manual validation v42

Upload: nileshrane

Post on 14-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Manual Validation v42

    1/167

    Validation ManualVersion 4.2

    P+Z Engineering GmbH, Munich

    www.theseus-fe.com

  • 7/30/2019 Manual Validation v42

    2/167

    THESEUS-FE 4.2 Validations Manual

    II

    Legal Notices

    Copyright 2012 P+Z Engineering GmbH. All Rights Reserved.

    The information contained herein is the property of P+Z Engineering GmbH. Any use, copy, publication, distribution,

    display, modification, or transmission of the information in whole or in part in any form or by any means without the priorexpress written permission of P+Z Engineering GmbH is strictly prohibited. Except when expressly provided by P+ZEngineering GmbH in writing, possession of this information shall not be construed to confer any license or rights underany of P+Z Engineering GmbHs intellectual property rights, whether by estoppel, implication, or otherwise.

    ALL COPIES OF THE INFORMATION, IF ALLOWED BY P+Z ENGINEERING GMBH, MUST DISPLAY THIS NOTICEOF COPYRIGHT AND OWNERSHIP IN FULL.

    THESEUS-FEis a copyright protected and registered trademark of P+Z Engineering GmbH.

    All other brand and product names mentioned herein are the trademarks and registered trademarks of their respectiveowners.

    Printed in Germany.June 2012

  • 7/30/2019 Manual Validation v42

    3/167

    THESEUS-FE 4.2 Validations Manual

    III

    About this manual

    P+Z Engineering GmbH reserves the right to make changes or improvements to thesoftware product described in this document without notice. P+Z Engineering GmbHassumes no responsibility for any factual or typographical errors or omissions that may

    have occurred. P+Z Engineering GmbH has however made every effort to ensure that theinformation contained in this Manual is accurate.

    The idea of this manual is to demonstrate the high quality of our software THESEUS-FEby presenting a huge number of thermodynamic systems well validated with exact analyticresults, results from literature, or results achieved with our parent software tool INKA.

    Additional background information can be found in the

    GUI Manual

    Keyword Manual

    Tutorial Manual

    Theory Manual

    Transformer Manual

    Oven Manual

    also shipped with this release.

    If you have any further questions, please contact:

    P+Z Engineering GmbH

    Anton-Ditt-Bogen 3

    80939 MunichGermany

    Phone: +49 89 31857 466

    Fax: +49 89 31857 333

    To see the latest THESUES-FE software and services, please visit our web site at:

    http://www.theseus-fe.com

    Questions about pricing, sales, availability and general issues should be directed to:

    [email protected]

    Technical and scientific support issues should be addressed to:

    [email protected]

  • 7/30/2019 Manual Validation v42

    4/167

    THESEUS-FE 4.2 Validations Manual

    IV

    Contents

    CONTENTS .................................................................................................. IV

    LIST OF FIGURES ...................................................................................... VII1 ANALYTIC VALIDATIONS ...................................................................... 1

    1.1 Steady State Problems .......................................................................................... 21.1.1 1D wall with internal heat generation .................................................................... 31.1.2 1D composite wall with internal heat generation and convection .......................... 51.1.3 Conduction through a fin (bound. cond.: temp./temp.) .......................................... 71.1.4 Conduction through a fin (bound. cond.: temp./adiabatic) .................................... 91.1.5 2D conduction in rectangular plate ..................................................................... 111.1.6 2D conduction in a disk (bound. cond.: temp./temp./convec.) ............................ 131.1.7 2D conduction in a disk (bound. cond.: temp./adiabatic./convec.) ...................... 151.2 Transient Solutions .............................................................................................. 171.2.1 1D wall cooling .................................................................................................... 181.2.2 Sphere heating ................................................................................................... 201.2.3 Cylinder heating .................................................................................................. 221.2.4 Infinite body with internal heat impulse ............................................................... 251.3 Thermal Radiation Boundary Conditions .......................................................... 281.3.1 Numeric view factor integration ........................................................................... 291.3.2 Solar short wave radiation (from sun) ................................................................. 301.3.3 Thermal long wave radiation (closed cavity) ....................................................... 371.3.4 Thermal long wave radiation (opened cavity) ..................................................... 41

    2 ADVANCED CONDUCTION .................................................................. 442.1 Heat Bridges in Buildings ................................................................................... 452.1.1 Heat bridges: Example 1 .................................................................................... 462.1.2 Heat bridges: Example 2 .................................................................................... 482.1.3 Heat bridges: Example 3 .................................................................................... 502.1.4 Heat bridges: Example 4 .................................................................................... 522.2 Anisotropic Conductivity .................................................................................... 542.3 Temperature Dependent Conductivity ............................................................... 562.4 Phase Change ...................................................................................................... 582.5 Cylinder Radiation (open grey body cavity) ...................................................... 602.6 Disk Radiation ...................................................................................................... 63

  • 7/30/2019 Manual Validation v42

    5/167

    THESEUS-FE 4.2 Validations Manual

    V

    2.7 Cylinder Radiation Coupled with 1D Flow ......................................................... 663 THESEUS-FE COMPARED WITH INKA ................................................ 70

    3.1 Model a .................................................................................................................. 713.1.1 Linear convective airzone heating - without considering humidity (a 1) .............. 723.1.2 Linear convective airzone heating - considering humidity (a 2) .......................... 733.1.3 Linear convective airzone cooling - considering humidity (a 3) ........................... 743.1.4 Non-linear convective airzone heating - without considering humidity (a 4) ....... 763.1.5 Sun heating airzone - without considering humidity (a 5) ................................... 773.1.6 Sun heating airzone - without considering humidity (a 6) ................................... 783.1.7 Airzone heated by ventilation FVT (a 7) .............................................................. 793.1.8 Airzone heated by ventilation RVT (a 8) ............................................................. 813.1.9 Airzone cooled by ventilation RVT (a 9) .............................................................. 823.1.10

    Airzone heated by ventilation RET (a 10) ........................................................... 84

    3.1.11Airzone cooled by ventilation HRET (a 11) ......................................................... 853.1.12Airzone heated by inverse mode ventilation FAT (a 12) ..................................... 873.1.13Airzone cooled by inverse mode ventilation RAT (a 13) ..................................... 893.2 Model b ................................................................................................................. 923.2.1 Glass transmission without refraction (b 1) ......................................................... 933.2.2 Glass transmission with refraction (b 2) .............................................................. 953.3 Model c .................................................................................................................. 963.3.1 Box with glas roof (c1) ........................................................................................ 97

    4 MANIKIN FIALA-FE VALIDATIONS .................................................... 994.1 Passive System Validation ................................................................................ 1004.1.1 Spherical body element .................................................................................... 1014.1.2 Cylindr. body element with metabolism and blood perfusion (1) ....................... 1044.1.3 Cylindr. body element with metabolism and blood perfusion (2) ....................... 1064.1.4 Dead man in a cold environment (10C) ........................................................... 1084.2 Thermal Neutrality Validation ........................................................................... 1104.2.1 Naked Manikin .................................................................................................. 1114.2.2 Clothed Manikin ................................................................................................ 1134.3 Active System Validation .................................................................................. 1144.3.1 Cooling at 5C (1) ............................................................................................. 1154.3.2 Cooling at 5C (2) ............................................................................................. 1184.3.3 Cool environment at 13C ................................................................................. 1224.3.4 Cool environment at 15C ................................................................................. 1244.3.5 Changing environment 28-18-28C .................................................................. 1264.3.6 Changing environment 28-33-28C .................................................................. 1294.3.7 Changing environment 18-42-18C .................................................................. 132

  • 7/30/2019 Manual Validation v42

    6/167

    THESEUS-FE 4.2 Validations Manual

    VI

    4.3.8 Changing environment 28-48-28C .................................................................. 1344.3.9 Changing activity in a cold environment at 10C............................................... 1374.3.10 Stepwise changing activity in a warm environment at 30C .............................. 1394.3.11 Cool environment at 10C ................................................................................. 1414.3.12 Changing environment 43-17-43C .................................................................. 1454.3.13 Naked manikin - 1 hr exposure - wide range of environmental conditions ........ 1484.3.14 Clothed manikin - 3 hr exposure - wide range of environmental conditions ...... 1504.4 Thermal Comfort Validation .............................................................................. 1524.4.1 Thermal comfort at changing bound. cond.: neutral-cold-neutral ...................... 1534.4.2 Thermal comfort at changing bound. cond.: neutral-hot-neutral ....................... 154

    BIBLIOGRAPHY ....................................................................................... 155

  • 7/30/2019 Manual Validation v42

    7/167

    THESEUS-FE 4.2 Validations Manual

    VII

    List of figures

    Fig. 1-1: Wall with heat generation system ....................................................................... 3Fig. 1-2: Wall with heat generation - results ......................................................................... 4Fig. 1-3: Composite wall with heat generation system ...................................................... 5Fig. 1-4: Composite wall with heat generation - results ....................................................... 6Fig. 1-5: Conduction through a fin with temp/temp BC system ......................................... 7Fig. 1-6: Conduction through a fin with temp/temp BC results .......................................... 8Fig. 1-7: Conduction through a fin with temp/adiabatic BC system ................................... 9Fig. 1-8: Conduction through a fin with temp/adiabatic BC - results .................................. 10Fig. 1-9: Rectangular plate conduction system ............................................................... 11Fig. 1-10: Rectangular plate conduction - results at x = 0.0833 and x = 0.5 ...................... 12Fig. 1-11: Rectangular plate conduction contour plot (temperature) ............................... 12Fig. 1-12: Conduction in a disk system ........................................................................... 13Fig. 1-13: Conduction in a disk temp. vs. Radius ............................................................ 14Fig. 1-14: Conduction in a disk contour plot (temperature) ............................................. 14Fig. 1-15: Conduction in a disk system ........................................................................... 15Fig. 1-16: Conduction in a disk temp. vs. Radius ............................................................ 16Fig. 1-17: Conduction in a disk contour plot (temperature) ............................................. 16Fig. 1-18: Cooling of wall system .................................................................................... 18

    Fig. 1-19: Cooling of wall - FE model ................................................................................. 18Fig. 1-21: Results ............................................................................................................... 19Fig. 1-23: Sphere heating system ................................................................................... 20Fig. 1-24: Sphere heating time dep. results at center node ............................................ 21Fig. 1-25: Sphere heating contour plot (temperature) at t = 600s ................................... 21Fig. 1-26: Cylinder heating system ................................................................................. 22Fig. 1-27: Cylinder heating results for core & skin (t = 0..300s) ...................................... 23Fig. 1-28: Cylinder heating results for core & skin (t = 0..22500s) .................................. 23Fig. 1-29: Cylinder heating contour plot (temperatur) ..................................................... 24Fig. 1-30: Cylinder heating contour plot (convective heat flux density) ........................... 24Fig. 1-31: Internal heat impulse system .......................................................................... 25Fig. 1-32: Internal heat impulse results at t = 20 & 100s ................................................. 26Fig. 1-33: Internal heat impulse time dep. results at R = 0 .............................................. 26Fig. 1-34: Internal heat impulse contour plots (temperature) .......................................... 27Fig. 1-35: V21 system (closed cavity) ............................................................................. 28Fig. 1-36: V21viewfactors ............................................................................................... 29Fig. 1-37: V21 solar heating ............................................................................................ 30Fig. 1-38: THESEUS-FE shell group results stored in the hdf file ...................................... 31Fig. 1-39: V21 elementwise solar heatflux densities from THESEUS-FE (black body

    cavity) ......................................................................................................................... 32

  • 7/30/2019 Manual Validation v42

    8/167

    THESEUS-FE 4.2 Validations Manual

    VIII

    Fig. 1-40: V21 interior diffuse transmittance and reflectance .......................................... 33Fig. 1-41: V21 results with and without interior diffuse transmittance and reflectance ... 33Fig. 1-42: V21 global energy balance for the BB-Cavity (Idf=0) ....................................... 34Fig. 1-43: V21 global energy balance for the PSDGB-Cavity (Idf=0) ............................... 34

    Fig. 1-44: V21 global energy balance for the BB-Cavity (Idf=100W/m2) .......................... 35Fig. 1-45: V21 global energy balance for the PSDGB-Cavity (Idf=100W/m2) .................. 35Fig. 1-46: V21 global energy balance for the GB-Cavity (Idf=100W/m2) ......................... 36Fig. 1-47: V21 temperature boundary conditions for long wave radiation heat exchange

    .................................................................................................................................... 37Fig. 1-48: THESEUS-FE shell group results stored in the hdf file ...................................... 38Fig. 1-49: V21 coarse mesh comparison between results (with and without reflection) .. 39Fig. 1-50: V21 fine mesh comparison between results (with and without reflection) ....... 40Fig. 1-51: V21 interior diffuse reflectance of long wave radiation .................................... 40Fig. 1-52: V21 temperature boundary conditions for long wave radiation heat exchange

    .................................................................................................................................... 41Fig. 1-53: THESEUS-FE shell group results stored in the hdf file ...................................... 42Fig. 1-54: V21 fine mesh comparison between results (with and without reflection) ....... 43Fig. 1-55: V21 fine mesh view factor sum for elements of a closed cavity ...................... 43Fig. 2-1: T-shaped heat bridge with boundary conditions .................................................. 46Fig. 2-2: T-shaped heat bridge THESEUS-FE results ....................................................... 47Fig. 2-3: Right-angle heat bridge with boundary conditions ............................................... 48Fig. 2-4: Right-angle heat bridge THESEUS-FE results ................................................... 49Fig. 2-5: Right-angle heat bridge 2 with boundary conditions ............................................ 50Fig. 2-6: Right-angle heat bridge 2 THESEUS-FE results ................................................ 51Fig. 2-7: 3D heat bridge with boundary conditions. All units are specified in cm ................ 52Fig. 2-8: 3D heat bridge THESEUS-FE results ................................................................. 53Fig. 2-9: Anisotropic plate with boundary conditions .......................................................... 54Fig. 2-10: Anisotropic plate THESEUS-FE results compared with literature results.......... 55Fig. 2-11: Variable heat conductivity model with boundary conditions ............................... 56Fig. 2-12: THESEUS-FE results compared with isotropic lines from literature .................. 57Fig. 2-13: Phase Change model with boundary conditions ................................................ 58

    Fig. 2-14: Table for assigning material property specific heat ............................................ 58Fig. 2-15: Phase change: THESEUS-FE results ............................................................... 59Fig. 2-16: Phase change: Comparison of FE results with analytical solution at x = 1 ........ 59Fig. 2-17: Cylinder Radiation example with boundary conditions ....................................... 60Fig. 2-18: Cylinder Radiation: THESEUS-FE results ........................................................ 61Fig. 2-19: Cylinder Radiation: THESEUS-FE results ........................................................... 62Fig. 2-20: Disk .................................................................................................................... 63Fig. 2-21: Fin Radiation: THESEUS-FE temperature results ............................................ 64Fig. 2-22: Fin Radiation: THESEUS-FEradiation per element results ................................. 65Fig. 2-23: Cylinder Radiation with 1D flow example: boundary conditions ......................... 66Fig. 2-24: Radiation Cylinder with 1D Flow: Theory discription .......................................... 67

  • 7/30/2019 Manual Validation v42

    9/167

    THESEUS-FE 4.2 Validations Manual

    IX

    Fig. 2-25: Radiation Cylinder with 1D Flow: Comparison with results from literature ......... 68Fig. 2-26: Radiation Cylinder with 1D Flow: Field Results from Literature ......................... 69Fig. 3-1: Model a 1 system .............................................................................................. 72Fig. 3-2: Model a 1 - airzone temperature .......................................................................... 72

    Fig. 3-3: Model a 2 system .............................................................................................. 73Fig. 3-4: Model a 2 - airzone temperature .......................................................................... 73Fig. 3-5: Model a 3 system .............................................................................................. 74Fig. 3-6: Model a 3 - airzone absolute humidity ................................................................. 74Fig. 3-7: Model a 3 - airzone temperature .......................................................................... 75Fig. 3-8: Model a 4 system .............................................................................................. 76Fig. 3-9: Model a 4 - airzone temperature .......................................................................... 76Fig. 3-10: Model a 5 system ............................................................................................ 77Fig. 3-11: Model a 5 - airzone temperature ........................................................................ 77Fig. 3-12: Model a 6 - system ............................................................................................ 78Fig. 3-13: Model a 6 - airzone temperature ........................................................................ 78Fig. 3-14: Model a 7 system ............................................................................................ 79Fig. 3-15: Model a 7 - airzone temperature ........................................................................ 79Fig. 3-16: Model a 7 - airzone absolute humidity ............................................................... 80Fig. 3-17: Model a 8 system ............................................................................................ 81Fig. 3-18: Model a 8 - airzone temperature ........................................................................ 81Fig. 3-19: Model a 9 system ............................................................................................ 82Fig. 3-20: Model a 9 - airzone absolute humidity ............................................................... 82Fig. 3-21: Model a 9 - airzone relative humidity ................................................................. 83Fig. 3-22: Model a 9 - airzone temperature ........................................................................ 83Fig. 3-23: Model a 10 - system .......................................................................................... 84Fig. 3-24: Model a 10 - airzone temperature ...................................................................... 84Fig. 3-25: Model a 11 - system .......................................................................................... 85Fig. 3-26: Model a 11 ventilation HRET .......................................................................... 85Fig. 3-27: Model a 11 airzone temperature ..................................................................... 86Fig. 3-28: Model a 11 - airzone relative humidity ............................................................... 86Fig. 3-29: Model a 12 system .......................................................................................... 87Fig. 3-30: Model a 12 - ventilation outlet temperature (Tout1) ............................................. 87Fig. 3-31: Airzone relative humidity .................................................................................... 88Fig. 3-32: Mode a 13 - system ........................................................................................... 89Fig. 3-33: Model a 13 - temperature at ventilation outlet .................................................... 89Fig. 3-34: Model a 14 abs. humidity at the ventilation outlet ........................................... 90Fig. 3-35: Model a 13 rel. humidity at the ventilation outlet ............................................. 90Fig. 3-36: Model a 13 airzone abs. humidity ................................................................... 90Fig. 3-37: Model a 13 airzone rel. Humidity .................................................................... 91Fig. 3-38: Model b 1 system ............................................................................................ 93Fig. 3-39: Model b 1 airzone temperature ....................................................................... 94

  • 7/30/2019 Manual Validation v42

    10/167

    THESEUS-FE 4.2 Validations Manual

    X

    Fig. 3-40: Model b 1 system ............................................................................................ 95Fig. 3-41: Model b 1 airzone temperature ....................................................................... 95Fig. 3-42: Model c 1 system ............................................................................................ 97Fig. 3-43: Model c 1 airzone temperature ....................................................................... 98

    Fig. 3-44: Model c 1 FE temperatures (inside, t = 500s) ................................................. 98Fig. 4-1: Tissue temperature, radius 4.0 cm .................................................................... 102Fig. 4-2: Tissue temperature, radius 7.5 cm .................................................................... 102Fig. 4-3: Tissue temperature, radius 10.3 cm .................................................................. 103Fig. 4-4: Tissue temperature, radius 2.20 cm .................................................................. 105Fig. 4-5: Tissue temperature, radius 4.93 cm .................................................................. 105Fig. 4-6: Tissue temperature, radius 5.48 cm .................................................................. 105Fig. 4-7: Tissue temperature, radius 5.48 cm .................................................................. 107Fig. 4-8: Dead man rectal temp. vs time ....................................................................... 108Fig. 4-9: Dead man temperature distribution vs radius ................................................. 109Fig. 4-10: Thermo-neutral with KSU uniform .................................................................... 113Fig. 4-11: Mean skin temperature .................................................................................... 115Fig. 4-12: Metabolism ...................................................................................................... 116Fig. 4-13: Rectal temperature .......................................................................................... 116Fig. 4-14: Rectal temperature .......................................................................................... 117Fig. 4-15:Time dep. boundary cond.: ambient air temperature and relative humidity ...... 118Fig. 4-16: Mean skin temperature .................................................................................... 119Fig. 4-17: Metabolism ...................................................................................................... 119Fig. 4-18: Forehead temperature ..................................................................................... 119Fig. 4-19: Leg temperature .............................................................................................. 120Fig. 4-20: Chest temperature ........................................................................................... 120Fig. 4-21: Arm temperature .............................................................................................. 120Fig. 4-22: Rectal temperature .......................................................................................... 121Fig. 4-23: Mean skin temperature .................................................................................... 122Fig. 4-24: Metabolism ...................................................................................................... 123Fig. 4-25: Rectal temperature .......................................................................................... 123Fig. 4-26: Mean skin temperature .................................................................................... 125Fig. 4-27: Metabolism ...................................................................................................... 125Fig. 4-28: Rectal temperature .......................................................................................... 125Fig. 4-29: Time dependent boundary conditions: ambient air temperature ...................... 127Fig. 4-30: Mean skin temperature .................................................................................... 127Fig. 4-31: Metabolism ...................................................................................................... 128Fig. 4-32: Rectal temperature .......................................................................................... 128Fig. 4-33: Time dep. boundary cond.: ambient air temperature and relative humidity ..... 129Fig. 4-34: Mean skin temperature .................................................................................... 130Fig. 4-35: Evaporation heat loss ...................................................................................... 130Fig. 4-36: Rectal temperature .......................................................................................... 131

  • 7/30/2019 Manual Validation v42

    11/167

    THESEUS-FE 4.2 Validations Manual

    XI

    Fig. 4-37: Time dependent boundary conditions: ambient air temperature ...................... 132Fig. 4-38: Mean skin temperature .................................................................................... 133Fig. 4-39: Evaporation heat loss ...................................................................................... 133Fig. 4-40: Rectal temperature .......................................................................................... 133

    Fig. 4-41: Time dep. boundary cond.: ambient air temperature and relative humidity ..... 135Fig. 4-42: Mean skin temperature .................................................................................... 135Fig. 4-43: Evaporation heat loss ...................................................................................... 136Fig. 4-44: Rectal temperature .......................................................................................... 136Fig. 4-45: Time dependent boundary conditions: activity ................................................. 137Fig. 4-46: Mean skin temperature .................................................................................... 138Fig. 4-47: Weight loss ...................................................................................................... 138Fig. 4-48: Oesophageal temperature ............................................................................... 138Fig. 4-49: Time dependent boundary conditions: activity ................................................. 139Fig. 4-50: Mean skin temperature .................................................................................... 140Fig. 4-51: Skin evaporation .............................................................................................. 140Fig. 4-52: Rectal temperature .......................................................................................... 140Fig. 4-53: Time dependent boundary conditions: ambient air temperature ...................... 142Fig. 4-54: Mean skin temperature .................................................................................... 142Fig. 4-55: Metabolism ...................................................................................................... 143Fig. 4-56: Shoulder temperature ...................................................................................... 143Fig. 4-57: Arm temperature .............................................................................................. 143Fig. 4-58: Abdomen temperature ..................................................................................... 144Fig. 4-59: Deviation from inital value ................................................................................ 144Fig. 4-60: Time dependent boundary conditions: ambient air temperature ...................... 145Fig. 4-61: Mean skin temperature .................................................................................... 146Fig. 4-62: Metabolism ...................................................................................................... 146Fig. 4-63: Rectal temperature .......................................................................................... 146Fig. 4-64: Evaporation...................................................................................................... 147Fig. 4-65: Mean skin temperature, after 1hr exposure at different amb. Temperatures ... 148Fig. 4-66: Extra metabolism, after 1hr exposure at different ambient temperatures ........ 149Fig. 4-67: Rectal temperature, after 1hr exposure at different ambient temperatures ...... 149Fig. 4-68: Evaporation, after 1hr exposure at different ambient temperatures ................. 149Fig. 4-69: Skin blood flow, after 3hr expos. at diff. amb. temp. (rh = 85%) ...................... 150Fig. 4-70: Skin evaporation, after 3hr expos. at diff. amb. temp. (rh = 85%) .................... 151Fig. 4-71: Hypothal. temp., after 3hr expos. at diff. amb. temp. (rh = 85%) ..................... 151Fig. 4-72: Mean skin temperature, after 3hr expos. at diff. amb. temp. (rh = 85%) .......... 151Fig. 4-73: Comparison of comfort indices ........................................................................ 153Fig. 4-74: Comparison of comfort indices ........................................................................ 154

  • 7/30/2019 Manual Validation v42

    12/167

    THESEUS-FE 4.2 Validations Manual

    1

    1 Analytic Validations

  • 7/30/2019 Manual Validation v42

    13/167

    THESEUS-FE 4.2 Validations Manual

    2

    1.1 Steady State Problems

  • 7/30/2019 Manual Validation v42

    14/167

    THESEUS-FE 4.2 Validations Manual

    3

    1.1.1 1D wall with internal heat generation

    System

    Fig. 1-1: Wall with heat generation system

    System and boundary conditions

    Quantity Value Unit Description

    Q 650 W / m Heat generation

    k 0.79 W / m*K Conductivity

    L 1 m Thickness

    T1 = T2 20 C Temperature boundary condition

    THESEUS-FE file Example_1_1_1.tfe

    THESEUS-FE version 4.0

    Problem description

    Wall with internal heat generation Q has temperature boundary conditions T1 and T2. Thisis a steady state, 1D problem. The exact analytic solution is given in [14].

    THESEUS-FE model

    1 quad shell element (PSHELL3) with 1 layer and 3 discretization points.

    T1

    X

    T2Q,k

    L

    System & boundary. cond.:

    XL

    THESEUS-FE model:

    adiabatic

    adiabatic

  • 7/30/2019 Manual Validation v42

    15/167

    THESEUS-FE 4.2 Validations Manual

    4

    Results

    Fig. 1-2: Wall with heat generation - results

  • 7/30/2019 Manual Validation v42

    16/167

    THESEUS-FE 4.2 Validations Manual

    5

    1.1.2 1D composite wall with internal heat generation and convection

    System

    Fig. 1-3: Composite wall with heat generation system

    System and boundary conditions

    Quantity Value Unit Description

    Q 1.5E6 W / m Heat generation

    k1 75 W / m*K Conductivity in left layer

    L1 0.05 m Thickness in left layer

    k2 150 W / m*K Conductivity in right layer

    L2 0.02 m Thickness in right layer

    h 1000 W / m2

    *K Convective heat transfer coefficient

    T 30 C Ambient temperature

    THESEUS-FE file Example_1_1_2.tfe

    THESEUS-FE version 4.0

    Problem descriptionA two layer composite wall with heat generation in the first layer is modelled. Thecomposite wall is adiabatic on one side and has convection boundary condition on theother.

    The exact analytic solution for the temperature distribution is given in [14].

    THESEUS-FE model

    1 quad shell element (PSHELL3) with 2 layers and 3 discretization points per layer.

    X

    T,hQ1,k1

    L1

    k2

    L2

    adiabatic

    X

    L1 L2

    System & boundary. cond.: THESEUS-FE model:

    adiabatic

    adiabatic

  • 7/30/2019 Manual Validation v42

    17/167

    THESEUS-FE 4.2 Validations Manual

    6

    Results

    Fig. 1-4: Composite wall with heat generation - results

  • 7/30/2019 Manual Validation v42

    18/167

    THESEUS-FE 4.2 Validations Manual

    7

    1.1.3 Conduction through a fin (bound. cond.: temp./temp.)

    System

    X

    T2T1k

    L

    w

    X

    1 2 3 4 5 6 7 8 9 10 11 12

    System & boundary. cond.: THESEUS-FE model:

    L

    T, h

    Fig. 1-5: Conduction through a fin with temp/temp BC system

    System and boundary conditions

    Quantity Value Unit Description

    k 81 W / m*K Conductivity

    L 0.833 m Length

    w 0.083 m Width

    h 100 W / m2

    *K Convective heat transfer coefficient

    T 20 C Ambient temperature

    T1 100 C Left side temperature boundary condition

    T2 20 C Right side temperature boundary condition

    THESEUS-FE file Example_1_1_3.tfe

    THESEUS-FE version 4.0

    Problem description

    A 1D fin is modeled with temperature boundary conditions at both ends and convection onthe top and bottom surfaces. The depth of the beam is 0.05m.The temperature distributionis plotted along the length of the beam.

    The exact analytic solution is given in[14].

    THESEUS-FE model

    12 PSHELL3 elements are used to model the beam, each with 1 layer and 2 discretization

    points in the depth direction to represent the top and bottom surfaces. The length of the FEmodel is longer than the actual length, to set boundary conditions on the 1st and 12thelement. Convection boundary condition is assigned to the top and bottom of elements 2through 11.

    Comment

    Convection that would take place on the sides of the fin (in the depth direction) was notaccounted for in the FE model and is also ignored in the analytic solution.

  • 7/30/2019 Manual Validation v42

    19/167

    THESEUS-FE 4.2 Validations Manual

    8

    Results

    10,0

    20,0

    30,0

    40,0

    50,0

    60,0

    70,0

    80,0

    90,0

    100,0

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

    Distance [m]

    T[C]

    THESEUS-FE

    Analyt ical

    Fig. 1-6: Conduction through a fin with temp/temp BC results

  • 7/30/2019 Manual Validation v42

    20/167

  • 7/30/2019 Manual Validation v42

    21/167

  • 7/30/2019 Manual Validation v42

    22/167

    THESEUS-FE 4.2 Validations Manual

    11

    1.1.5 2D conduction in rectangular plate

    System

    X

    T2

    T1k

    L

    Y

    w

    T1

    T1

    Group 4

    Group 2

    Gro

    up3

    Group1

    Group 5

    System & boundary. cond.: THESEUS-FE model:

    L

    w

    Fig. 1-9: Rectangular plate conduction system

    System and boundary conditions

    Quantity Value Unit Description

    k 81 W / m*K Conductivity

    L 0.833 m Length

    w 0.83 m Width

    T1 100 C Temperature boundary condition

    T2 20 C Temperature boundary condition

    THESEUS-FE file Example_1_1_5.tfe

    THESEUS-FE version 4.0

    Problem description

    A 2D rectangle is modelled with temperature boundary conditions on all 4 sides.

    The exact analytic solution is given in[13].

    THESEUS-FE model

    12*12 PSHELL3 elements are used to model the rectangle; each with 1 layer and 2

    discretization points in the depth direction to represent the top and bottom surfaces. The

    length and width of the FE model are longer than the actual length, to set temperatureboundary condition on the faces of groups 1 through 4. Group 5 represents the domain inwhich temperature is calculated as a function of position.

  • 7/30/2019 Manual Validation v42

    23/167

    THESEUS-FE 4.2 Validations Manual

    12

    Results

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100.0

    0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

    Distance [m]

    T[C]

    THESEUS-FE: x=0.0833

    Analytical: x=0.0833

    THESEUS-FE: x= 0.5

    Analytical: x= 0.5

    Fig. 1-10: Rectangular plate conduction - results at x = 0.0833 and x = 0.5

    Fig. 1-11: Rectangular plate conduction contour plot (temperature)

  • 7/30/2019 Manual Validation v42

    24/167

    THESEUS-FE 4.2 Validations Manual

    13

    1.1.6 2D conduction in a disk (bound. cond.: temp./temp./convec.)

    System

    k

    T1

    Rin Rout0

    T1

    Group 1

    Group 2

    Group 3

    System & boundary. cond.: THESEUS-FE model:

    Rin Rout0

    T

    , h

    Fig. 1-12: Conduction in a disk system

    System and boundary conditions

    Quantity Value Unit Description

    k 81 W / m*K Conductivity

    Rin 0.065 m Inner radius

    Rout 0.185 m Outer radius

    T1 50 C Temperature on inner/outer edge

    h 100 W / m2

    *K Convective heat transfer coefficient

    T 20 C Ambiant temperature

    THESEUS-FE file Example_1_1_6.tfe

    THESEUS-FE version 4.0

    Problem description

    A 2D disk with a hole of radius 0.065m is modelled with temperature boundary conditionsspecified at the inner and outer edges. Convective boundary conditions hold for the rest ofthe disc.

    The exact analytic solution is given in[13].

    THESEUS-FE model

    3 different groups are used to model the disk, each element is a PSHELL3 with 1 layer and2 discretization points in the depth direction to represent the top and bottom surfaces. Theinner and outer radius of the FE model are longer than the actual length, and are used to

  • 7/30/2019 Manual Validation v42

    25/167

  • 7/30/2019 Manual Validation v42

    26/167

    THESEUS-FE 4.2 Validations Manual

    15

    1.1.7 2D conduction in a disk (bound. cond.:temp./adiabatic./convec.)

    System

    k

    T1

    Rin Rout0

    adiabatic

    Group 1

    Group 2

    Group 3

    System & boundary. cond.: THESEUS-FE model:

    Rin Rout0

    T, h

    Fig. 1-15: Conduction in a disk system

    System and boundary conditions

    Quantity Value Unit Description

    k 81 W / m*K Conductivity

    Rin 0.065 m Inner radius

    Rout 0.185 m Outer radius

    T1 50 C Temperature on inner edge

    h 100 W / m2

    *K Convective heat transfer coefficient

    T 20 C Ambiant temperature

    THESEUS-FE file Example_1_1_7.tfe

    THESEUS-FE version 4.0

    Problem description

    A 2D disk with a hole of radius 0.065m is modelled with temperature boundary conditionspecified on the inner edge, and adiabatic condition on the outer edge. Convectiveboundary conditions hold for the rest of the disc.

    The exact analytic solution is given in[13].

    THESEUS-FE model

    3 different groups are used to model the disk, each element is a PSHELL3 with 1 layer and2 discretization points in the depth direction to represent the top and bottom surfaces. Theinner and outer radius of the FE model are shorter and longer than the actual lengths, and

  • 7/30/2019 Manual Validation v42

    27/167

    THESEUS-FE 4.2 Validations Manual

    16

    are used for applying the boundary conditions (group 1 and 3). Group 2 represents thedomain on which temperature is calculated as a function of position.

    Results

    35.0

    40.0

    45.0

    50.0

    0.06 0.08 0.10 0.12 0.14 0.16 0.18

    Radius [m]

    T[C]

    THESEUS-FE

    Analytical

    Fig. 1-16: Conduction in a disk temp. vs. Radius

    Fig. 1-17: Conduction in a disk contour plot (temperature)

  • 7/30/2019 Manual Validation v42

    28/167

    THESEUS-FE 4.2 Validations Manual

    17

    1.2 Transient Solutions

  • 7/30/2019 Manual Validation v42

    29/167

  • 7/30/2019 Manual Validation v42

    30/167

  • 7/30/2019 Manual Validation v42

    31/167

    THESEUS-FE 4.2 Validations Manual

    20

    1.2.2 Sphere heating

    System

    System & boundary. cond.: THESEUS-FE model:

    R0

    adiabaticT0

    , k, c

    adiabatic

    R

    T, h

    T, h

    Fig. 1-21: Sphere heating system

    System and boundary conditions

    Quantity Value Unit Description

    k 50 W / m*K Conductivity

    8000 kg / m Density

    c 500 J / kg*K Heat capacitance

    R 0.05 m Radius

    h 100 W / m2 *K Heat transfer coefficient

    T 100 C Ambient temperature

    T0 20 C Initial temperature

    THESEUS-FE file Example_1_2_2.tfe

    THESEUS-FE version 4.0

    Problem description

    A sphere with initial temperature T0 is modeled as it warms to the convective ambienttemperature over time.

    The exact analytic solution is given in[15].

    THESEUS-FE model

    Problem was modeled with 3 groups; group 1 is the center face (PSHELL3) where

    adiabatic boundary condition is applied, group 2 is the outer shell (PSHELL3) where

    convection is applied and group 3 is the inner solid comprised of HEXA elements.

  • 7/30/2019 Manual Validation v42

    32/167

    THESEUS-FE 4.2 Validations Manual

    21

    Results

    20

    25

    30

    35

    40

    45

    50

    0 100 200 300 400 500 600

    time [sec]

    T[C]

    THESEUS-FE

    Analytical

    Fig. 1-22: Sphere heating time dep. results at center node

    Fig. 1-23: Sphere heating contour plot (temperature) at t = 600s

  • 7/30/2019 Manual Validation v42

    33/167

  • 7/30/2019 Manual Validation v42

    34/167

    THESEUS-FE 4.2 Validations Manual

    23

    Results

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    0 50 100 150 200 250 300

    time [sec]

    T[C]

    THESEUS-FE: Core Temp.

    Analytical Solution: Core Temp

    THESEUS-FE: Skin Temp

    Analytical Solution: Skin Temp

    Fig. 1-25: Cylinder heating results for core & skin (t = 0..300s)

    0

    100

    200

    300

    400

    500

    600

    700

    0 5000 10000 15000 20000

    time [sec]

    T[C]

    THESEUS-FE: Core Temp

    Analytical Solution: Core Temp

    THESEUS-FE: Skin Temp

    Analytical Solution: Skin Temp

    Fig. 1-26: Cylinder heating results for core & skin (t = 0..22500s)

  • 7/30/2019 Manual Validation v42

    35/167

    THESEUS-FE 4.2 Validations Manual

    24

    t = 200sec t = 300sec t = 600sect = 100sec t = 200sec t = 300sec t = 600sect = 100sec

    Fig. 1-27: Cylinder heating contour plot (temperatur)

    t = 200sec t = 300sec t = 600sect = 100sec t = 200sec t = 300sec t = 600sect = 100sec

    Fig. 1-28: Cylinder heating contour plot (convective heat flux density)

  • 7/30/2019 Manual Validation v42

    36/167

    THESEUS-FE 4.2 Validations Manual

    25

    1.2.4 Infinite body with internal heat impulse

    System

    System & boundary. cond.: THESEUS-FE model:

    L

    R

    T0, , k, c

    E

    System & boundary. cond.: THESEUS-FE model:

    L

    R

    T0, , k, c

    E

    Fig. 1-29: Internal heat impulse system

    System and boundary conditions

    Quantity Value Unit Description

    k 50 W / m*K Conductivity

    10000 kg / m Density

    c 500 J / kg*K Heat capacitance

    L 0.6 m Length

    R 0.3 m Radius

    E 22643.38 J Initial energy input

    T0 0 C Initial temperature

    THESEUS-FE file Example_1_2_4.tfe

    THESEUS-FE version 4.0

    Problem descriptionA cylinder under a Dirac internal heat impulse is modeled.

    The exact analytic solution is given in[15].

    THESEUS-FE model

    The problem was modeled with 2 groups. The heat impulse is applied on group 1, an

    internal PSHELL3 mesh of area 2.26E-5 m2 over a time period of 1 second. Group 2 Is a

    solid element mesh and serves as the body of the cylinder. The cylinder is large enoughas to represent an infinite solid for the point load.

  • 7/30/2019 Manual Validation v42

    37/167

    THESEUS-FE 4.2 Validations Manual

    26

    Results

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 0.02 0.04 0.06 0.08 0.1

    Radius [m]

    T[C]

    Analytical (t=100sec)

    Analytical (t=20sec)

    THESEUS-FE (t=100sec)

    THESEUS-FE (t=20sec)

    Fig. 1-30: Internal heat impulse results at t = 20 & 100s

    0

    20

    40

    60

    80

    100

    120

    10 100 1000

    time [sec]

    T[C]

    THESEUS-FE (R=0)

    Analytical (R=0)

    Fig. 1-31: Internal heat impulse time dep. results at R = 0

  • 7/30/2019 Manual Validation v42

    38/167

    THESEUS-FE 4.2 Validations Manual

    27

    t = 20sec t = 40sec

    t = 60sec t = 80sec

    t = 100sec t = 200sec

    1C

    0C

    Tcore = 37.4C

    Tcore = 7.0C

    Tcore = 3.3C Tcore = 1.1C

    Tcore = 4.5C

    Tcore = 13.0C

    t = 20sec t = 40sec

    t = 60sec t = 80sec

    t = 100sec t = 200sec

    1C

    0C

    Tcore = 37.4C

    Tcore = 7.0C

    Tcore = 3.3C Tcore = 1.1C

    Tcore = 4.5C

    Tcore = 13.0C

    Fig. 1-32: Internal heat impulse contour plots (temperature)

  • 7/30/2019 Manual Validation v42

    39/167

    THESEUS-FE 4.2 Validations Manual

    28

    1.3 Thermal Radiation Boundary Conditions

    System

    Fig. 1-33: V21 system (closed cavity)

  • 7/30/2019 Manual Validation v42

    40/167

    THESEUS-FE 4.2 Validations Manual

    29

    1.3.1 Numeric view factor integration

    For the closed radiation cavity shown in Fig. 1-33 view factors from THESEUS-FE 3.0have been compared with some analytic results. Both results are shown in Fig. 1-34.

    Fig. 1-34: V21viewfactors

    THESEUS-FE file: Example_1_3_1.tfe

    THESEUS-FE results: Example_1_3_1.rpt

    In the tfe-file the Keyword VFCTRL that controls the view factor calculation is omitted.Thats why THESEUS-FE uses default settings:

    #facets 10000 VF_MTH=S2S, INT_MTH=ADAPTIVE

    The (adaptive) surface-to-surface method for view factor calculation does not deal withpartial shading. Partially shaded relations between facets in the matrix above get the viewfactor 0 as long as the element midpoint connection is interrupted by other elements. Toconsider the phenomenon of partial shading more realistic it is recommended to apply the

    hemi-sphere (VF_MTH=HS) or hemi-cube method (VF_MTH=HC) together with a highrefinement level: e.g. RFL=5 and SUBELM=5.

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 VFSUM:0,0000 0,1401 0,0155 0,0161 0,0686 0,0161 0,0000 0,0000 0,0213 0,0155 0,1401 0,0000 0,0441 0,0441 0,1018 0,0892 0,0000 0,0000 0,2794 0,0213 0,0140 1,02713

    0,0000 0,1401 0,0155 0,0213 0,0155 0,1401 0,0442 0,0442 0,1018 0,0892 0,2793 0,0213 0,0140 1,00000

    0,1752 0,0000 0,0000 0,0000 0,0271 0,0338 0,0000 0,0000 0,0385 0,0336 0,1001 0,0551 0,0000 0,0709 0,0551 0,0936 0,0000 0,0000 0,2749 0,0385 0,0122 1,00866

    0,1751 0,0000 0,0386 0,0336 0,1001 0,0552 0,0709 0,0552 0,0936 0,2748 0,0386 0,0122 1,00000

    0,0387 0,0000 0,0000 0,0000 0,0673 0,0901 0,0000 0,0000 0,2116 0,0563 0,0673 0,0286 0,0000 0,0497 0,0000 0,0000 0,0000 0,0000 0,0768 0,2116 0,0768 0,97474

    0,0387 0,0000 0,2116 0,0562 0,0673 0,0497 0,0772 0,2116 0,0772 1,00000

    0,0134 0,0000 0,0000 0,0000 0,2566 0,1374 0,1353 0,0740 0,0211 0,0300 0,0225 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0363 0,0130 0,0341 0,2198 0,99350

    0,0000 0,2565 0,1374 0,1353 0,0741 0,0213 0,0363 0,0130 0,0341 0,2197 1,00000

    0,0343 0,0109 0,0135 0,1540 0,0000 0,1540 0,1843 0,1315 0,0000 0,0135 0,0109 0,0000 0,0000 0,0000 0,0000 0,0000 0,0304 0,0304 0,0217 0,0269 0,1843 1,00022

    0,1539 0,0000 0,1539 0,1842 0,1315 0,0852 0,0303 0,0303 0,0217 0,0269 0,1842 1,00000

    0,0134 0,0225 0,0300 0,1374 0,2566 0,0000 0,1353 0,0740 0,0211 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0363 0,0000 0,0130 0,0341 0,2198 0,99350

    0,1374 0,2565 0,0000 0,1353 0,0741 0,0211 0,0363 0,0130 0,0341 0,2197 1,00000

    0,0000 0,0000 0,0000 0,1015 0,2304 0,1015 0,0000 0,1746 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0828 0,0828 0,0000 0,0585 0,1709 1,00296

    0,1015 0,2303 0,1015 0,0000 0,1746 0,0828 0,0828 0,1709 1,00000

    0,0000 0,0000 0,0000 0,0888 0,2630 0,0888 0,2794 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0954 0,0954 0,0000 0,0000 0,0892 1,00005

    0,0889 0,2630 0,0889 0,2793 0,0000 0,0954 0,0954 0,0892 1,00000

    0,0266 0,0385 0,1058 0,0316 0,0000 0,0316 0,0000 0,0000 0,0000 0,1058 0,0384 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1686 0,2436 0,1686 0,95921

    0,0266 0,0386 0,1058 0,0320 0,2130 0,0316 0,0000 0,1058 0,0386 0,1686 0,2436 0,1686 1,00000

    0,0387 0,0673 0,0563 0,0901 0,0673 0,0000 0,0000 0,0000 0,2116 0,0000 0,0000 0,0286 0,0497 0,0000 0,0000 0,0000 0,0000 0,0000 0,0768 0,2116 0,0768 0,97470

    0,0387 0,0673 0,0562 0,0000 0,0772 0,2116 0,0772 1,00000

    0,1752 0,1001 0,0336 0,0338 0,0271 0,0000 0,0000 0,0000 0,0384 0,0000 0,0000 0,0551 0,0709 0,0000 0,0551 0,0936 0,0000 0,0000 0,2749 0,0385 0,0122 1,00854

    0,1751 0,1001 0,0336 0,0386 0,0000 0,0552 0,0709 0,0552 0,0936 0,2748 0,0386 0,0122 1,00000

    0,0000 0,0441 0,0114 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0114 0,0441 0,0000 0,1401 0,1401 0,1612 0,2794 0,0000 0,0000 0,0892 0,0325 0,0294 0,98299

    0,0442 0,0442 0,0000 0,1401 0,1401 0,1612 0,2793 0,0892 0,0325 1,00000

    0,0551 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0249 0,0709 0,1752 0,0000 0,1001 0,1752 0,2749 0,0000 0,0000 0,0936 0,0289 0,0000 0,99864

    0,0552 0,0709 0,1751 0,0000 0,1001 0,1751 0,2748 0,0936 1,00000

    0,0551 0,0709 0,0249 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,1752 0,1001 0,0000 0,1752 0,2749 0,0000 0,0000 0,0936 0,0289 0,0000 0,99864

    0,0552 0,0709 0,0249 0,1751 0,1001 0,0000 0,1751 0,2748 0,0936 1,00000

    0,1018 0,0441 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0441 0,1612 0,1401 0,1401 0,0000 0,2794 0,0000 0,0000 0,0892 0,0000 0,0000 1,00003

    0,1018 0,0442 0,0442 0,1612 0,1401 0,1401 0,0000 0,2793 0,0892 1,00000

    0,0558 0,0468 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0468 0,1746 0,1375 0,1375 0,1746 0,0000 0,0000 0,0000 0,1709 0,0585 0,0000 1,00293

    0,0558 0,0468 0,0468 0,1746 0,1374 0,1374 0,1746 0,0000 0,1709 1,00000

    0,0000 0,0000 0,0000 0,0000 0,1519 0,1088 0,3312 0,2385 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0540 0,0000 0,0326 0,0776 0,99450

    0,1517 0,1088 0,3312 0,2384 0,0000 0,0540 0,0776 1,00000

    0,0000 0,0000 0,0000 0,1088 0,1519 0,0000 0,3312 0,2385 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0540 0,0000 0,0000 0,0326 0,0776 0,99450

    0,1088 0,1517 0,3312 0,2384 0,0540 0,0000 0,0776 1,00000

    0,1746 0,1375 0,0192 0,0098 0,0271 0,0098 0,0000 0,0000 0,0843 0,0192 0,1375 0,0558 0,0468 0,0468 0,0558 0,1709 0,0000 0,0000 0,0000 0,0000 0,0000 0,99497

    0,1746 0,1374 0,0193 0,0098 0,0271 0,0098 0,0000 1,00000

    0,0266 0,0385 0,1058 0,0512 0,0673 0,0512 0,1170 0,0000 0,2436 0,1058 0,0385 0,0407 0,0289 0,0289 0,0000 0,1170 0,0163 0,0163 0,0000 0,0000 0,0000 1,09348

    0,0266 0,0386 0,1058 0,0512 0,0673 0,0512 0,2436 0,1058 0,0386 0,0407 0,0000 1,00000

    0,0087 0,0061 0,0192 0,1648 0,2304 0,1648 0,1709 0,0558 0,0843 0,0192 0,0061 0,0184 0,0000 0,0000 0,0000 0,0000 0,0194 0,0194 0,0000 0,0000 0,0000 0,98758

    0,0087 0,0061 0,0193 0,1648 0,2303 0,1648 0,1709 0,0558 0,0843 0,0193 0,0061 0,0194 0,0194 0,0000 1,00000

    shell elm. id:

    -

    shell elm. id:

    -

    THESEUS FE resultsanalytic results

  • 7/30/2019 Manual Validation v42

    41/167

  • 7/30/2019 Manual Validation v42

    42/167

    THESEUS-FE 4.2 Validations Manual

    31

    The solar heat hitting the ground:

    2grnd

    z

    m/W63010058cos1000q

    583290

    The solar heat hitting the exterior glass roof:

    W321005305.0Q

    W1271005305.0Q

    W1561005305.0Q

    W315100)58cos(10005.0Q

    396.0,496.07.590

    405.0,495.058,0F,1F,5.0A

    sky,effrf,sun

    sky,efftr,sun

    sky,effab,sun

    bc,sun

    sky,effsky,effsky,eff

    grndsky

    Fig. 1-36: THESEUS-FE shell group results stored in the hdf file

    The solar heat hitting the exterior surface of element 5:

    2bc,sunrf,sun

    2bc,sunab,sun

    2

    bc,sun

    0grndsky

    m/W1861qq

    m/W744qq

    m/W9305.01.05545.0100)32cos(1000q

    8.0,32,5.0F,5.0F

    In a first step reflection and diffuse transmittance remain unconsidered inside the cavity:

    then the solar heat hitting the interior surface of element 9 can be derived from

    2bc,sunrf,sun

    2

    bc,sunab,sun

    2

    bc,sun

    0

    m/W431qqm/W172qq

    m/W21558cos1000405.0q

    8.0,58

  • 7/30/2019 Manual Validation v42

    43/167

  • 7/30/2019 Manual Validation v42

    44/167

  • 7/30/2019 Manual Validation v42

    45/167

  • 7/30/2019 Manual Validation v42

    46/167

    THESEUS-FE 4.2 Validations Manual

    35

    Now we add diffuse solar boundary conditions (Idf=100W/m2) and start with the Black Body

    Approach:

    77%

    10%

    13%

    transmitting roof

    opaque: interior surface

    31.8W

    156W

    107.3W

    85.9W

    21.5W

    77% system absorbed

    =100%*(156+85.9)/315

    10% system reflected

    =100%*31.8/315

    13% neglected

    265W + 50W = 315W

    107.3W + 19.8W =127.1W

    Fig. 1-42: V21 global energy balance for the BB-Cavity (Idf=100W/m2)

    Here not only diffuse reflection but also the diffuse transmitted solar heat flux remainsunconsidered within the Cavity. All together 13% of the solar heat will be neglected.

    To considere diffuse energy portions we choose a Pseudo Grey Body Cavity:

    87%

    11%2%

    transmitting roof

    opaque: interior surface

    31.8W

    156W

    142.3W

    113.8W

    28.5W

    6.5W

    3.2W

    0.7W

    2.6W

    87% system absorbed

    =100%*(156+113.8+3.2)/315

    11% system reflected

    =100%*(31.8+2.6)/315

    2% neglected

    265W + 50W = 315W

    107.3W + 19.8W =127.1W

    Fig. 1-43: V21 global energy balance for the PSDGB-Cavity (Idf=100W/m2)

    The transmitted diffuse solar heat load of20W now hits the opque interior surfaces andleads to a rise from 122.2W (see Fig. 1-41) to 142.3W. A good approximation of theenergy balance with 2% heat loss results from a Pseudo Grey Body Approach that onceupdates the diffuse reflected solar heat (1 iteration).

    The heat load of 6.493 W hitting the interior surface of the roof is divided into 3 parts:

    3.218 W absorbed, 2.561 W transmitted and 0.714 W reflected. From this balance we canderive the absorbance of 0.496 and the transmittance of 0.394. Those values result froman effective incidence angle of 60 degree that is assumed for diffuse reflected solar heat.

  • 7/30/2019 Manual Validation v42

    47/167

  • 7/30/2019 Manual Validation v42

    48/167

  • 7/30/2019 Manual Validation v42

    49/167

  • 7/30/2019 Manual Validation v42

    50/167

    THESEUS-FE 4.2 Validations Manual

    39

    fulfil the energy balance: outgoingingoingabsorbed QQQ

    As shown here differences for the absorbed long wave radiation heat flux strongly dependon the surface reflectance 1 . From that reasons a Grey Body Cavity is

    recommended for100C.

    Reflection neglected: Black Body (BB) Cavity Reflection considered: Grey Body (GB) Cavity

    Absorbed long wave radiation heat flux density [W/m2]

    Reflected rad. heat flux density [W/m2]

    Fig. 1-47: V21 coarse mesh comparison between results (with and without reflection)

    Reflection neglected: Black Body (BB) Cavity Reflection considered: Grey Body (GB) Cavity

    Absorbed long wave radiation heat flux density: 0..22000 W/m2

    from reflection !

    Absorbed long wave radiation heat flux density 0..1000 W/m2

  • 7/30/2019 Manual Validation v42

    51/167

    THESEUS-FE 4.2 Validations Manual

    40

    Fig. 1-48: V21 fine mesh comparison between results (with and without reflection)

    elm.:19 20 21

    1

    12

    16

    15

    9

    8

    7

    5

    Fig. 1-49: V21 interior diffuse reflectance of long wave radiation

  • 7/30/2019 Manual Validation v42

    52/167

    THESEUS-FE 4.2 Validations Manual

    41

    1.3.4 Thermal long wave radiation (opened cavity)

    Here we use the same THESEUS-FE model as in the chapter above, with 2 modifications:We delet the elements on the roof (19, 20, 21) and add the sky temperature -100C to thecavity definition in the tfe-file. This operation changes the closed cavity from the chapterabove to an opened cavity. Long wave radiation heat exchang takes now place not onlyinside the cavity, but also between elements inside and a so called background with auser-defined temperature.

    0Celm:1

    12

    16

    15

    9

    8

    7

    5

    1000C

    Tsky = -100C

    Fig. 1-50: V21 temperature boundary conditions for long wave radiation heat exchange

    System and boundary conditions

    Quantity Value Unit Description

    9T 1273.15 K

    absolute temperature of the heated element

    1810,81T 273.15 K

    absolute temperature of all other elements

    skyT 173.15 K absolute temperature of the background

    5.67051E-8 W/(m2K

    4) Stefan Bolzmann Constant

    0.8 surface emissivity

    = 1 - 0.2 surface reflectance

    THESEUS-FE file V21_rad_BB_opencav.tfe

    V21_fine2_rad_BB_opencav.tfe

    V21_fine2_rad_GB_opencav.tfe

    THESEUS-FE version 4.0

  • 7/30/2019 Manual Validation v42

    53/167

  • 7/30/2019 Manual Validation v42

    54/167

  • 7/30/2019 Manual Validation v42

    55/167

    THESEUS-FE 4.2 Validations Manual

    44

    2 Advanced Conduction

    Several solved and experimental examples from literature have been taken and used for

    further validation of THESEUS-FE.

  • 7/30/2019 Manual Validation v42

    56/167

    THESEUS-FE 4.2 Validations Manual

    45

    2.1 Heat Bridges in Buildings

  • 7/30/2019 Manual Validation v42

    57/167

  • 7/30/2019 Manual Validation v42

    58/167

    THESEUS-FE 4.2 Validations Manual

    47

    Results

    THESEUS-FE: 19.92CLiterature: 17.92CTHESEUS-FE: 19.92CLiterature: 17.92C

    Fig. 2-2: T-shaped heat bridge THESEUS-FEresults

  • 7/30/2019 Manual Validation v42

    59/167

    THESEUS-FE 4.2 Validations Manual

    48

    2.1.2 Heat bridges: Example 2

    System

    System & boundary. cond.: THESEUS-FE model:

    L

    L

    k1

    k2

    Tout, hout

    Tin, hin

    Tout, hout

    Adiabatic

    Adiabatic

    System & boundary. cond.: THESEUS-FE model:

    L

    L

    k1

    k2

    Tout, hout

    Tin, hin

    Tout, hout

    Adiabatic

    Adiabatic

    Fig. 2-3: Right-angle heat bridge with boundary conditions

    System and boundary conditions

    Quantity Value Unit Description

    k1 0.21 W / m*K Conductivity

    k2 0.56 W / m*K Conductivity

    L 0.30 m Length

    Tout 5 C Outside air temperature

    hout 25 W / m2

    *K Heat transfer coefficient

    Tin 22 C Inside air temperature

    hin 5 W / m2

    *K Heat transfer coefficient

    THESEUS-FE file Example_2_1_2.tfe

    THESEUS-FE version 4.0

    Problem description

    Heat bridge example, with heat conduction through a composite wall. Convectionboundary conditions are assigned on the outer and inner surface of the wall. THESEUS-FEresults are compared with experimanal results at the corner location[19].

    THESEUS-FE model

    The problem was modeled with two groups of solid elements and two groups ofPSHELL3elements. Shell elements are placed on the inner and outer surface and are used forassigning boundary conditions.

  • 7/30/2019 Manual Validation v42

    60/167

    THESEUS-FE 4.2 Validations Manual

    49

    Results

    THESEUS-FE: 17.02C

    Literature: 17.07C

    THESEUS-FE: 17.02C

    Literature: 17.07C

    Fig. 2-4: Right-angle heat bridge THESEUS-FEresults

  • 7/30/2019 Manual Validation v42

    61/167

  • 7/30/2019 Manual Validation v42

    62/167

    THESEUS-FE 4.2 Validations Manual

    51

    Results

    THESEUS-FE: 18.40C

    Literature: 17.92C

    THESEUS-FE: 18.40C

    Literature: 17.92C

    Fig. 2-6: Right-angle heat bridge 2THESEUS-FEresults

  • 7/30/2019 Manual Validation v42

    63/167

  • 7/30/2019 Manual Validation v42

    64/167

    THESEUS-FE 4.2 Validations Manual

    53

    Problem description

    Three dimansional heat bridge example, with heat conduction through a composite wall.Convection boundary conditions are assigned on the outer and inner surfaces of thewall.THESEUS-FE results are compared with experimanal results at several corner

    locations and along edges[19].

    THESEUS-FE model

    The problem was modeled with eight groups of solid elements representing the different

    parts of the composite wall and two groups of PSHELL3 elements. Shell elements are

    placed on inner and outer surfaces and are used for assigning convection boundaryconditions. A uniform mesh with quad elements of approximate length 1cm was used witha total of 390,276 elements.

    Results

    THESEUS-FE: 18.9CLiterature: 18.4C

    THESEUS-FE: 19.5C

    Literature: 19.8C

    THESEUS-FE: 19.8C

    Literature: 19.6C

    THESEUS-FE: 17.5C

    Literature: 17.2C

    THESEUS-FE: 17.7C

    Literature: 17.9C

    THESEUS-FE: 18.9CLiterature: 18.4C

    THESEUS-FE: 19.5C

    Literature: 19.8C

    THESEUS-FE: 19.8C

    Literature: 19.6C

    THESEUS-FE: 17.5C

    Literature: 17.2C

    THESEUS-FE: 17.7C

    Literature: 17.9C

    Fig. 2-8: 3D heat bridge THESEUS-FEresults

  • 7/30/2019 Manual Validation v42

    65/167

    THESEUS-FE 4.2 Validations Manual

    54

    2.2 Anisotropic Conductivity

    System

    System & boundary. cond.: THESEUS-FE model:

    L1

    adiabatic

    L1

    T2T1

    adiabatic

    L2

    L2

    k1

    k11

    k22

    System & boundary. cond.: THESEUS-FE model:

    L1

    adiabatic

    L1

    T2T1

    adiabatic

    L2

    L2

    k1

    k11

    k22

    Fig. 2-9: Anisotropic plate with boundary conditions

    System and boundary conditions

    Quantity Value Unit Description

    k1 0.56 W / m*K Conductivity

    k11 0.056 W / m*K Conductivity

    k22 0.0056 W / m*K Conductivity

    T1 100 C Temperature boundary condition

    T2 0 C Temperature boundary condition

    L1 1 m Length

    L2 0.8 m Length

    45 Degrees Angle of rotation

    THESEUS-FE file Example_2_2.tfe

    THESEUS-FE version 4.0

    Problem description

    A planar square with a tilted square insert is used to demonstrate the effect of anisotropicconductivity. Referring to Fig. 2-9, the outer square is an isotropic material withconductivity k1. Constant temperature boundary conditions are imposed on the verticaledges of the square while the horizontal edges are insulated. The inner material isorthotropic with k11 = k1 / 10 and k22 = k1 / 100. The orientation of the material axes withrespect to the global coordinate axes is 45 degrees. Fig. 2-10 shows the temperature field.The distortion of the results due to the anisotropy is clearly visualized. The dotted lines areisothermal lines from literature for validation[20].

  • 7/30/2019 Manual Validation v42

    66/167

    THESEUS-FE 4.2 Validations Manual

    55

    THESEUS-FE model

    The problem was modeled with four groups ofPSHELL3 elements. Temperature boundary

    conditions are assigned on the left and right vertical groups. Isotropic material propertiesare assigned to the outer square while anisotorpic material properties are assigned to thelocal coordinates in tensor form of the inner square.

    Results

    Isothermal lines from literature.

    Fig. 2-10: Anisotropic plate THESEUS-FEresults compared with literature results

  • 7/30/2019 Manual Validation v42

    67/167

    THESEUS-FE 4.2 Validations Manual

    56

    2.3 Temperature Dependent Conductivity

    System

    System & boundary. cond.: THESEUS-FE model:

    L1

    adiabatic

    L3

    adiabaticL2

    R1

    adiab

    ati

    c

    adiab

    ati

    c

    Tout, , hout

    k1= Constant

    k2= k1+ C1xTemp.

    adiabatic

    Tout, , hout

    Q

    Q

    System & boundary. cond.: THESEUS-FE model:

    L1

    adiabatic

    L3

    adiabaticL2

    R1

    adiab

    ati

    c

    adiab

    ati

    c

    Tout, , hout

    k1= Constant

    k2= k1+ C1xTemp.

    adiabatic

    Tout, , hout

    Q

    Q

    Fig. 2-11: Variable heat conductivity model with boundary conditions

    System and boundary conditions

    Quantity Value Unit Description

    k1 1 W / m*K Conductivity

    C1 0.01 Constant

    Tout 0 C Temperature boundary condition

    hout 0.875 W / m2

    *K Heat transfer Coefficient

    L1 3 m Length

    L2 0.8 m Length

    L3 1 m Length

    R1 0.5 m Radius

    Q 100 W / m2

    Heat Flux

    THESEUS-FE file Example_2_3.tfe

    THESEUS-FE version 4.0

    Problem description

    This example illustrates the difference in results when conductivity variations are includedin the model. Fig. 2-11 contains a schematic and mesh for a simple planar geometry. Thetop and bottom halfes are occupied by different isotropic materials; the bottom materialhas constant conductivity, k1, while the top material has a conductivity that varies withtemperature as k= k1+C1*T. A constant heat flux is applied along the left edge of the thedomain. The right side boundaries are insulated. All other surfaces are convectively cooled

    with a constant heat-transfer-coefficient and temperature[20].

  • 7/30/2019 Manual Validation v42

    68/167

    THESEUS-FE 4.2 Validations Manual

    57

    THESEUS-FE model

    The problem was modeled with two groups of solid elements of arbitrary thickness and

    four groups ofPSHELL3 elements. Heat flux and heat convection boundary conditions are

    assigned on the shell elements. Transient 2nd order solver was used, due to the non-

    liniearity of the problem, with an intial time step of 0.1 seconds and a run time of 25seconds. Variable conductivity is assigned to the second group of solid elements via theTemperature Table shown below:

    Results

    Isothermal lines from literature.Isothermal lines from literature.

    Fig. 2-12: THESEUS-FEresults compared with isotropic lines from literature

    Temperature[C]

    Conductivity[W/mK]

    0 1

    100 2

    200 3

  • 7/30/2019 Manual Validation v42

    69/167

    THESEUS-FE 4.2 Validations Manual

    58

    2.4 Phase Change

    System

    System & boundary. cond.: THESEUS-FE model:

    T0, k1TBC

    Adiabatic

    Adiabatic

    L1

    Ad

    iab

    atic

    x

    Fig. 2-13: Phase Change model with boundary conditions

    System and boundary conditions

    Quantity Value Unit Description

    k1 1.08 W / m*K Conductivity

    1 kg / m3

    Density

    L 70.26 J / kg Latent heat

    Tl -0.15 C Liqidus temperature

    T0 0 C Initial temperature

    TBC -45 C Temperature boundary condition

    L1 4 m Length

    tfinal 2 s Simulation time

    THESEUS-FE file phase_change.tfe

    THESEUS-FE version 4.0

    Problem Description

    A standard test problem for phase change is the one-dimensional Stefan problem. Theproblem consists of a material region, with length 4 meters, held initially at a unifromtemperature, T0 = 0C, that is greater than the liquidus temperature Tl = -0.15C . At timezero, the left face of the region, x = 0, is lowered to a temperature below the solidustemperature, to TBC= -45C, causing a solidification front to propagate into the material. All

    other surfaces are insulated. The schematic of the problem is shown in Fig. 2-13[20].

    0

    10

    20

    30

    40

    50

    -50 -40 -30 -20 -10 0 10Temperature [C]

    SpecificHeat[J/KgK]

    11

    10

    33.63-0.15

    33.63-2.15

    1-2.3

    1-45

    Specific Heat

    [J/kgK]

    T [C]

    Latent Heat

    70.26 J/kg

    Fig. 2-14: Table for assigning material property specific heat

  • 7/30/2019 Manual Validation v42

    70/167

    THESEUS-FE 4.2 Validations Manual

    59

    THESEUS-FE model

    The example was solved using 64 PSHELL3 elements in the domain. Temperature

    boundary conditions are applied on the left hand side and the material specific heatproperty, was applied via Fig. 2-14 shown above. Computation was carried out for a phase

    change temperature interval of 2 degrees, with solidification staring at -0.15 degrees.

    Results

    Time=0.0s

    Time=0.5s

    Time=1.0s

    Time=1.5s

    Time=2.0s

    Solid Liquid

    x=1

    Time=0.0s

    Time=0.5s

    Time=1.0s

    Time=1.5s

    Time=2.0s

    Solid Liquid

    x=1

    Fig. 2-15: Phase change: THESEUS-FEresults

    In Fig. 2-16 THESEUS-FE results are compared with the analytical solution. We see adiscrepancy of approxametaly 1 degree, which is attributed to the numerical calculation ofthe Latent Heat addition. In nature, phase change or Latent Heat addition occursinstantaneously. Numerically, the dirac impulse function can not be modeled, and therefore we apply the Latent Heat addtion through a 2 degree temperature band. Thisintroduces a modeling error that results in an approximately 1 degree solution error.

    -15

    -13

    -11

    -9

    -7

    -5

    -3

    -1

    1

    0 0.5 1 1.5 2

    Time [s]

    Temperature[C]

    Analytic

    THESEUS FE Results

    Fig. 2-16: Phase change: Comparison of FE results with analytical solution at x = 1

  • 7/30/2019 Manual Validation v42

    71/167

    THESEUS-FE 4.2 Validations Manual

    60

    2.5 Cylinder Radiation (open grey body cavity)

    System

    System & boundary. cond.: THESEUS-FE model:

    D

    Adiabatic

    Adiabatic

    L

    k,

    q

    T0

    System & boundary. cond.: THESEUS-FE model:

    D

    Adiabatic

    Adiabatic

    L

    k,

    q

    T0

    Fig. 2-17: Cylinder Radiation example with boundary conditions

    System and boundary conditions

    Quantity Value Unit Description

    0.3 Surface emissivity

    k1 1.0 W / m*K Conductivity

    T0 0 K Surrounding temperature

    L 4 m Length

    D 1 m Diameter

    q 200 W / m2 Applied heat flux

    THESEUS-FE file cylinder_radiation.tfe

    THESEUS-FE version 4.0

    Problem Description

    A simple heated enclosure is the circular tube, open at both ends and insulated on theoutside surface. For a uniform heat addition q = 200 W/m2 to the inside surface of the tubewall and a surrounding environment at 0K, we calculate the stead state temperaturedistribution along the inside surface[18].

    THESEUS-FE model

    The open ends of the tube are nonreflecting, and they are assumed to be black bodies atthe surrounding temperature 0 K. In THESEUS-FE, three major types of radiation heatexchange are realized; for the current problem the model used was open-cavity with graybody radiation. Gray body radiation considers reflection and absorption of each elementand performs a full view factor matrix calculation. On the inner surface of the cylinder wall,the boundary conditions applied are the background temperature and heat flux. This is apure thermal radiation and conduction problem; the material properties assigned are theemission coefficient and the conductivity k.

  • 7/30/2019 Manual Validation v42

    72/167

    THESEUS-FE 4.2 Validations Manual

    61

    Results

    In Fig. 2-18 the THESEUS-FE results displayed are the view factor sum of each element,the radiation from each element, and the nodal temperature values.

    The view factor is a quantity used to define the fraction of thermal power leaving oneelement and reaching another. The sum of the view factor on each element thenrepresents the fraction of thermal power leaving one elment and reaching all other elmentsin the domain. For enclosed bodies the view factor sum of each element is their fore one.For open cavitites, the value will be less then one, depending on how much thermal poweris lost to the environment. The radiation view factor depends strongly on distance and fromthe results we can see that thermal power is mainly lost near the cylinder ends, while verylittle power is lost from elements toward the center of the cylinder. The maximum andminimum view factor sums are 0.975 and 0.6.

    The second diagram quantifies how much radiation heat is lost from each element. For

    elements near the cylinder ends, it is of magnitude -55 W/m2

    .In the last diagram, the temperature results are displayed and compared with the analyticsolution. There is a close agreement between THESEUS-FE results and the analyticresults. We can further see that there is a 75 degree temperature difference between thecenter of the cylinder, where little heat is lost compared with elements at the ends of thecylinder where most of the thermal power is lost via radiation.

    View Factor Sum

    Radiation [W/m2]

    View Factor Sum

    Radiation [W/m2]

    Fig. 2-18: Cylinder Radiation: THESEUS-FEresults

  • 7/30/2019 Manual Validation v42

    73/167

  • 7/30/2019 Manual Validation v42

    74/167

    THESEUS-FE 4.2 Validations Manual

    63

    2.6 Disk Radiation

    System

    System & boundary. cond.: THESEUS-FE model:

    0 Ri Ro

    AdiabaticAdiabatic

    k,

    T0TBC

    a

    System & boundary. cond.: THESEUS-FE model:

    0 Ri Ro

    AdiabaticAdiabatic

    k,

    T0TBC

    a

    Fig. 2-20: Disk

    System and boundary conditions

    Quantity Value Unit Description

    0.7 Surface emissivity

    k 15.0 W / (m K) Conductivity

    T0 -273.15 C Initial temperature

    TBC 100 C Boundary condition

    a 0.01 m Thickness

    Rl 0.04 m Inner radius

    R0 0.24 m Outer radius

    THESEUS-FE file disk_radiation.tfe

    THESEUS-FE version 4.0

    Problem Description

    An annular fin in vacuum is insulated on one face and aournd its outside edge. The diskhas thickness of 0.01m, inner radius 0.04m, outer radius 0.24m, and thermal conductivity15.0 W/mK. Energy is supplied to the inner edge from a pipe that fits the central hole andmaintains the inner edge at 100 C. The exposed annular surface, which is diffuse-graywith emissivity 0.7, radiates to the environment at 0 K to investigate performance in a coldenvironment. Results are shown for the temperature distribution as a function of radialposition along the disk, the radiation flux from each element and the radiation efficiency ofthe disk calculated from THESEUS-FE is compared with results from literature[18]. In Fig.2-22, Qrad-total is the total heat radiation from the disk to the environment taken from theTHESEUS-FE simulation and Qrad-boundary= A(T

    4BC - T

    40) is the calculated theoretical

    value, if the disk was held at a constant temperature of TBC. Where is the Stefan-Boltzmann constant and A is the disk surface area

  • 7/30/2019 Manual Validation v42

    75/167

  • 7/30/2019 Manual Validation v42

    76/167

  • 7/30/2019 Manual Validation v42

    77/167

  • 7/30/2019 Manual Validation v42

    78/167

  • 7/30/2019 Manual Validation v42

    79/167

  • 7/30/2019 Manual Validation v42

    80/167

    THESEUS-FE 4.2 Validations Manual

    69

    Radiation heat loss

    [W/m2]

    Convection heat loss

    Radiation heat loss

    [W/m2]

    Convection heat loss

    Fig. 2-26: Radiation Cylinder with 1D Flow: Field Results from Literature

  • 7/30/2019 Manual Validation v42

    81/167

  • 7/30/2019 Manual Validation v42

    82/167

    THESEUS-FE 4.2 Validations Manual

    71

    3.1 Model aThis model is composed of a shell element and an airzone, both are thermally connected

    via convection. An airzone is a mixture of dry air and steam with a homogeneoustemperature distribution. Besides temperature the humidity is the second degree offreedom of the airzone.

    1m

    1m

    1m

    alu plate

    airzone

    Tairz, h

  • 7/30/2019 Manual Validation v42

    83/167

  • 7/30/2019 Manual Validation v42

    84/167

  • 7/30/2019 Manual Validation v42

    85/167

    THESEUS-FE 4.2 Validations Manual

    74

    3.1.3 Linear convective airzone cooling - considering humidity (a 3)

    System

    airzone: V=1m3

    alu plate: 1m*1m*1mm

    1 quad, PSHELL1, disc=2

    conductivity: k = 238 W/mK

    spec. heat: c = 945 J/kgK

    density: = 2700 kg/m3

    (pos. side)

    z

    x,y

    airzone: V=1m3

    alu plate: 1m*1m*1mm

    1 quad, PSHELL1, disc=2

    conductivity: k = 238 W/mK

    spec. heat: c = 945 J/kgK

    density: = 2700 kg/m3

    (pos. side)

    z

    x,y

    z

    x,y

    Fig. 3-5: Model a 3 system

    System and boundary conditions

    Quantity Value Unit Description

    T0 20 C Initial temperature for airzone and plate

    RLF0 68.6 % Initial relative humidity

    hpos = hneg 6.0 W / m2*C Convection coefficient at positive/negative side of

    the plate

    Tamb,pos = Tairz Ambient temp. at pos. side = airzone temp.

    Tamb,neg -20 C Ambient temperature at negative side

    tend 500 s End time of simulation

    Solver file model_a3.tfe

    THESEUS-FE version 4.0

    Results

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0 100 200 300 400 500

    time [sec]

    [kg/kg]

    THESEUS-FE

    INKA

    Fig. 3-6: Model a 3 - airzone absolute humidity

  • 7/30/2019 Manual Validation v42

    86/167

  • 7/30/2019 Manual Validation v42

    87/167

  • 7/30/2019 Manual Validation v42

    88/167

    THESEUS-FE 4.2 Validations Manual

    77

    3.1.5 Sun heating airzone - without considering humidity (a 5)

    System

    airzone: V=1m3

    (pos. side)

    z

    x,y

    sun

    alti = 60

    alu plate: 1m*1m*1mm

    1 quad, PSHELL1, disc=2

    conductivity: k = 238 W/mK

    spec. heat: c = 945 J/kgK

    density: = 2700 kg/m3

    airzone: V=1m3

    (pos. side)

    z

    x,y

    z

    x,y

    sun

    alti = 60

    alu plate: 1m*1m*1mm

    1 quad, PSHELL1, disc=2

    conductivity: k = 238 W/mK

    spec. heat: c = 945 J/kgK

    density: = 2700 kg/m3

    Fig. 3-10: Model a 5 system

    System and boundary conditions

    Quantity Value Unit Description

    T0 20 C Initial temperature for airzone and plate

    RLF0 0 % Initial relative humidity

    vpos = vneg 0 m / s Ambient air velocity

    at positive/negative side of the plate (BC-FC)

    Tamb,pos = Tairz Ambient temp. at pos. side = airzone temp.

    Tamb,neg 20 C Ambient temp. at neg. side

    qdr 1000 W / m2

    Direct sun intensity

    tend 500 s End time of simulation

    Solver file model_a5.tfe

    THESEUS-FE version 4.0

    Results

    0

    10

    20

    30

    40

    50

    60

    70

    0 100 200 300 400 500time [sec]

    T[C]

    THESEUS-FE

    INKA

    Fig. 3-11: Model a 5 - airzone temperature

  • 7/30/2019 Manual Validation v42

    89/167

    THESEUS-FE 4.2 Validations Manual

    78

    3.1.6 Sun heating airzone - without considering humidity (a 6)

    System

    airzone: V=1m3

    (pos. side)

    z

    x,y

    z

    x,y

    sun

    alti = 20 alu plate: 1m*1m*1mm1 quad, PSHELL1, disc=2

    conductivity: k = 238 W/mK

    spec. heat: c = 945 J/kgK

    density: = 2700 kg/m3

    Fig. 3-12: Model a 6 - system

    System and boundary conditions

    Quantity Value Unit Description

    T0 20 C Initial temperature for airzone and plate

    RLF0 0 % Initial relative humidity

    vpos = vneg 0 m / s Ambient air velocity

    at positive/negative side of the plate (BC-FC)

    Tamb,pos = Tairz Ambient temp. at pos. side = airzone temp.

    Tamb,neg 20 C Ambient temperature at negative sideqdr 1000 W / m

    2Direct sun intensity

    tend 500 s End time of simulation

    Solver file model_a6.tfe

    THESEUS-FE version 4.0

    Results

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 100 200 300 400 500time [sec]

    T[C]

    THESEUS-FE

    INKA

    Fig. 3-13: Model a 6 - airzone temperature

  • 7/30/2019 Manual Validation v42

    90/167

  • 7/30/2019 Manual Validation v42

    91/167

  • 7/30/2019 Manual Validation v42

    92/167

  • 7/30/2019 Manual Validation v42

    93/167

    THESEUS-FE 4.2 Validations Manual

    82

    3.1.9 Airzone cooled by ventilation RVT (a 9)

    System

    airzone: V=1m3

    (pos. side)

    z

    x,y

    z

    x,y

    VENTILT - RVT

    dV/dt = 0.001 m3/sec

    T_out = 0C

    RLF_out = 100%

    X_out =0.00374 (saturated)

    alu plate: 1m*1m*1mm

    1 quad, PSHELL1, disc=2

    conductivity: k = 238 W/mK

    spec. heat: c = 945 J/kgK

    density: = 2700 kg/m3

    Fig. 3-19: Model a 9 system

    System and boundary conditions

    Quantity Value Unit Description

    T0 20 C Initial temperature for airzone and plate

    RLF0 68.6 % Initial relative humidity

    vpos = vneg 0 m / s Ambient air velocity

    at positive/negative side of the plate (BC-FC)

    Tamb,pos = Tairz Ambient temp. at pos. side = airzone temp.

    Tamb,neg 20 C Ambient temperature at negative sidetend 500 s End time of simulation

    Solver file model_a9.tfe

    THESEUS-FE version 4.0

    Results

    0.007

    0.008

    0.009

    0.010

    0 100 200 300 400 500

    time [sec]

    [kg/kg]

    THESEUS-FE

    INKA

    Fig. 3-20: Model a 9 - airzone absolute humidity

  • 7/30/2019 Manual Validation v42

    94/167

  • 7/30/2019 Manual Validation v42

    95/167

    THESEUS-FE 4.2 Validations Manual

    84

    3.1.10 Airzone heated by ventilation RET (a 10)

    System

    airzone: V=1m3

    (pos. side)