manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas...

86
SUSTAINABLE SOLUTIONS FOR THE 21 ST CENTURY “Integration of Water Treatment Systems with Energy Derived from Municipal Wastes” Paul Hauck, P.E. CDM Smith 1715 N. Westshore Boulevard Suite 875 Tampa, Florida 33607 (813) 281-2900 [email protected] AndescoConference June 27. 2012 Cartagena, Columbia

Upload: andesco

Post on 28-May-2015

530 views

Category:

Business


1 download

DESCRIPTION

Paul Hauck, Consultor CDM SmithCongreso Andesco de Servicios Públicos y TIC 14º Nacional y 5º Internacional, Cartagena Colombia, Junio 27, 28 y 29 de 2012

TRANSCRIPT

Page 1: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

SUSTAINABLE SOLUTIONS FOR THE 21ST CENTURY

“Integration of Water Treatment Systems

with Energy Derived from Municipal Wastes”

Paul Hauck, P.E.CDM Smith

1715 N. Westshore Boulevard

Suite 875

Tampa, Florida 33607

(813) 281-2900

[email protected]

Andesco Conference

June 27. 2012

Cartagena, Columbia

Page 2: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Presentation Outline

• Introduction

• Emerging paradigms

• Proven waste conversion technologies

• Marriage of WTE and water resources

• Emerging waste conversion technologies

• Synergistic opportunities

2

Page 3: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

CDM Smith’s U.S. Waste-to-Energy Experience

Introduction3

Page 4: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

CDM Smith’s Florida Solid Waste Experience

Introduction4

Page 5: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Intended Consequences of the

Integrated Solid Waste Management Hierarchy

Emerging Paradigms5

Page 6: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

The Three Rs of Recycling…Plus Two!

Emerging Paradigms6

Page 7: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Modern Waste-to-Energy (WTE) in the US

• WTE disposes of 13% of the nation’s waste (U.S. EPA)

– 86 operating facilities

– 36 million people served

– 27 states

– Generation capacity in

excess of 2,700 MW

– 16 million MWhrs of

renewable power generated annually

– 259 million tons per year currently disposed of in landfills represents

an additional 142,450,000 MWhrs annually (equivalent to 16,261

MW of capacity)

• Most WTE facilities sell electricity to the local grid at lower prices

than Public Works facilities purchase at commercial rates

Proven Waste Conversion Technologies7

Page 8: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTE Capacity Factor is Among the Highest of

Renewable / Fossil Energy Options (24/7/365)

• Photovoltaic solar (northern latitudes) 12-15%

• Photovoltaic solar (southern latitudes) 18-20%

• Wind 20-40%

• Thermal solar (parabolic trough) 40%

• Natural Gas Combined Cycle 60-80%

• Biomass 60-85%

• Landfill Gas 80-95%

• Baseload Coal 80-90%

• Waste-to-Energy (WTE) 85–92%

• Hydroelectric 10-99%

Capacity Factor = actual kWhrs produced divided by kWhrs that would have

been produced if operated at design capacity over same period.8

Proven Waste Conversion Technologies

Page 9: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Modern WTE Trends – Improved Efficiency,

Attention to Aesthetics and Sustainability

Increasing

Decreasing

•WTE facility expansions and new construction

•Attention to aesthetics/LEED®/innovation

•More stringent emission limits and GHG reporting

•MSW Higher Heating Value (HHV)

•Boiler/T-G availability

•Use of reclaimed water for cooling

•Gross/net electric generation

•Non-ferrous metal recovery

•Integrated solid waste management/eco-campus

•Resistance to WTE in established communities

•Air emissions

•Reagent consumption

•Water consumption

•Lower payments for renewable electricity

9Proven Waste Conversion Technologies

Page 10: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Dominant WTE Technology in US

is Advanced Massburn Combustion

• ~75% are massburn facilities

• ~ 17% are refuse-derived fuel (RDF) facilities

Proven Waste Conversion Technologies10

Massburn WTE requires no pre-processing of MSW

Page 11: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Typical Massburn WTE Facility

Proven Waste Conversion Technologies11

Page 12: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Typical Massburn WTE Flow Diagram

Proven Waste Conversion Technologies12

Page 13: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Refuse Storage Pit at Massburn WTE Facility

13Proven Waste Conversion Technologies

Typically sized for minimum of 3-days storage, up to 7-days maximum

Page 14: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Efficiency of Massburn WTE Technology

Results in Minimal Disposal of Residuals

Typical WTE Ash Residue

• 75% weight reduction• 90% volume reduction

Proven Waste Conversion Technologies14

Page 15: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Grizzly Scalper “Overs”

(mostly ferrous metal greater than 6-inch size)

Proven Waste Conversion Technologies15

Page 16: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Metals Liberated by the Combustion Process

Can be Recycled for Additional Revenues

Ferrous metals

everything…including the

kitchen sink

Non-ferrous metals

(aluminum, brass,

bronze, copper, gold,

silver, stainless)

Proven Waste Conversion Technologies16

Page 17: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Typical Non-ferrous Metals …

Liberated and Recovered After Combustion

Densealuminum nuggets

Aluminum, brass, bronze, copper, gold, and silver

Proven Waste Conversion Technologies17

Page 18: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Recovered Products from

WTE Bottom Ash (European Experience)

InAshCo18

Page 19: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Aluminum Products (light non-ferrous)

from WTE Bottom Ash (European Experience)

InAshCo19

Page 20: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Heavy non-ferrous products

from WTE Bottom Ash (European Expereince)

InAshCo

primarily brass

and copper

20

Page 21: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Florida Waste-to-Energy Facilities

12 Facilities – 607 MW of Renewable Electricity

21Proven Waste Conversion Technologies

Page 22: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Resource Recovery Facility1,800 TPD – 46 MW

Proven Waste Conversion Technologies

Original 1,200-TPD construction: 1987

600-TPD expansion completed: 2009

Compatible with the urban landscape Commercial/industrial development has occurred around facility over 24 years!

22

Page 23: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Resource Recovery Facility1,800 TPD – 46 MW (Located Adjacent to WWTP)

Proven Waste Conversion Technologies

8-MGD WWTP (AWTP)

1,800-TPD WTE

23

Page 24: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Pasco County Resource Recovery Facility

1,050 TPD – 30-MW Electrical

Proven Waste Conversion Technologies

• Construction: 1989-1991

• $90M capital cost

24

Page 25: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Pasco County Florida

Integrated Solid Waste Management Campus

Proven Waste Conversion Technologies25

Page 26: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Lee County Resource Recovery Facility

1,800 TPD – 58-MW Electrical

Proven Waste Conversion Technologies

• Original Construction 1994

• 636 TPD Expansion Completed 2006• Original construction: 1994

• 636-TPD expansion completed: 2006

26

Page 27: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Lee County Florida ISWM Campus

27

Page 28: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Construction Underway of 3,000-TPD Massburn

WTE on Palm Beach County Florida Campus

Proven Waste Conversion Technologies

• First new WTE facility in the US in 16 years!

• Located adjacent to a 2,000 tpd RDF WTE

facility on an

Integrated Solid

Waste Management

Campus

Page 29: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Palm Beach County, Florida

New 3,000-TPD Massburn WTE RenderingIncorporating Both Sustainability and Aesthetics

Proven Waste Conversion Technologies29

Page 30: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Proposed 3,000-TPD Massburn WTE Facility

Palm Beach County, Florida 2012

Proven Waste Conversion Technologies30

Page 31: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Palm Beach County, Florida

New 3,000-TPD Massburn WTE RenderingIncorporating Rainwater Harvest of First 2” of Rain

2 MG

Proven Waste Conversion Technologies31

Page 32: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hennepin County WTE Welcomes

Minnesota Twins into the Neighborhood!

Proven Waste Conversion Technologies

HERC WTE Facility

(1987)

Target Field (2010)

32

Page 33: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hennepin County WTE Facility…

Compatible with the Urban Landscape!

Proven Waste Conversion Technologies

Hennepin Energy Recovery Center

33

Page 34: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Water – Energy Nexus

Water and Energy are Inextricably Linked!

• Water scarcity is the new paradigm for the 21st century!

• Lower quality water supply sources require higher levels

of treatment

• Higher levels of treatment require greater inputs of energy

– Pumping from greater depths / distances

– Membrane processes require energy for pressure

– Advanced disinfection treatments are often

electrically derived (ultraviolet light, ozone)

• Mutual benefits can be shared between solid waste and

water resource departments!

34WTE and Water Resources

Page 35: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTE and WWTP Facilities Make Good Neighbors

WTE and Water Resources

12-MGD WWTP (AWTP)

1,800 TPD/46 MW WTE Facility

35

Page 36: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTEWTEExcess Electricity

Sold to Grid (~37 MW)

Reclaimed Water

Distribution System

Wastewater

Wastewater

Electricity ~2.0 MW

Reclaimed~ 1.1MGD

AWTPAWTP

Municipal

Solid Waste

Hillsborough County, Florida Utility Campus

Reclaimed Water Used at WTE Facility

• Cooling tower makeup ~1.02 MGD

• Scrubber dilution water ~ 0.056 MGD

• Plant wash down water ~ 0.011 MGD

• Equipment cooling water ~ 0.006 MGD

• Facility irrigation as needed

• Fire Protection as needed

36WTE and Water Resources

WTE Integrated with Advanced Wastewater Treatment Plant

Page 37: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County, Florida

Case Study – WTE and WWTP Synergy

Adjacent AWTP powered by energy from WTE (Aug 08), with an additional

5 MW soon to be used for other public works and buildings

Currently saving taxpayers an estimated $600,000 a year in energy costs at AWTP

1,800 tpd WTE

Facility

12 mgd AWTP

2 MW

~ 5 MW

Future

37

37 MW

Currently

Sold to

Grid

WTE and Water Resources

Page 38: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Significant Potential Savings to Public Works

by Using Electricity from WTE Facility Internally

$-

$2.000.000

$4.000.000

$6.000.000

$8.000.000

$10.000.000

$12.000.000

$14.000.000

$16.000.000

0 20 40 60 80 100

Po

ten

tia

l A

nn

ua

l S

av

ing

s

Percent of Electricity Used Internally

Potential Net Savings to Public Works

(1,800 TPD WTE with 4 cents / kWh spread)

Current use

~5% of net

generation

Future use of

~15% of net

generation

38WTE and Water Resources

Page 39: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

39

Additional Public Works Services to be Powered by WTE in Near Future

Future

• Warehouse

• Jail

• Animal

Services

• Elections

Supervisor

Office

• Environmental

Laboratory

Currently

• WTE

• AWTP

• Water

Treatment

Plant

• Reclaimed

Water

Pumps

WTE and Water Resources

Page 40: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTEWTEExcess

Electricity

Sold to Grid

Reclaimed Water

Distribution System

Raw Water

Wastewater

Electricity

WWTPWWTP

Municipal Solid

Waste

WTE Integrated with WWTP and WTP

Reclaimed water for

process and irrigation

WTPWTP

Wastewater

Residuals

Potable Water

Distribution

System

Electricity Reclaimed water for

augmented water supply

WTE and Water Resources

Page 41: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTEWTEExcess Electricity

Sold to Grid

Reclaimed Water

Distribution System

Wastewater

Wastewater

Electricity

WWTPWWTP

Municipal Solid

Waste

WTE Integrated with WWTP (with dewatered biosolids)

Reclaimed Water for

process and

irrigation

Discharge biosolids directly into refuse pit or blend with wood chips

Dewatered biosolids @

15-20% solids

WTE and Water Resources

Page 42: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTEWTEExcess

Electricity

Sold to Grid

Reclaimed Water

Distribution System

Wastewater

Wastewater

Electricity

WWTPWWTP

Municipal Solid

Waste

WTE Integrated with WWTP (with biosolids dried by

solar and non-thermal means)

Reclaimed water

for process and

irrigation

Biosolids

Drying

Biosolids

Drying

Biosolids @ 15-20% solids

Windrow or

Solar Dryers

WTE and Water Resources

Page 43: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTEWTE Excess

Electricity

Sold to Grid

Reclaimed Water

Distribution System

Wastewater

Wastewater

Electricity

WWTPWWTP

Municipal Solid

Waste

WTE Integrated with WWTP (with biosolids dried by

heat via steam from WTE facility)

Reclaimed water for

process and irrigation Biosolids

Drying

Biosolids

Drying

Biosolids @ 15-20% solids

Indirect

Dryer

Steam

Discharge dry biosolids(70 – 95%) directly into

refuse pit

WTE and Water Resources

Page 44: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTE with WWTP, Anaerobic Digestion (Co-digestion)

& Thermal Drying for Fertilizer Production

WTEWTEMunicipal Solid

Waste

WWTPWWTP

Excess

Electricity

Sold to Grid

Wastewater

A/D(CO-DIGESTION)

A/D(CO-DIGESTION)

CNG/LNGOrganic Food Waste

FOG / High Strength Wastes

Electricity

Wastewater

Effluent

Biosolids

Reclaimed

Water

Distribution

Electricity

Excess Biomethane

Reclaimed Water for process and irrigation

Thermal

Dryer

Thermal

Dryer

Excess dry biosolids @ 70-

95% solids discharged directly

into refuse pit Steam

Biomethane

Fertilizer

Soil Amendment

Excess Biosolids

WTE and Water Resources

Page 45: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

21st Century Sustainable Utility Campus

WTE and Water Resources

WTESolid Waste

WWTP

WTP

Excess Electricity to Grid

Electricity to

Utility Complex

Wells

Potable Waterto Grid

Sanitary Waste

Excess Stormwater

ReclaimedWater

Wet WeatherStorage

Reclaimed Water to Grid

Integration of WTE with Water Resources

45

Page 46: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Reclaimed Water Storage Reservoir

Pasco County Florida – Land O’Lakes WWTP

46WTE and Water Resources

Wet Weather

Storage Reservoir

500,000,000 gallons of

storage constructed in 2009

with 5,000 gpm filtration on

withdrawal system

Page 47: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Estimated Size of Water Resource Treatment

Supplied by Electric Power from 1,000 TPD EfW

330

165

99

50 40

70

50

100

150

200

250

300

350

WTP

Conventional @

1,500 kWh per

MG

AWWTP @

3,000 kWh per

MG

WTP Brackish

Membrane @

5,000 kWh per

MG

WTP Seawater

Membrance @

10,000 kWh per

MG

WRF Membrane

Direct Potable

Reuse @ 12,500

kWh per MG

WTP Thermal

Distillation @

75,000 kWh per

MG

Mil

lio

n G

all

on

s /

Da

y

47WTE and Water Resources

Page 48: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTE

Reclaimed

Water

Biosolids & Nutrients

(Fuel & Fertilizer)

Wastewater Treatment Plants Can Be Viewed As

Water/Biosolids/Energy Resource Centers

Synergistic Opportunities

Wastewater

Organic

Waste

Solar and Wind

Energy (Heat, Power)

48

Page 49: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Campus for Management of Solid Waste,

Recycling, and Water Resources

Synergistic Opportunities

Potable WaterTreatment Plant

WTEWaste-to-Energy

Steam

Loop for

Industrial

Park Tenants

WTE AshProcessing

Facility

MRF

Used Tire / Bulky WasteWood & Yard Waste

Resizing Facility

Construction & DemolitionDebris Processing Facility

WastewaterTreatment Plant

Compost Facility Yard & Wood Waste Processing

Reclaimed Water Reuse

Recycled Products

• compost• mulch• soil amendment

• tire derived fuel• crumb rubber

• sand• crushed asphalt• crushed concrete• metals

• metals• recycled ash

- LF daily cover- road base

• plastics• glass• paper• cardboard• metals

Active Landfill Ash MonofillC&D / Inert

LandfillClosedLandfill

M

Reclaimed Water

Biosolids

Electricity

Cooling & Fire Protection

Low Pressure Steam& Compressed Air

Combustibles•Chipped Tires•Chipped Wood

Electricity

CombustiblesNot Requiring

Resizing

AshResidue

Electricity

Electricity

Lan

dfi

ll L

ea

cha

te t

o W

WT

P

Lan

dfi

ll G

as

& M

ine

d

Co

mb

ust

ible

s

Co

mb

ust

ible

Re

ject

s

Sa

nd

,G

rav

el

Re

ject

s

Cru

she

dC

on

cre

te

Re

ject

s

Shredded Yard& Wood Waste

M

M

M

M

M

M

~

~

Ele

ctri

city

Co

mp

ress

ed

Air

~

Ex

cess

B

ioso

lid

s

~

~

Landfill Gas

49

Page 50: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

PILOT SCALE DEMONSTRATION MARKET ENTRY MARKET

PENETRATION

MARKET

MATURITY

Stoker

Co-firing

(utility

boilers)

Fluidized

Bed

Small Gasifier/

IC Engine

Gasification –

Boilers, Kilns

Pyrolysis and

Depolymerization

Other Conversion Processes 1Massburn WTE &

RDF Combustion2

Biomass

Direct

Combustion

Biomass

Gasification

& Pyrolysis

Waste-to-

Energy

1. Includes RDF gasification, plasma gasification, and pyrolysis

2. RDF = Refuse-derived fuel

EMERGING (Higher Risk) PROVEN (Lower Risk)STATE

of

TECHNOLOGY

Co- Digestion Anaerobic Digestion

Emerging Waste Conversion Technologies50

Page 51: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Emerging Waste Conversion Technologies

(None Yet Commercially Demonstrated in US)

Thermal Processes

• Gasification (thermal, plasma, with or without vitrification)

• Pyrolysis / Torrifaction of biomass

Bio – Chemical Processes

• Anaerobic Digestion (co-digestion of WWTP biosolids and

organic wastes)

• Waste-to-Biofuels (ethanol, methanol, other alcohols)

• Depolymerization (synthetic diesel and gasoline)

51Emerging Waste Conversion Technologies

Page 52: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Emerging Waste Conversion Technologies

AlcoholRefiningAlcoholRefining

GrainGrain

CaneCane

BiomassBiomass

MaterialHandling

&Processing

MaterialHandling

&Processing

StarchStarch

SugarSugar

GasificationGasificationCelluloseCellulose

FermentationFermentation

AlcoholRefiningAlcoholRefining

Biomass-to-Ethanol Production Pathways

52

Page 53: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Ineos Waste-to-Biofuel Project Status

Indian River County, Florida

• CDM Smith supporting role– DOE grant application: $50M awarded in 2009

– Prepared NEPA compliance/environmental permit applications

– Civil site/facility infrastructure design

• Anticipated startup 3Q 2012 with full production by 4Q 2012

Emerging Waste Conversion Technologies53

Page 54: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Thank You for the Opportunity to Share

…and Imagineer!

Conclusion

Paul Hauck, P.E.

CDM Smith

1715 N. Westshore Boulevard, Suite 875

Tampa, Florida 33607

(813) 281-2900

[email protected]

54

Page 55: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Extra Slides

Page 56: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Historical Emission Trends from Large and Small

Municipal Waste Combustors

Proven Waste Conversion Technologies

Pollutant 1990 Emissions

(TPY)

2005 Emissions

(TPY)

Percent Reduction

CDD/CDF TEQ Basis * 44 15 99+%

Mercury 57 2.3 96%

Cadmium 9.6 0.4 96%

Lead 170 5.5 97%

Particulate Matter 18,600 780 96%

HCL 57,400 3,200 94%

SO2 38,300 4,600 88%

NOx 64,900 49,500 24%

Source: EPA, August 2007* Dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using

1989 NATO toxicity factors; all other pollutant emissions are in units of tons per year

56

Page 57: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County, Florida Case Study

Hillsborough County integrated solid waste management system

• 1,800 tpd Resource Recovery Facility (EfW)

• Two Transfer Stations with citizen drop off facilities for bulky waste, white goods, yard and wood waste

• Central processing facility for yard and wood waste (recycled as mulch, soil amendment or biomass fuel)

• Community Collection Centers (5) for drop off of solid waste materials

• Household Chemicals and Electronics Collection Centers (3) for citizen drop of materials (not available to commercial customers)

• Waste Tire Processing Program (shredded into chips <2” in size) for recycling as alternate daily cover or supplemental fuel at the EfW facility

• Class I raw waste landfill (179 acres)

• Collection services are provided by three private franchised contractors throughout the unincorporated areas of the County:

– Residential collection of solid waste twice a week

– Residential collection of yard waste once a week

– Residential collection of curbside recyclables once a week (cardboard, newspaper, and mixed paper; plastic and glass bottles, steel and aluminum containers)

• Posted FY 2011 full costs for the Solid Waste Management System are:

– Residential collection: $136.23 / HH / year

– Residential disposal: $94.94 / HH / year

– Residential recycling: $10.89 / HH / year

– Landfill disposal tipping fee: $63.96 / ton

– Tire disposal: $82.61 / ton

– Yard and wood waste disposal: $31.52 / ton

Page 58: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County RRF Fuels

Unacceptable Fuels Acceptable Fuel

Lead acid batteries Confidential documents

Hazardous waste Contraband

Nuclear waste Wood pallets

Radioactive waste Used tires (up to 3% monthly)

Sewage sludge C&D debris

Grease, scum, and grit Oil spill cleanup, used oil filters and

motor oil

Explosives, beryllium containing

wastes, asbestos floor covering

Items suitable for human, plant, and

animal consumption (foodstuffs, feeds,

pharmaceuticals)58

Page 59: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Trend of MSW Higher Heating Value (HHV)

at Hillsborough County Florida EfW

59

Page 60: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

60

Page 61: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

61

Page 62: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

62

Page 63: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

63

Page 64: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

64

Page 65: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

65

Page 66: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

66

Page 67: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Hillsborough County Florida EfW

FY 2011 Environmental Performance

67

Page 68: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Estimated Value of WTE Carbon Offsets

68WTE Massburn Economics

$-

$500.000

$1.000.000

$1.500.000

$2.000.000

$2.500.000

$3.000.000

0 500 1000 1500 2000 2500 3000

Size of WTE Facility (tons per day)

Based upon WTE availability of 90%, 0.25 ton CO2e/ ton

MSW, and $10.00 per ton CO2e

Page 69: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Estimated Cost of Electricity from Massburn

WTE

$-

$0,050

$0,100

$0,150

$0,200

$0,250

0 500 1000 1500 2000 2500 3000 3500

$ /

Ww

h

WTE Facility Size (TPD)

Cost of Electricity Without Tipping Fee

WTE Massburn Economics

Page 70: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

US Massburn WTE Capital Cost History

$-

$100.000

$200.000

$300.000

$400.000

$500.000

$600.000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Ca

pit

al

Co

st

($ p

er

Ton

pe

r D

ay

Ca

pa

city

)

Start of Construction

Existing Facility

Proposed

RDF

PBC New WTE

Proposal

Prices

Winning price

WTE Massburn Economics

Page 71: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Water Consumption:

Wet versus Dry Cooling Systems

Air Cooled Condenser

Page 72: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

City of Tampa Energy from Waste Facility

1,000 TPD – 22.5 MW

• Original construction: 1975

• Rebuilt as EfW: 1985

• Retrofit for CAAA: 1998-2001

Proven Waste Conversion Technologies

Portions of this

facility are 35

years old and on

their third life!

72

Page 73: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Pinellas County Resource Recovery Facility

3,000 TPD – 75-MW Electrical Output

Proven Waste Conversion Technologies

• Original construction: 1985

• 1,000-TPD expansion: 1987

73

This facility is 27

years old and

recently refurbished

Page 74: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WWTP, Biosolids, and Power Also Integrated

into Pasco County ISWM Campus

Proven Waste Conversion Technologies

ASH MONOFILL

WTE

SCALES

WWTP

(4 mgd)

MRF

Biosolids

Stabilization

Peaking

Power

Plant

74

Page 75: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Palm Beach County, Florida

Proposed Visitors Center

Proven Waste Conversion Technologies75

Page 76: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

PBC New WTE Project – Sustainability Options

Recycled Water Supply Sources

Proven Waste Conversion Technologies

Page 77: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

PBC New WTE Project (2012)

Continuing the Trend to Lower Emission Limits

Emission Unit US EPA MACT PBC WTE Permit Limit

Units Mg/dscm 7% O2

Particulate 20 12

Cadmium 0.010 0.010

Lead 0.140 0.125

Mercury 0.050 0.025

Sulfur Dioxide 30 24

Hydrogen Chloride 25 20

Carbon Monoxide (4 hr) 100 100

Nitrogen Oxide (24 hr) 150 50

Nitrogen Oxide (annual) 90 45*

Dioxin/Furan ** 13 10

**ng/dscm 7%O2 * Month

Proven Waste Conversion Technologies

Page 78: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Potential Annual Net Savings to Public Works

@ 4 Cents/kWh Spread

$-

$5.000.000

$10.000.000

$15.000.000

$20.000.000

$25.000.000

$30.000.000

0 20 40 60 80 100

Po

ten

tia

l An

nu

al S

av

ing

s

Percent of WTE Electricity Used Internally

500 TPD WTE

1000 TPD

WTE

1500 TPD

WTE

2000 TPD

WTE

2500 TPD

WTE

3000 TPD

WTE

WTE and Water Resources78

Page 79: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

WTEWTEExcess Electricity

Sold to Grid

Reclaimed Water

Distribution System

Wastewater

Wastewater

Electricity

WWTPWWTP

Municipal Solid

Waste

Synergistic Opportunities

Municipal Utility Campus – Energy from Waste

WTE Integrated with WWTP (without biosolids)

Reclaimed Water for

process and irrigation

Page 80: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Pasco County Southeast WWTP

Reclaimed Water Reservoir Filtration Skid

80WTE and Water Resources

• 5,000 GPM

Filtration Skid

• Two parallel arrays

of “turbo-disc”

filter cartridges

• Backwash

discharged to ???

Page 81: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Palm Beach County, Florida

Regional Biosolids Processing Facility

Synergistic Opportunities81

Page 82: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Municipal Utility Campus

Optimizing Energy and Water Production

WTE and Water Resources

Water and electricity production can be

varied by time of day to meet peak demands

Off Peak

Electricity

Production

Electricity

Water

WaterWater

Electricity Electricity

Water

Production

Peak Electric

Demand

Off Peak

Time of Day

82

Page 83: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Recycling

Waste Basement

Recycling Processes Tipping Building Refuse Building Boiler Building Air Pollution Control Bldg. Stack

Options for WTE

Basement Area:

1. Maintenance Shop

2. Ash Processing

3. Special Recycling

WTE

Basement Area

Future WTE Plants Can Include Addition of

Material Recovery and Recycling Processes

Synergistic Opportunities

Options for Recycling:

1. Single Stream MRF

2. Multi Stream MRF

3. Mixed Waste MRF

4. C&D Recycling

83

Page 84: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

ElectricalSwitchyard

Fabric Filter

SDA

Stack

AshProcessing

Building

Fabric Filter

SDA

Combustor No. 2

Fabric Filter

Combustor No. 3

Fabric Filter

Combustor No. 4

Turbine-Generator Building

Combustor No. 1

ControlRoom

Anaerobic

Digestion

Facility

SDA SDA

AdminOffices

Maintenance & Warehouse

Building

Exit RampExit RampEntrance RampEntrance Ramp

SDA

SDA

Fly Ash

Conveyor

Bottom Ash

Conveyor

Site Layout for Future

Integrated Solid Waste Management System

(Massburn WTE with Anaerobic Digestion, Composting,

C&D Recycling, and E-Waste Recycling)

FoodWaste

Pit

Municipal Solid WasteRefuse Pit

Elevated MSW Tipping Floor/BuildingCompost Facility Below

C&D Recycling BuildingC&D Recycling BuildingE-Waste

RecyclingE-Waste

Recycling

Synergistic Opportunities

Page 85: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Conversion

Processes

– Trees– Grasses– Agricultural Crops– Agricultural Residues– Forest Residues– Animal Wastes– Municipal Solid Waste

PRODUCTSFuels:– Ethanol– Renewable Diesel – Renewable Gasoline– Hydrogen

Power:– Electricity– Heat (co-generation)

Chemicals– Plastics– Solvents– Chemical Intermediates– Phenolics– Adhesives– Furfural– Fatty Acids– Acetic Acid– Carbon Black– Paints– Dyes, Pigments, and Ink– Detergent– Etc.

Food, Feed, Fuel,

Fiber, & Fertilizer

– Enzymatic Fermentation– Gas/Liquid Fermentation– Acid Hydrolysis/Fermentation– Gasification– Pyrolysis– Combustion– Co-firing

Biomass

Feedstock

New Industry – BioRefineryUS Department of Energy

Office of Energy Efficiency

and Renewable Energy 2005

S

U

G

A

R

or

H

Y

D

R

O

C

A

R

B

O

N

S

85Emerging Waste Conversion Technologies

Page 86: Manejo integral del desarrollo de parques industriales para la generación eléctrica con aguas residuales y residuos solidos

Only Time Will Tell…

Enhanced Revenues of Ethanol from MSW

• Potentially 2-3 times the revenue stream of electricity

Emerging Waste Conversion Technologies86