manifolds - solutions 6

Upload: scribd6289

Post on 03-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Manifolds - Solutions 6

    1/4

    1

    (1)

    (2) Let = i dxi, = i dx

    i be 1-forms, then

    = (i dxi) (j dx

    j)

    = (ij) dxi dxj

    =1

    2(ij ji) dx

    i dxj

    =i

  • 7/28/2019 Manifolds - Solutions 6

    2/4

    2

    (4)

    Fij dxi dxj =

    1

    2Fij (dx

    i dxj dxj dxi)

    =1

    2(Fij dx

    i dxj Fij dx

    j dxi)

    =1

    2(Fij dx

    i dxj Fji dx

    i dxj)

    by reindexing the second sum i j

    =1

    2(Fij dx

    i dxj + Fij dx

    i dxj)

    using the anti-symmetry in the coefficients= Fij dx

    i dxj

    (5) (a) = 1 dx+ 2 dy + 2 dz and = 1 dydz+ 2 dzdx+ 1 dxdy

    = 11 dx dy dz+ 2

    2 dy dz dx + 33 dz dx dy

    = (11 + 2

    2 + 33) dx dy dz

    (b) = 1 dx + 2 dy + 2 dz and = 1 dx + 2 dy + 2 dz

    = (12 dx dy + 13 dx dz)+ (21 dy dx + 23 dy dz)

    + (31 dz dx + 32 dz dy)

    = (12 21) dx dy + (23 32) dy dz+ (13 31) dx dz

    using dxdx = dydy = dzdz = 0 and dxdy = dydx, etc.

    (6)

    (7)

  • 7/28/2019 Manifolds - Solutions 6

    3/4

    3

    (8) Let f C(M), then

    d df = d

    f

    xdx +

    f

    ydy

    = d

    f

    x

    dx +

    f

    xd2x + d

    f

    y

    dy +

    f

    yd2y

    =

    2f

    x2dx +

    2f

    yxdy

    dx + 0 +

    2f

    xydx +

    2f

    y2dy

    dy + 0

    =2f

    yxdy dx +

    2f

    xydx dy

    = 0

    Since 2f

    yx=

    2f

    xyfor smooth functions and dx dy = dy dx.

    (9) Let f(z) = u(x, y)+iv(x, y) be a holomorphic function, then the Cauchy-Riemann equations tell us

    u

    x=

    v

    yand

    u

    y=

    v

    x

    so for A = f(z) dz we have

    dA = df dz = (du + i dv) (dx + i dy)

    =

    u

    xdx +

    u

    ydy

    + i

    v

    xdx +

    v

    ydy

    (dx + i dy)

    =

    u

    x+ i

    v

    x

    dx +

    u

    y+ i

    v

    y

    dy

    (dx + i dy)

    = i

    u

    x+ i

    v

    x

    dx dy +

    u

    y+ i

    v

    y

    dy dx

    =

    i

    u

    x

    v

    x

    u

    y i

    v

    y

    dx dy

    = 0

  • 7/28/2019 Manifolds - Solutions 6

    4/4

    4

    (10) Let A = Ai dxi be a 1-form, where Ai C

    (M) = 0(M) are smooth

    functions (0-forms), then using properties (1) and (2) of exterior differ-ential we get

    dA = dAi dxi + Ai d2xi = dAi dx

    i

    as d2xi = 0 (property (4) of exterior differential, see question 8), sosimilarly

    d2A = d(dAi dxi) = d2Ai dx

    i dAi d

    2xi = 0

    where again d2Ai = d2xi = 0.