many-sorted logic - helsingin yliopisto · many-sorted logic jouko väänänen1;2 1department of...

46
Many-sorted logic Jouko Väänänen 1, 2 1 Department of Mathematics and Statistics, University of Helsinki 2 Institute for Logic, Language and Computation, University of Amsterdam January 2014 Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 1 / 114

Upload: others

Post on 11-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Many-sorted logic

Jouko Väänänen1,2

1Department of Mathematics and Statistics, University of Helsinki

2Institute for Logic, Language and Computation, University of Amsterdam

January 2014

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 1 / 114

Page 2: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Introduction

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 2 / 114

Page 3: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Many-sorted logic MSL

Several “sorts" of variableselements and sequences of elementsvector spaces: scalars and vectorsgeometry: points and linessecond order logic: individuals and subsets.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 3 / 114

Page 4: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Many-sorted logic

Can be translated into one-sorted logicMany-sorted version of a theorem is sometimes more powerfulthan the single sorted version.Craig Interpolation Theorem.Applications of the many-sorted interpolation theorem.Applications to “symbiosis" between set theory and model theory.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 4 / 114

Page 5: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Single sorted logic

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 5 / 114

Page 6: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionAn ordinary single sorted first order structure (model)

M = (M,R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

consists of1 Universe M 6= ∅2 Relations R1, . . . ,Rm between elements of the universe3 Functions f1, . . . , fk between elements of the universe4 Distinguished constants c1, . . . , cl in the universe.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 6 / 114

Page 7: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

where ...

Ri ⊆ M × ...×M

fi : M × ...×M → M

ci ∈ M

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 7 / 114

Page 8: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Syntax in single sorted logic

t = t ′

Rt1...tn¬φ∧n φn∨n φn

∃xiφ

∀xiφ

In second order logic add

∃X mi φ where X m

i is m-ary

∀X mi φ where X m

i is m-ary

In monadic second order logic m = 1.Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 8 / 114

Page 9: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Semantics in single sorted logic

Assignments v intoM are functions on voc(L)-variables such thatv(xi) ∈ M for each xi . Modified assignment v(a/xi) as usual.

DefinitionFirst order logic:M |=v ∃xiφ ⇐⇒ M |=v(a/xi ) φ for some a ∈ M.M |=v ∀xiφ ⇐⇒ M |=v(a/xi ) φ for all a ∈ M.

Second order logic:M |=v ∃X m

i φ ⇐⇒ M |=v(A/X mi ) φ for some A ⊆ Mm.

M |=v ∀X mi φ ⇐⇒ M |=v(a/X m

i ) φ for all A ⊆ Mm.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 9 / 114

Page 10: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Semantics in single sorted logic

Assignments v intoM are functions on voc(L)-variables such thatv(xi) ∈ M for each xi . Modified assignment v(a/xi) as usual.

DefinitionFirst order logic:M |=v ∃xiφ ⇐⇒ M |=v(a/xi ) φ for some a ∈ M.M |=v ∀xiφ ⇐⇒ M |=v(a/xi ) φ for all a ∈ M.

Second order logic:M |=v ∃X m

i φ ⇐⇒ M |=v(A/X mi ) φ for some A ⊆ Mm.

M |=v ∀X mi φ ⇐⇒ M |=v(a/X m

i ) φ for all A ⊆ Mm.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 9 / 114

Page 11: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Many sorted logic: its structures

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 10 / 114

Page 12: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionA many-sorted structure (model)

M = ({M1, . . . ,Mn},R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

consists of1 Universes (“sorts") M1, . . . ,Mn, each 6= ∅2 Relations R1, . . . ,Rm between elements of the universes3 Functions f1, . . . , fk between elements of the universes4 Distinguished constants c1, . . . , cl in the universes.

We callM n-sorted. M is “strict" if the Mi are disjoint, otherwise “lax".We allow n = 0, i.e. “no sorts" as a special case.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 11 / 114

Page 13: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

where ...

Ri ⊆ Mi1 × ...×Mis s(Ri) = 〈i1, ..., is〉 ⊆ {1, ...,n}

fi : Mi1 × ...×Mis → Mr s(fi) = 〈i1, ..., is, r〉 ⊆ {1, ...,n}

ci ∈ Mj s(ci) = j ∈ {1, ...,n}

No relation between elements of sort s or sort s′ and elements of sorts′′.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 12 / 114

Page 14: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

ExampleAn ordinary single-sorted first order structure

(M,R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

resurrects in this notation as a 1-sorted structure

({M},R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 13 / 114

Page 15: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Chu spaces

ExampleA Chu space is a strict 2-sorted structure ({A,X},R), (denoted(A,X ,R)), where R ⊆ A× X . For example:

A X Raxelements sets a ∈ xmodels sentences a |= xsentences models x |= a.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 14 / 114

Page 16: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Vector spaces

ExampleA vector space is a strict 2-sorted structure

V = ({F ,V},+F , ·F ,0F ,1F ,+V , ·V ,0V ),

where1 (F ,+F , ·F ,0F ,1F ) is a field2 (V ,+V ,0V ) is an Abelian group3 ·V : F × V → V satisfies

a ·V (u +V w) = a ·V u +V a ·V w(a ·F b) ·V u = a ·V (b ·V u)(a +F b) ·V u = a ·V u +V b ·V u1F ·V u = u

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 15 / 114

Page 17: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Vector spaces (simpler notation)

ExampleA vector space is a strict 2-sorted structure

V = (F ,V ,+, ·,0),

where1 F is a field2 (V ,+,0) is an Abelian group3 The function (a, v) 7→ av(= a · v) : F × V → V satisfies

a(u + w) = au + aw(ab) · u = a(bu)(a + b)u = au + bu1u = u

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 16 / 114

Page 18: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Model with a pairing function

ExampleA first order structure with a pairing function is a strict 2-sortedstructure

M = ({N,M}, π, ...),

where π is a pairing function, i.e. a bijection M ×M → N. We can alsolet N = M2 and π(x , y) = (x , y).

Note: If M is finite, π cannot be a function into M, so a new sort isneeded.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 17 / 114

Page 19: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Model with finite sequences

ExampleA first order structure with finite sequences is a strict 3-sorted structure

M = ({⋃n

Mn,N,M}, len,0, s, σ...),

where len(a) = n if a ∈ Mn, s is the successor function on N, and

σ(〈a1, . . . ,an〉, i) = ai .

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 18 / 114

Page 20: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Second order domain

ExampleA first order structure with second order domain is a strict 2-sortedstructure

M = ({P(M),M},∈, ...),

where1 ∈ is the membership relation a ∈ B between a ∈ M and B ⊆ M2 (M, ...) is a first order structure.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 19 / 114

Page 21: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Higher order domains

ExampleA first order structure with second and third order domains is a strict3-sorted structure

M = ({P(P(M)),P(M),M},∈1,∈2, ...),

where1 ∈1 is the membership relation a ∈1 B between a ∈ M and B ⊆ M2 ∈2 is the membership relation B ∈2 C between B ⊆ M andC ⊆ P(M)

3 (M, ...) is a first order structure.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 20 / 114

Page 22: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Second order structure

ExampleA (full) second order structure is a strict 2-sorted structure

M = ({P(M),M},∈,R, ...),

where1 ∈ is the membership relation a ∈ B between a ∈ M and B ⊆ M2 R, ... are relations, functions and constants between elements of

M ∪ P(M).

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 21 / 114

Page 23: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Database

ExampleThe database

John male D 2500 MaryMary female E 2600 PaulLaura female B 2500 Mary

is a 4-sorted structure with the sorts

1: Name-sort2: Gender-sort3: Department-sort4: Salary-sort

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 22 / 114

Page 24: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Database as a many-sorted structure

The database is({M1,M2,M3,M4},R)

whereM1 = {John,Mary ,Laura,Paul}M2 = {female,male}M3 = {B,D,E}M4 = {2500,2600}

andR ⊆ M1 ×M2 ×M3 ×M4 ×M1

is the relation indicated by the database.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 23 / 114

Page 25: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

ExampleThe two table (relation) relational database

R1:John male D MaryMary female E PaulLaura female B Mary

R2:

A 1000B 1300C 1500D 2500E 2600

is another example of a 4-sorted structure, this time with two relations.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 24 / 114

Page 26: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

More about many sorted structures

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 25 / 114

Page 27: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionA many-sorted structure

M = ({M1, . . . ,Mn},R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

is isomorphic to

M′ = ({M ′1, . . . ,M ′n},R′1, . . . ,R′m, f ′1, . . . , f ′k , c′1, . . . , c′l )

if there is a bijection π :⋃

s Ms →⋃

s M ′s such that1 π � Mi : Mi → M ′i is bijection for i = 1, ...,n2 Ri(a1, ...,as) ⇐⇒ R′i (π(a1), ..., π(as))

3 πfi(a1, ...,as) = f ′i (π(a1), ..., π(as))

4 πci = c′i

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 26 / 114

Page 28: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionA many-sorted structure

M = ({M1, . . . ,Mn},R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

is an extension of a many-sorted structure

M′ = ({M ′1, . . . ,M ′n},R′1, . . . ,R′m, f ′1, . . . , f ′k , c′1, . . . , c′l )

if1 M ′i ⊆ Mi for i = 1, ...,n2 R′i (a1, ...,as) ⇐⇒ Ri(a1, ...,as) for a1, ...,as ∈

⋃ni=1 M ′i

3 f ′i (a1, ...,as) = fi(a1, ...,as) for (a1, ...,as) ∈ dom(f ′).4 c′i = ci

ThenM′ is a substructure ofM.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 27 / 114

Page 29: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Neither extension nor substructure...

DefinitionA Chu transform between Chu spaces (A,X ,R) and (A′,X ′,R′) is apair h,g of mapping such that

1 h : A→ A′

2 g : X ′ → X3 ∀a ∈ A∀x ′ ∈ X ′(R′(h(a), x ′)↔ R(a,g(x ′)))

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 28 / 114

Page 30: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Chu transforms

Example

Transforming (monadic) second order logic into first order logic:A sentences of single sorted monadic second order logicX single sorted structures (M, ...)R truthA′ sentences of 2-sorted first order logicX ′ second order domain (P(M),M,∈, ...)R′ truthh translation of A into A′

g the first order partwhere

h(∃xiφ) = ∃x0i h(φ),h(∃X 1

i φ) = ∃x1i h(φ)

g((P(M),M,∈, ...)) = (M, ...)

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 29 / 114

Page 31: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Chu transforms

ExampleContinuous maps in topology:

A topological spaceX its topologyR elementhoodA′ topological spaceX ′ its topologyR′ elementhoodh continuous mapping A→ A′

g g(U) = {a ∈ A : f (a) ∈ U} i.e. preimageitem Now a ∈ g(U) ⇐⇒ h(a) ∈ U.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 30 / 114

Page 32: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Chu transforms

ExampleImportant special case: A ⊆ A′, X ′ ⊆ X , h = g = id .

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 31 / 114

Page 33: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionA reduct of a many-sorted structure

M = ({M1, . . . ,Mn},R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

is obtained by leaving out some sorts, relations, functions, andconstants, as in

M′ = ({M1, . . . ,Mn−1},R1, . . . ,Rm′ , f1, . . . , fk ′ , c1, . . . , cl ′).

Relations, functions, and constants which are not meaningful are atthe same time dropped. Respectively then,M is an expansion ofM′.A reduct may also have the same sorts but fewer relations, etc.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 32 / 114

Page 34: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

ExampleReducts of a vector space (F ,V ,+, ·,0):

The scalar field: F = (F ,+F .·F ,0F ,1F )

The vector addition group: (V ,+,0)

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 33 / 114

Page 35: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

ExampleReducts of a second order domain (P(M),M,∈, ...):

The first order part: (M, ...)

The second order part: (P(M),M,∈)

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 34 / 114

Page 36: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

ExampleA reduct of the database

R:John male IV 2500 MaryMary female V 2600 PaulLaura female II 2500 Mary

is not obtained by forgetting (e.g.) the number-sort:

John male IV MaryMary female V PaulLaura female II Mary

This is a completely new relation, a so-called projection (not reduct) ofthe original. In a reduct the entire relation R would drop out.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 35 / 114

Page 37: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

ExampleA reduct of the two table (relation) relational database

R1:John male D MaryMary female E PaulLaura female B Mary

R2:

A 1000B 1300C 1500D 2500E 2600

obtained by forgetting the number-sort is

John male D MaryMary female E PaulLaura female B Mary

Relation R2 drops out as it uses the abandoned number-sort.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 36 / 114

Page 38: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionA single sorted reduct of a many sorted L-structure

M = ({Ms : s ∈ sort(L)},R1, . . . ,Rm, f1, . . . , fk , c1, . . . , cl)

is any reduct

M′ = ({Ms},R1, . . . ,Rm′ , f1, . . . , fk ′ , c1, . . . , cl ′)

to an L′ = {s}, where s ∈ sort(L). Relations, functions, and constantswhich are not meaningful are dropped.

Sometimes the single sorted reducts determine the many sortedstructure, but usually not (because the single sorted reducts disregardthe interaction between sorts.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 37 / 114

Page 39: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Fundamental translation

DefinitionThe fundamental translation of a relational many-sorted structure

M = ({M1, . . . ,Mn},R1, . . . ,Rm, c1, . . . , cl)

is the single sorted expanded structure

M∗ = (M1 ∪ ... ∪Mn,M1, ...,Mn,R1, . . . ,Rm, c1, . . . , cl)

where M1,...,Mn are new unary predicates.

From the single sortedM∗ the originalM can be readily recovered.We have left function symbols out because there is no satisfactory wayto extend functions from individual sorts to the union of all sorts.Anyway, functions can be transformed to relations and then there is noproblem.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 38 / 114

Page 40: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Example({P(M),M},∈, ...)∗ = (P(M) ∪M,P(M),M,∈, ...)M∼=M′ ⇐⇒ M∗ ∼=M′∗

For vector spaces we could define the fundamental translation({F ,V},+,0)∗ = (F ∪ V ,F ,V ,+,0) by letting the value of thefunctions +F , ·F ,+V and ·V to be 0 whenever they are notcanonically defined.Note: M �M∗

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 39 / 114

Page 41: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Syntax and semantics of many sorted logic

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 40 / 114

Page 42: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionThe vocabulary L = voc(M) of a many-sorted structure (model)

M = ({M1, . . . ,Mn},RM1 , . . . ,RMm ,FM1 , . . . ,FMk , cM1 , . . . , cMl )

consists of1 Sort symbols s1, . . . , sn

2 Relation symbols R1, . . . ,Rm

3 Function symbols F1, . . . ,Fk

4 Constant symbols c1, . . . , cl

We write L = {s1, . . . , sn,R1, . . . ,Rm,F1, . . . ,Fk , c1, . . . , cl},sort(L) = {s1, . . . , sn}, rel(L) = {R1, . . . ,Rm}, fun(L) = {F1, . . . ,Fk},con(L) = {c1, . . . , cl}.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 41 / 114

Page 43: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionEach vocabulary L has an arity-function

aL : rel(L) ∪ fun(L)→ N

which tells the arity of each predicate and function symbol, and asort-function sL:

sL(R) ∈ sort(L)aL(R), sL(f ) ∈ sort(L)aL(f ) × sort(L), sL(c) ∈ sort(L).

We do not have symbols for abstract relations between elements ofarbitrary sorts except identity = in lax structures.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 42 / 114

Page 44: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionSuppose L is a many sorted vocabulary. The L-variables overmany-sorted L-structures are denoted:

xs, s ∈ sort(L)

with the intuition (fulfilled in the semantics below) that xs ranges overthe universe Ms of an L-structure

M = ({M1, . . . ,Mn},RM1 , . . . ,RMm ,FM1 , . . . ,FMk , cM1 , . . . , cMl ).

No variables ranging over “everything"! No variables ranging overelements of two different sort s (but this can be arranged by having anew sort for the “union").

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 43 / 114

Page 45: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

DefinitionSuppose L is a many sorted vocabulary. The L-terms are defined asfollows:

1 Constants c in L are L-terms and s(c) is already defined.2 L-variables xs are L-terms and s(xs) = s.3 If t1, ..., tn are L-terms with si = s(ti) and f ∈ L with

s(f ) = 〈s1, . . . , sn, s〉, then ft1...tn (or f (t1, ..., tn)) is an L-term ands(ft1...tn) = s.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 44 / 114

Page 46: Many-sorted logic - Helsingin yliopisto · Many-sorted logic Jouko Väänänen1;2 1Department of Mathematics and Statistics, University of Helsinki 2Institute for Logic, Language

Syntax

t = t ′

Rt1...tn¬φ∧n φn∨n φn

∃xsφ∀xsφ

Strict many-sorted logic: we allow t = t ′ only ifs(t) = s(t ′).Lax many-sorted logic: we allow t = t ′ for allterms.

Jouko Väänänen (Helsinki and Amsterdam) Many-sorted logic January 2014 45 / 114