogorov turbulence in a model of superflow

C. Nore, M. Abid and M.E. Brachet, Phys. Fluids 9, 2644 (1997)

The Gross-Pitaevskii (GP) model

Energy spectrum of superfluid turbulence with no normal-fluidcomponent

T. Araki, M.Tsubota and S.K.Nemirovskii, Phys. Rev. Lett. 89, 145301(2002)

The vortex-filament model

K olmogorov spectrum of superfluid turbulence: Numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation

M. Kobayashi and M. Tsubota,Phys. Rev. Lett. 94, 065302 (2005), J. Phys. Soc. Jpn.74, 3248 (2005).

Three studies have directly investigated numerically QT

energy spectrum at zero temperature:

Page 21: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 21/49

C. Nore, M. Abid and M.E.Brachet, Phys.Fluids 9, 2644(1997)

By using the GP model, they

obtained a vortex tangle with

starting from the Taylor-Green

vortices.t 

Page 22: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 22/49

In order to study the K olmogorov spectrum, it is necessary to

decompose the total energy into some components. (Nore et al., 1997)

Total energy

The kinetic energy is divided into

the compressible part with

and

the incompressible part with .

 E !1

d x V´d x** 2

2*

2«-¬

»½¼´ *

 E ! E int E q E k in

* ! V exp i U

 E k in !1

d x V´d x *  U ´

2

 E k inc

!1

d x V´d x *  U c? A´

2

 E k ini

!1

d x V´d x *  U i? A´

2

div *  U i

! 0

rot * U c! 0

This incompressible kinetic energy E kini should

obey the Kolmogorov spectrum.

Page 23: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 23/49

C. Nore, M. Abid and M.E.Brachet, Phys.Fluids 9, 2644(1997)

: 2 < k < 12

: 2 < k  < 14: 2 < k  < 16

The right figure shows the energy spectrum at a moment. The left figure

shows the development of the exponent n(t). The exponent n(t) goesthrough 5/3 on the way of the dynamics.

    n       (     t       )

t  k 

      E       (      k       )

5/3

 E (k ) k  -n(t )

In the late stage, however, the exponent deviates from 5/3, because the

sound waves resulting from vortex reconnections disturb the cascade

 process of the inertial range.

Page 24: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 24/49

K olmogorov spectrum of quantum turbulenceM. K obayashi and M. Tsubota, Phys. Rev. Lett. 94, 065302 (2005), J.

Phys. Soc. Jpn. 74, 3248 (2005)

1. We solved the GP equation in wavenumber spacein order to use fast Fourier transform.

2. We achieved steady-state turbulence by:2-1 Introducing a dissipative term that dissipateshigh-wavenumber Fourier components (i.e., short-wavelength phonons).

2-2 Exciting the system on a large scale by movingthe random potential.

Page 25: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 25/49

To solve the GP equation numerically with high accuracy, we use the

Fourier spectral method in space with cubic periodic boundary

conditions.

GP equation in Fourier space:

(healing length giving the vortex core size)

i

x

xt * k , t  ! k 2

Q * k ,t 

V 2* k 1, t  ** k 2, t  * k  k 1 k 2, t 

k 1 ,k 2

§

\2!

1 g *

2

GP equation in real space:

i

x

x t * r, t  !

2

Q g * r,t  2

? A* r,t 

Page 26: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 26/49

GP equation with small-scale dissipation

(healing length giving the vortex core size)

We introduce the dissipation that operates only in the scale smaller than \.

\ 2! 1 g *

2

{i K (k )}x

xt * k , t  ! k 

2 Q * k , t 

V 2* k 1,t  ** k 2, t  * k  k 1 k 2, t 

k 1 ,k 2

§

K (k ) ! K 0 U k  2T / \

 H ow to dissipate the energy at small scales?

This type of dissipation is justified by coupled analysis of the GP

and Bogoliubov- de Gennes equations.

cf., M. Kobayashi and M. Tsubota, PRL 97, 145301 (2006)

Page 27: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 27/49

This is done by moving the random potential satisfying the

space-time correlation:

V (x, t )V ( dx , dt ) ! V 02exp

x dx 2

2 X 02

t  dt  2

2T 02

«

-¬¬

»

½¼¼

The variable X 0 determines thescale of the energy-containing

range.

V 0=50, X 0=4 and T 0=6.410-2

 H ow to inject the energy at large scales?

X0

 

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 28: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 28/49

Thus, steady-state turbulence is obtained (1)

Time development of each energy component

Vortices Phase in a central plane Moving random potential

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 29: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 29/49

Thus, steady-state turbulence is obtained (2)

Time development of each energy component

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 30: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 30/49

Picture of the cascade process

Quantized vortices

Phonons

Page 31: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 31/49

In order to confirm this picture, we calculate

(1) the energy dissipation rate of  E kini

(2) the energy flux of the Richardson cascade.

Quantized vortices

Phonons

Is comparable to ?

Page 32: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 32/49

(1) the energy dissipation rate of  E kini

In the steady state, we turn off 

the large-scale excitation

suddenly and monitor the time

development of  E kini .

Thus we obtain

from the decay.

I ! d  E kin

i

dt } 12.5 s 2.3

Page 33: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 33/49

(2) the energy flux of the Richardson cascade

 Dissipation rate 12.5

1. is about constant in the

inertial range.

2. is comparable to  .

They confirm the picture of 

the inertial range as written

in textbooks.

Ensemble averaged over 50 states.

Page 34: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 34/49

Energy spectrum of steady-state turbulence

The energy spectrum obeys the Kolmogorov law.

Quantum turbulence is

found to express the

essence of classicalturbulence!

2 / X0 2 /

The inertial range is

sustained by a genuine

Richardson cascade of quantized vortices.

M. K obayashi and M. Tsubota, Phys. Rev. Lett. 94,

065302 (2005), J. Phys. Soc. Jpn. 74, 3248 (2005)

Page 35: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 35/49

Overall picture of energy spectrum of QT at 0 K 

Kelvin-wave cascadeD. Kivotides, J. C. Vassllicos, D. C. Samuels,

C. F. Barenghi, PRL 86, 3080 (2001)

W. F. Vinen, M. Tsubota, A. Mitani, PRL91,

135301 (2003)

E. Kozik, B. V. Svistunov, PRL 92, 035301

(2004); PRL 94, 025301(2005); PRB 72,

172505 (2005)

Classical-quantum crossover 

V. S. L¶vov, S. V. Nazarenko, O. Rudenko,

PRB 76, 024520 (2007)E. Kozik, B. V. Svistunov, PRB 77, 060502

(2008)

: mean distance between vortices

Classical Quantum

Page 36: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 36/49

3. QT in atomic Bose-Einstein condensates(BECs)M. Kobayashi and M. Tsubota, Phys. Rev. A76, 045603 (2007)

Vortex array Vortex tangle

Superfluid He

Atomic BEC

Two principal cooperative phenomena of quantized

vortices are vortex arrays and vortex tangles.

 None

Packard (Berkeley)

Ketterle (MIT)

Page 37: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 37/49

Usual setup of atomic BECs

K.W.Madison et.al Phys.Rev Lett 84, 806 (2000)

Optical spoon

(oscillating

laser beam)

Rotation frequency

;

z

x

y 100Qm

5Qm

20Qm 16Qm

³cigar-shape´

Laser cooling

Page 38: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 38/49

Observation of quantized vortices in atomic BECs

K.W. Madison, et. al PRL 84, 806 (2000)

J.R. Abo-Shaeer, et. alScience 292, 476 (2001)

P. Engels, et. al

PRL 87, 210403

(2001)

ENS

MIT

JILA

E. Hodby, et. al

PRL 88, 010405

(2002)

Oxford

Page 39: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 39/49

Dynamics of vortex lattice formation by the GP model

Time development of condensate density n0

; ! 0.7[B Experiment

M. Tsubota, K. Kasamatsu

and M. Ueda, Phys. Rev. A

65, 023603 (2002)

V trap(r ) !1

2m[

B

2r 

2

=(r )! n0 (r )ei U(r )

QuickTimeý Dz YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

K.W. Madison et.al., PRL 86,

4443 (2001)

Page 40: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 40/49

Is it possible to produce turbulence in a trapped BEC?

(1) We cannot apply any flow to this system.

(2) This is a finite-size system. Can we make

turbulence with a sufficiently wide inertial range?

The coherence length is not much smaller than the system size.

However, we could confirm Kolmogorov¶s law.

M. Kobayashi and M. Tsubota, Phys. Rev. A76, 045603 (2007)

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 41: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 41/49

How to produce turbulence in a trapped BEC

 x

 y

 z 1. Trap the BEC in a weak 

elliptical potential.

U  x !m [

2

2

1 I1 1 I2  x 2 1 I1 1 I2  y 2 1 I2  z2? A

2. Rotate the system first

around the x-axis, then

around the z-axis.

; t  ! ; x, ; zsin; xt ,; z cos; xt 

Page 42: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 42/49

Actually, this idea has been already used in CT.

S. Goto, N. Ishii, S. Kida, and M. Nishioka, Phys. Fluids 19, 061705 (2007)

Rotation

around

one axis

Rotationaround

two axes

QuickTimeý DzêLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzÉVÉlÉpÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzÉVÉlÉpÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Thanks to S. Goto

Page 43: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 43/49

Page 44: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 44/49

Condensate density Quantized vortices

Two precessions (xz) Three precessions (y x z)

Condensate density Quantized vortices

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

Page 45: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 45/49

Energy spectra for two cases

Three precessions produce more isotropic QT, whose is closer to 5/3.

M. Kobayashi and M. Tsubota, Phys. Rev. A76, 045603 (2007)

Two precessions Three precessions

Page 46: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 46/49

What can we learn from QT of atomic BEC?

Controlling the transition to turbulence by changingthe rotational frequency or interaction parameters, etc.

We can visualize quantized vortices. We can consider 

the relation of real space cascade of vortices and the

wavenumber space cascade (Kolmogorov¶s law).

Changing the trapping potential or the rotational

frequency leads to dimensional crossover (2D3D)

in turbulence.

Page 47: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 47/49

Controlling the transition to turbulence

x

z

Vortex lattice

   V  o  r   t  e  x   l  a

   t   t   i  c  e

Vortex tangle

?

0

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

xz

Page 48: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 48/49

What can we learn from quantum turbulence of atomic BEC?

Controlling the transition to turbulence by changing therotational frequency or interaction parameters, etc.

We can visualize quantized vortices. We can consider 

the relation of real space cascade of vortices and the

wavenumber space cascade (Kolmogorov¶s law).

Changing the trapping potential or the rotational

frequency leads to dimensional crossover (2D3D) in

turbulence.

We can obtain the most controllable turbulence!

 y z

 x

 y

 z

 x

 

 y z

 x

 

Page 49: Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

8/3/2019 Makoto Tsubota- Quantum Turbulence: From Superfluid Helium to Atomic Bose-Einstein Condensates

http://slidepdf.com/reader/full/makoto-tsubota-quantum-turbulence-from-superfluid-helium-to-atomic-bose-einstein 49/49

Summary 16th century

21st century

We discussed the recent interests

in quantum turbulence.

Quantum turbulence consists of 

quantized vortices, which are

stable topological defects.

Quantum turbulence may give a

prototype of turbulence that is

much simpler than classical

turbulence.

Review article: M. Tsubota, arXive:0806.2737

(J. Phys. Soc. Jpn. (in press))

QuickTimeýDz YUV420ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB

QuickTimeý DzYUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄ

ÇDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇǽǫÇÕïKóvÇ-ÇÅB