marinet synertia-plus report olimpo...infrastructureaccessreport:synertia6plus! rev.!01,154sep42014!...

19
Infrastructure Access Report Infrastructure: SINTEF Renewable Energy Lab SmartGrids UserProject: SYNERTIAPLUS Synthetic inertia from wind generation Olimpo AnayaLara, University of Strathclyde Marine Renewables Infrastructure Network EC FP7 “Capacities” Specific Programme Research Infrastructure Action Status: Report 3 rd visit (two weeks) Version: 01 Date: 15Sep2014

Upload: others

Post on 26-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

 

 

 

Infrastructure  Access  Report  

Infrastructure:  SINTEF  Renewable  Energy  Lab  -­‐  SmartGrids  

User-­‐Project:  SYNERTIA-­‐PLUS  

Synthetic  inertia  from  wind  generation    

Olimpo  Anaya-­‐Lara,  University  of  Strathclyde    

                   

           

Marine Renewables Infrastructure Network

Status:   Interim  Report  (3rd  visit  –  one  week)  Version:   01  Date:     02-­‐Aug-­‐2014  

 EC  FP7  “Capacities”  Specific  Programme  

Research  Infrastructure  Action  

Status:   Report  3rd  visit  (two  weeks)  Version:   01  Date:     15-­‐Sep-­‐2014  

Page 2: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  2  of  19  

ABOUT  MARINET  MARINET  (Marine  Renewables   Infrastructure  Network  for  emerging  Energy  Technologies)   is  an  EC-­‐funded  network  of  research  centres  and  organisations  that  are  working  together  to  accelerate  the  development  of  marine  renewable  energy  -­‐  wave,  tidal  &  offshore-­‐wind.    The  initiative  is  funded  through  the  EC's  Seventh  Framework  Programme  (FP7)  and  runs  for  four  years  until  2015.    The  network  of  29  partners  with  42  specialist  marine  research  facilities  is  spread  across  11  EU  countries  and  1  International  Cooperation  Partner  Country  (Brazil).    MARINET   offers   periods   of   free-­‐of-­‐charge   access   to   test   facilities   at   a   range   of   world-­‐class   research   centres.    Companies  and  research  groups  can  avail  of  this  Transnational  Access  (TA)  to  test  devices  at  any  scale  in  areas  such  as  wave   energy,   tidal   energy,   offshore-­‐wind   energy   and   environmental   data   or   to   conduct   tests   on   cross-­‐cutting  areas  such  as  power  take-­‐off  systems,  grid  integration,  materials  or  moorings.    In  total,  over  700  weeks  of  access  is  available  to  an  estimated  300  projects  and  800  external  users,  with  at  least  four  calls  for  access  applications  over  the  4-­‐year  initiative.    MARINET   partners   are   also   working   to   implement   common   standards   for   testing   in   order   to   streamline   the  development  process,  conducting  research  to  improve  testing  capabilities  across  the  network,  providing  training  at  various  facilities  in  the  network  in  order  to  enhance  personnel  expertise  and  organising  industry  networking  events  in  order  to  facilitate  partnerships  and  knowledge  exchange.        The  aim  of  the  initiative  is  to  streamline  the  capabilities  of  test  infrastructures  in  order  to  enhance  their  impact  and  accelerate  the  commercialisation  of  marine  renewable  energy.    See  www.fp7-­‐marinet.eu  for  more  details.    Partners    

 

Ireland  University  College  Cork,  HMRC  (UCC_HMRC)  

Coordinator    

Sustainable  Energy  Authority  of  Ireland  (SEAI_OEDU)    

   

Denmark  Aalborg  Universitet  (AAU)  

 

Danmarks  Tekniske  Universitet  (RISOE)    

   

France  Ecole  Centrale  de  Nantes  (ECN)  

 

Institut  Français  de  Recherche  Pour  l'Exploitation  de  la  Mer  (IFREMER)  

 

   

United  Kingdom  National  Renewable  Energy  Centre  Ltd.  (NAREC)  

 

The  University  of  Exeter  (UNEXE)    

European  Marine  Energy  Centre  Ltd.  (EMEC)    

University  of  Strathclyde  (UNI_STRATH)    

The  University  of  Edinburgh  (UEDIN)    

Queen’s  University  Belfast  (QUB)    

Plymouth  University(PU)    

   

Spain  Ente  Vasco  de  la  Energía  (EVE)  

 

Tecnalia  Research  &  Innovation  Foundation  (TECNALIA)  

   

Belgium  1-­‐Tech  (1_TECH)  

 

 

Netherlands  Stichting  Tidal  Testing  Centre  (TTC)    

Stichting  Energieonderzoek  Centrum  Nederland  (ECNeth)    

 

 

Germany  Fraunhofer-­‐Gesellschaft  Zur  Foerderung  Der  Angewandten  Forschung  E.V  (Fh_IWES)    

Gottfried  Wilhelm  Leibniz  Universität  Hannover  (LUH)    

Universitaet  Stuttgart  (USTUTT)    

 

 

Portugal  Wave  Energy  Centre  –  Centro  de  Energia  das  Ondas  (WavEC)    

 

 

Italy  Università  degli  Studi  di  Firenze  (UNIFI-­‐CRIACIV)    

Università  degli  Studi  di  Firenze  (UNIFI-­‐PIN)    

Università  degli  Studi  della  Tuscia  (UNI_TUS)    

Consiglio  Nazionale  delle  Ricerche  (CNR-­‐INSEAN)    

 

 

Brazil  Instituto  de  Pesquisas  Tecnológicas  do  Estado  de  São  Paulo  S.A.  (IPT)    

 

 

Norway  Sintef  Energi  AS  (SINTEF)      

Norges  Teknisk-­‐Naturvitenskapelige  Universitet  (NTNU)    

 

Page 3: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  3  of  19  

DOCUMENT  INFORMATION  Title   Synthetic  inertia  from  wind  generation  Distribution   Public  Document  Reference   MARINET-­‐TA3-­‐SYNERTIA-­‐PLUS  User-­‐Group  Leader,  Lead  Author  

 

Olimpo  Anaya-­‐Lara   University  of  Strathclyde  204  George  Street,  Glasgow,  G1  1XW,  United  Kingdom  

User-­‐Group  Members,  Contributing  Authors  

 

Olimpo  Anaya-­‐Lara      University  of  Strathclyde      

Infrastructure  Accessed:   SINTEF  Renewable  Energy  Lab  -­‐  Smartgrids  Infrastructure  Manager  (or  Main  Contact)  

Ole  Christian  Spro  

 

REVISION  HISTORY  Rev.   Date   Description   Prepared  by  

(Name)  Approved  By  Infrastructure  

Manager  

Status  (Draft/Final)  

01   19/6/13   Interim  report  –  first  2-­‐week  visit   O.  Anaya-­‐Lara   A.  Endegnanew   Final  01   19/8/13   Interim  report  –  second  2-­‐week  visit   O.  Anaya-­‐Lara   A.  Endegnanew   Final  01   15/9/14   Third  and  Fourth  1-­‐week  visit   O.  Anaya-­‐Lara   O.  C.  Spro   Final              

 

Page 4: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  4  of  19  

 

ABOUT  THIS  REPORT  One  of  the  requirements  of  the  EC  in  enabling  a  user  group  to  benefit  from  free-­‐of-­‐charge  access  to  an  infrastructure  is   that   the   user   group  must   be   entitled   to   disseminate   the   foreground   (information   and   results)   that   they   have  generated  under  the  project  in  order  to  progress  the  state-­‐of-­‐the-­‐art  of  the  sector.    Notwithstanding  this,  the  EC  also  state   that   dissemination   activities   shall   be   compatible   with   the   protection   of   intellectual   property   rights,  confidentiality  obligations  and  the  legitimate  interests  of  the  owner(s)  of  the  foreground.    The  aim  of  this  report  is  therefore  to  meet  the  first  requirement  of  publicly  disseminating  the  knowledge  generated  through  this  MARINET  infrastructure  access  project  in  an  accessible  format  in  order  to:  

• progress  the  state-­‐of-­‐the-­‐art  • publicise  resulting  progress  made  for  the  technology/industry  • provide  evidence  of  progress  made  along  the  Structured  Development  Plan  • provide  due  diligence  material  for  potential  future  investment  and  financing  • share  lessons  learned  • avoid  potential  future  replication  by  others  • provide  opportunities  for  future  collaboration  • etc.  

In   some   cases,   the   user   group   may   wish   to   protect   some   of   this   information   which   they   deem   commercially  sensitive,  and  so  may  choose  to  present  results  in  a  normalised  (non-­‐dimensional)  format  or  withhold  certain  design  data  –  this  is  acceptable  and  allowed  for  in  the  second  requirement  outlined  above.    

ACKNOWLEDGEMENT  The   work   described   in   this   publication   has   received   support   from  MARINET,   a   European   Community   -­‐   Research  Infrastructure  Action  under  the  FP7  “Capacities”  Specific  Programme.    

LEGAL  DISCLAIMER  The  views  expressed,  and  responsibility  for  the  content  of  this  publication,  lie  solely  with  the  authors.    The  European  Commission  is  not  liable  for  any  use  that  may  be  made  of  the  information  contained  herein.    This  work  may  rely  on  data  from  sources  external  to  the  MARINET  project  Consortium.    Members  of  the  Consortium  do  not  accept  liability  for  loss  or  damage  suffered  by  any  third  party  as  a  result  of  errors  or  inaccuracies  in  such  data.    The  information  in  this  document  is  provided  “as  is”  and  no  guarantee  or  warranty  is  given  that  the  information  is  fit  for  any  particular  purpose.     The   user   thereof   uses   the   information   at   its   sole   risk   and   neither   the   European   Commission   nor   any  member  of  the  MARINET  Consortium  is  liable  for  any  use  that  may  be  made  of  the  information.  

Page 5: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  5  of  19  

EXECUTIVE  SUMMARY    Extensive   research  has  been   conducted  on   the  provision  of   frequency   support   from  variable-­‐speed  wind   turbines  employing  different  methodologies.  However,   in  addition  to  the  impacts  on  network  operation,  provision  of  short-­‐term   frequency   support   has   implications   on   the   turbines   themselves.   In   essence,   the   control   implementation   to  deliver   the   ‘synthetic   inertia’   response   required   for   the   power   system   will   introduce   additional   and   possibly  significant  torque  demands  on  the  turbine.      In  this  research  context,  the  main  goal  of  this  project  was  to  observe  and  assess  experimentally  the  impact  of  control  loops  for  provision  of  synthetic  inertia  in  the  Doubly-­‐fed  Induction  Generator  (DFIG),  and  Fully-­‐Rated  Converter  (FRC)  power   electronic   converters.   In   addition,   preliminary   experimental   research   has   been   conducted   to   assess  implications  of  providing  damping  of  oscillations  on  FRC  power  electronic  converters.      The  work   conducted   in   this   project   has   been  organised  over   6  weeks   of   effective  work   in   the   lab   at   SINTEF.   This  Report   covers   the   activities   performed   and   results   achieved   during   the   third   and   fourth   visits,   each   of   which  consisted  of  one  week  (under  the  SYNERTIA-­‐PLUS  component  of  the  project).      The   main   work   during   the   first   two-­‐week   visit   focused   on   setting   up   the   hardware   in   the   laboratory   and  configuration  of  the  DFIG  wind  turbine  topology.  In  addition,  the  structure  of  a  frequency  control  loop  for  the  DFIG  has  been  amended  to  make  it  compatible  and  to  facilitate  the  implementation  in  the  Opal-­‐RT.  The  DFIG  and  network  models,   which   enable   to   represent   the   inertia   response   of   the   DFIG   were   significantly   improved   and   made  compatible  with   the  Opal-­‐RT   tested   on   the   real  machine.   During   the   second   two-­‐week   visit,   a   small-­‐scale   power  system,  which  was  able  to  demonstrate  typical  load  change-­‐frequency  variation  characteristic  was  set  up  as  the  test  rig  for  DFIG  frequency  support  controller.        During  the  SYNERTIA-­‐PLUS  visit  the  work  focused  on  the  Fully-­‐Rated  Converter  (FRC)  wind  turbine,  and  experiments  were  conducted  in  order  to  assess  the  FRC  capabilities  to  provide  synthetic  inertia  and  to  identify  issues  associated  with  controller´s  settings  and  time  delays  associated  to  different  elements   in  the  experimental  set  up.   In  addition,  initial  investigations  were  conducted  in  order  to  explore  the  capabilities  of  FRC  to  provide  damping  of  power  system  oscillations.  Preparation  and  results  obtained  in  these  investigations  are  also  presented  in  this  report.      

Acknowledgements    Dr.   Olimpo   Anaya-­‐Lara  wishes   to   thank   deeply  MARINET   for   the   financial   suport   provided.   Also   great   thanks   are  given  to  SINTEF  Energy  Research  for  hosting  this  research  and  to  Atle  Rygg  Årdal  and  Kjell  Ljøkelsøy  for  providing  all  the  support  required  for  the  lab  experiments.      

Page 6: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  6  of  19  

CONTENTS  

1   INTRODUCTION  &  BACKGROUND  ......................................................................................................................  7  1.1   INTRODUCTION  ....................................................................................................................................................  7  1.2   BACKGROUND  .....................................................................................................................................................  7  1.2.1   Frequency  control  in  power  systems  ...........................................................................................................  7  1.2.2   Definition  of  inertia  constant  H  ..................................................................................................................  8  1.2.3   Inertial  response  from  wind  turbines  ........................................................................................................  10  1.2.4   Summary  ...................................................................................................................................................  11  

2   DEVELOPMENTS  ACHIEVED  .............................................................................................................................  12  2.1   STAGE  GATE  PROGRESS  .......................................................................................................................................  12  2.2   THE  LABORATORY  SET-­‐UP  ....................................................................................................................................  13  2.3   THE  WIND  EMULATOR  .........................................................................................................................................  13  2.4   THE  VOLTAGE  SOURCE  CONVERTER  .......................................................................................................................  14  2.5   THE  INERTIA  EMULATION  CONTROLLER  ...................................................................................................................  14  

3   CASE  STUDIES  AND  EXPERIMENTAL  RESULTS  ...................................................................................................  15  3.1   VERIFICATION  OF  THE  SYNTHETIC  INERTIA  CONTROL  LOOP  ..........................................................................................  15  3.2   VARYING  WIND  SPEED  CONDITIONS  .......................................................................................................................  16  

4   CONCLUSIONS  .................................................................................................................................................  18  5   REFERENCES  ....................................................................................................................................................  19    

Page 7: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  7  of  19  

1 INTRODUCTION  &  BACKGROUND  

1.1 INTRODUCTION  Extensive   research  has  been   conducted  on   the  provision  of   frequency   support   from  variable-­‐speed  wind   turbines  employing  different  methodologies   [1][2].  However,   in  addition  to  the   impacts  on  network  operation,  provision  of  short-­‐term  frequency  support  has  implications  on  the  turbines  themselves.  In  essence,  the  control  implementation  to   deliver   the   ‘synthetic   inertia’   response   required   for   the   power   system   will   introduce   additional   and   possibly  significant   torque  demands  on   the   turbine.   It   is   therefore  necessary   to  conduct  experimental   tests   that   shed   light  and   provide   understanding   of   the   impact   that   different   control   strategies   have   on   sensitive   components   of   the  turbines  such  as  the  power  electronics.      The  capability  tests  have  consisted   in  triggering  a  kinetic  energy  release  from  the  generators  under  different   input  torque   conditions   (emulating   different   wind   speed   inputs),   and   measuring   the   generated   power   output,   its  magnitude  and  behaviour,  for  both  the  DFIG  and  the  FRC.  The  impact  of  the  sudden  release  of  kinetic  energy  in  the  form  of  active  power  from  the  generators  has  be  assessed  for  the  partial-­‐power  back-­‐to-­‐back  converter  of  the  DFIG  and  the  full-­‐scale  back-­‐to-­‐back  converter  of  the  FRC.      Questions   to   be   answered   by   this   project   include:   How   the   proposed   synthetic   inertia   controllers   work   in   real  conditions?   Which   wind   generator   technology   is   better   suited   for   providing   synthetic   inertia?   Which   generator  technology  imposes  less  stress  to  their  associated  power  electronics  during  the  kinetic  energy  release?  Do  the  back-­‐to-­‐back  converters  of  the  two  wind  generator  technologies  under  test  require  being  over-­‐dimensioned?      The  following  subsection  elaborates  on  the  issues  associated  with  frequency  stability  and  control  in  power  systems  in  order   to  give   the   reader  a  better  undertanding   into   the  work  conducted   in   this  SYNERTIA   (and  SYNERTIA-­‐PLUS)  project.    

1.2 BACKGROUND  With   the   increasing   wind   penetration   into   power   systems,   frequency   stability   has   become   a   particular   focus   of  attention  and  concern  for  Transmission  System  Operators  (TSOs).    Power   system   inertia   can  be  defined  as   the   total  amount  of  kinetic  energy   stored   in  all   rotational  generators  and  motors  that  are  synchronously  connected  to  the  power  network  [3]  .  During  a  power  system  frequency  disturbance,  e.g.   a   sudden   loss   in   generation   or   increase   in   load,   a  mismatch   between   generation   and   supply   will   occur.   The  power  system  frequency  will  consequently  change  at  a  rate   initially  determined  by  the  total  power  system  inertia.  Kinetic   energy   will   be   taken   from   or   released   into   power   systems   when   those   turbo-­‐generator   units   which   are  synchronously  connected  with  the  power  network  accelerate  or  decelerate.  This  is  referred  to  as  inertial  response.  However,  many  of   the  renewable  generator   technologies  employ  power  electronic  converters.  This   is   the  case   for  variable-­‐speed  wind   turbines  which  are   thus  decoupled   from  the  power  system  frequency  and  do  not   intrinsically  contribute  to  power  system  inertia.    

1.2.1 Frequency  control  in  power  systems  For  the  secure  operation  of  a  power  system,  the  frequency  should  remain  nearly  constant  and  it   is  dependent    on  active   power   balance.   The   initial   rate   of   change   of   frequency   is   determined   by   the   initial   mistmatch   and   power  system  inertia.  As  frequency   is  a  common  factor  throughout  the  system,  a  change   in  active  power  demand  at  one  point  is  reflected  throughout  the  system  by  a  change  in  frequency.    

Page 8: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  8  of  19  

 The  kinetic  energy  stored  in  the  rotating  masses  of  generators  and  loads,  i.e.  the  power  system  inertia,  determines  the  sensitivity  of  the  change  in  system  frequnecy.  The  higher  the  power  system  inertia,  the  lower  the  rate-­‐of-­‐change  of  frequency  in  case  of  an  imbalance  between  generation  and  demand.    In  the  event  of  a  suddent  failure   in  generation  or  connection  of  a   large   load  the  system  frequency  starts  dropping  (region  OX  in  Figure  1)  at  a  rate  mainly  determined  by  the  total  angular  momentum  of  the  system  (addition  of  the  angular  momentum  of  all  generators  and  spinning  loads  connected  to  the  system)  [4].  For  the  ocassions  when  the  frequency   drops   greater   than   0.2   Hz,   generation   plants   are   contracted   to   provide   additional   frequency   response  duties.  These  response  duties  are  classified  as  occasional  services  and  have  two  parts  namely,  primary  response  and  secondary  response.  In  the  UK,  the  primary  and  secondary  response  are  defined  as  the  additional  active  power  that  can   be   delivered   from   a   generating   unit   that   is   available   at   10   seconds   and   30   seconds   respectively.   Primary  response   is   provided  by   an   automatic   droop   control   loop   and   generators   increase   their   output   depending  on   the  dead   band   of   their   governor   and   time   lag   of   their   prime   mover   (e.g.   that   of   the   boiler   drum   in   steam   units).  Secondary  response  is  the  restoration  of  the  frequency  back  to  its  nominal  value  using  a  slow  supplementary  control  loop.      

   

Figure  1.  Frequency  control  in  England  and  Wales  [4]      However,  this   is  not  the  case  for  modern  wind  turbine  technology.  The  extracted  power  from  variable-­‐speed  wind  turbines   is   controlled  by  power  electronic   converters   and   there   is   no   inherent   relation  between   frequency  of   the  system   and   the   rotational   speed   of   the   tubrine.   Hence,   modern   wind   turbines   cannot   naturally   provide   an  instantaneous  power  boost  in  response  to  a  system  frequency  fall  and  thus  contribute  to  power  system  inertia.  As  wind   generation   is   gradually   replacing   conventional   power   plant,   an   increasing   wind   share   in   instantaenous    generation  may  make  the  power  system  more  vulnerable.    

1.2.2 Definition  of  inertia  constant  H  The  inertial  power  contribution  available  from  a  synchronous  generator  can  be  determined  by  taking  the  derivative  of   the   kinetic   energy   stored   in   the   rotating   rotor   and   any   coupled   rotating   components   (such   as   the   turbo-­‐machinery).  The  standard  derivation  of  the  simple  mathematical  relation  that  results  from  this  can  be  found  in  [3]:    

P = dEk

dt= J ⋅ω ⋅ dω

dt  

(1)  (1)(1)  

     

Page 9: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  9  of  19  

 where   J   is  the  effective  inertia  of  the  rotating  components  (taking  account  of  gear  ratios  where  they  might  exist),  and  ω  is  the  rotor  speed.    The  inertial  constant   H  is  defined  as  the  ratio  of  kinetic  energy  stored  in  the  rotor  system  at  nominal  speed  to  the  nominal  power  of   the  electrical  machine.   It  has  dimensions  of   time  and   represents   the   time  duration  of   releasing  stored  kinetic  energy  when  providing  nominal  power,  given  by,  [3]:    

H =12Jω0

2

S  

(1)  (1(2)  

   where  ω0  is  the  rated  rotor  speed,  and   S  is  the  rated  power  of  the  electrical  machine.  From  (1)  and  (2):    

PS= 2H ⋅

ωω0

⋅d ω ω0( )

dt  

(1)  (1(3)  

 Let   P  and  ω  denote  the  power  and  rotor  speed  in  per  unit,  then  power  and  torque  are  given  by:  

 

P = 2H ⋅ω ⋅dωdt

  (1)  (1(4)  

 

T = 2H ⋅dωdt

  (1)  (1(5)  

 Aside  from  transient  conditions  where  the  load  angle  is  varying,  the  speed  of  a  synchronous  machine  is  locked  to  the  network  frequency.  Consequently  (4)  and  (5)  can  be  written  in  terms  of   f  and   df dt  in  per  unit  rather  than  ω  and  dω dt :    

P = 2H ⋅ω ⋅dfdt

  (1)  (1(6)  

 

T = 2H ⋅dfdt

  (1)  (1(7)  

 The  relationship  between  the  power  mismatch  on  the  system  and  the  frequency  can  be  given  as:    

2Hf0

dfdt= Pm −Pe = ΔP   (1)  (1(8)  

 where   f0   is  the  nominal  frequency  of  the  system  in  Hz,   Pm   is  the  mechanical  power  in  pu,  and   Pe   is  the  electrical  power  in  pu,  ΔP  is  the  power  mismatch  in  pu.    The   total   system   inertia   Ht   comprises   the   combined   inertia   of   all   rotational   generators   and   motors   that   are  synchronously  connected  to  the  power  network  (or  near  synchrnously  connected  in  the  case  of  induction  generators  and  motors).  It  can  be  calculated  by:      

Page 10: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  10  of  19  

   

Ht =Hi ⋅Si

i=1

n

Sii=1

n

∑  

(1)  (1(9)  

   where  Hi  is  the  effective  inertia  of  the  electrical  machine,   Si  is  the  rated  power.    

1.2.3 Inertial  response  from  wind  turbines  The   provision   of   inertial   response   from   variable   speed   wind   turbines   can   be   obtained   by   controlling   the   power  output  in  response  to  frequency  changes  thereby  making  these  turbines  appear  more  like  conventional  generators  with  synchronously  connected   inertia.  There  have  been  various  approaches  proposed   in  the  open   literature  which  generally  involve  modification  of  the  turbine  controller.    1.2.3.1   Torque  control  approach    The  principle  of   this  approach   is   to  modify   the  demanded  torque   in   response   to  a  change   in  system  frequency  by  adding  a  supplementary  torque  control  loop  as  shown  in  Figure  2.  The  modified  demanded  torque  is  given  by:    

Td = Tref +Tinertia   (1)  (1(10)  

 where   Td  is  the  modified  demanded  torque,   Tref  is  the  demanded  torque  in  normal  turbine  operation,   Tinertia  is  the  added  torque  corresponding  to  the  change  in  system  frequency.      

 Figure  2.  Inertia  controller  schematic  

   It  was  shown  in  [5]  that  variable-­‐speed  wind  turbine  controllers  can  be  modified  to  give  a  response  similar  to  inertia  in  response  to  changes  in  network  frequency.  The  turbine  controller  is  modified  by  adding  a  supplementary  control  loop   which   is   independent   of   normal   wind   turbine   operation   (as   shown   in   Figure   3),   and   responds   to   system  frequency   changes   using   the   derivative   of   system   frequency,   dω dt .   Results   presented   in   [5]   suggest   that   the  proposed   inertia   response   method   is   a   ‘one-­‐shot’   scheme   that   probably   responds   in   proportion   to   the   rate-­‐of-­‐change  of  frequency  (ROCOF).  The  same  inertial  control  strategy  was  presented  in  [6].                      

Page 11: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  11  of  19  

 

 Figure  3.  Supplementary  control  loop  for  inertial  response  from  a  DFIG,  taken  from  [5].  

   The   impact  of   inertia  response  on  power  system  frequency  from  fixed-­‐speed  and  DFIGs  has  been  examined   in  [6].  Figure  4  shows  the  supplementary  control  loop  proposed  in  this  reference.  Here  the  supplementary  control  torque  TSC  is  added  to  the  reference  torque  Tref  (in  normal  turbine  operation)  to  provide  the  modified  demanded  torque  as  

shown  in  Figure  4.  The  addition  of  the  supplementary  controller  can  give  a  similar  response  to  the  inertial  response  of  the  conventional  generator.      

 Figure  4.  Supplementary  control  loop  for  dfig  controller,  taken  from  [6]  

   The   size   of   the   response  will   be   dependent   on   the   value   of   the   control   constant   K.  Under   normal   operation,   the  controllers  of  variable-­‐speed  wind  turbines  will  keep  the  turbines  at  its  optimal  speed  in  order  to  produce  maximum  power.  The  controller  gives  a  torque  set  point  that  is  based  on  measured  speed  and  power.  The  torque  set  point  is  an   input   for   the   converter   control   that   realizes   the   torque   by   controlling   the   generator   currents.   The   additional  torque  term  will  adapt  the  torque  set  point  as  a  function  of  the  rate-­‐of-­‐change  of  the  grid  frequency   df dt .      

1.2.4 Summary  Based   on   this   brief   review   of   synthetic   inertia   control   strategies   for   wind   turbines   both   in   academic   papers   and  brochures  from  industry,  it  can  be  seen  that  wind  turbines  have  the  capability  to  provide  inertial  response  support  in  response   to   frequency   changes   in   the   system.   However,   a   number   of   potential   issues   require   further   analysis   in  order  to  fully  understand  potential  benefits  and  drawbacks  of  the  concept.    

• In  contrast  to  synchronous  generators,  frequency  measurements  have  to  be  first  detected  by  wind  turbine  controllers.   How   the   frequency   filtering   should   be   implemented   still   requires   further   investigation   and  discussion  with  turbine  manufacturers.  

• Depending  on  the  control  strategies  used,  e.g.  torque  approach  or  contrast  power  approach,  the  potential  active  power   reduction  will   vary  because   these  approaches  have  different   impacts  on   rotor  aerodynamics  efficiency  during  the  provision  of   inertial  support.  As  a  result,   it  also  will   lead  to  different  recovery  process  for  the  wind  turbine.  How  these  factors  may  interact  with  power  system  recovery  and  system  stability  needs  to  be  carefully  examined.  

• The  inertia  support  from  wind  turbines  may  result  in  potential  revenue  loss  for  wind  plant  operators  and  its  impact  on  turbine  lifetime  remains  unclear.  

• The   approach   followed   for   the   experiments   presented   in   this   report   very  much   follow   that   presented   in  Figure  3.  

Page 12: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  12  of  19  

 

2 DEVELOPMENTS  ACHIEVED    During   the   third   (two-­‐week)   visit   the  work   has   concentrated   on   testing   the   FRC   capabilities   to   provide   synthetic  inertia.   The   right   set   up   was   constructed   in   the   laboratory   and   various   scenarios   were   addressed   to   identified  capabilities  and  impact  on  power  electronic  converters  as  highlighted  in  the  Stage  Gate  Progress  table  below.    

2.1 STAGE  GATE  PROGRESS  Previously  completed:   ü  Planned  for  this  project:  Ü  

 STAGE  GATE  CRITERIA   Status  Stage  1  –  Simulations  • DFIG  model  in  Matlab/Simulink   ü  • Grid  model  to  represent  inertia  response  characteristic   ü  • 3 types of DFIG  controller  to  increase  the  inertia  support  from  DFIG  in  Simulink   ü  • Validation  of  the  effectiveness  of  the  proposed  controller            ü  • Modification  of  the  Simulink  model  to  be  applied  to  real  machine   ü    Stage  2  –  Hardware  set-­‐up  dFIG  set  up  and  testinf  • Induction  machine  with  speed  control   ü  • Rotor  and  grid  side  converter  for  DFIG  set-­‐up   ü  • Applying  DFIG  controller  on  the  induction  machine  and  converters.   ü  • Inertia  support  of  DFIG  based  on  current  mode  control   ü    Stage  3  –  FRC  Hardware  set-­‐up  and  testing  • Inertia  support  of  DFIG  with  fully  rated  converter ü                                          

Page 13: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  13  of  19  

 

2.2 THE  LABORATORY  SET-­‐UP  This   section   describes   the   laboratory   model   implemented   in   the   SINTEF   Renewable   Energy   Lab   –   SmartGrids   as  shown  in  Figure  5.  The  model  consists  of  the  following  components:    

• Wind  farm  equivalent  o A  55  kVA  motor-­‐generator  set  o Motor-­‐drive  for  the  55  kVA  motor  

• Weak  grid  equivalent  o A  transmission  line  equivalent  including  a  transformer  o A  17  kVA  synchronous  generator-­‐induction  motor  set  o A  22   kW   frequency   converter   for   controlling   the   induction  motor  driving   the  17   kVA   synchronous  

generator  o A  controllable  resistor  load  

• Remote  control  program  in  Labview        

 Figure  5.  Connexion  of  the  FRC  generator  to  the  laboratory  electrical  network  

     The   induction  motor-­‐generator   set   is   used   as  wind   farm  equivalent   and   the  motor  drive   is   used   to   emulate  wind  power  profiles.  The  synchronous  generator-­‐induction  motor  set  is  used  to  represent  a  stand  alone  weak  AC  grid.  This  weak  AC  grid  also  contains  a  transmission   line  equivalent   including  a  transformer  and  a  controllable  resistor  bank.  The  converters  and  the  motor-­‐drive  are  equipped  with  a  CAN-­‐bus  interface  which  enables  receiving  status  messages  and  measurements  and  sending  control  actions  [7].      

2.3 THE  WIND  EMULATOR  The  drive  used  to  control  the  motor  of  the  induction  motor-­‐generator  set  is  an  ABB  ACS600  unit  with  a  rated  power  of  75  kW  and  input  voltage  of  400  V  AC.  The  drive  can  be  controlled  and  monitored  remotely  with  Labview  through  a  National   Instruments   DAQ-­‐unit.   It   can   be   turned   on/off,   and   the   torque-­‐reference   can   be   dynamically   changed.  Speed  and  torque  measurements  can  also  be  logged.        

Page 14: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  14  of  19  

 

2.4 THE  VOLTAGE  SOURCE  CONVERTER  The  data   for   the   converters   used   in   the   experiment   are   presented   in   Table   1.   The   control   system   for   the   60   kVA  laboratory  converters  is  developed  by  SINTEF.  It  runs  on  a  Xilink  Virtex5  FPGA-­‐based  processor  system.  The  control  system   is   configured   with   a   wide   range   of   parameter   settings   and   possible   operation  modes.   Depending   on   the  application   different   control   objectives   can   be   chosen,   e.g.   C-­‐voltage,   active/reactive   current.   Frequency   (grid-­‐connected  mode),  torque,  speed,  flux  (motor-­‐drive  mode).      

Table  1.  Laboratory  Voltage  Source  Converter  data    

Parameter   Value  Main  supply  voltage   0-­‐400  V  rms  (AC)  DC  voltage   550-­‐750  V  Rated  power   60  kVA  Rated  current   100  A  RMS  (AC)  Switching  frequency   Maximum  7  kHz  LCL  filter   500µH,  50  µF,  200  µH  DC  filter  capacitance    

   

2.5 THE  INERTIA  EMULATION  CONTROLLER  The   block   diagram  of   the   control   loop   implemented   in   the   laboratory   to   enable   the   FRC  wind   turbine   to   provide  synthetic   inertia   is   illustrated   in   figure   6.   It   can   be   observed   that   the   control   concept   is   simple,   and   works   on  modifying  the  torque  set  point  similarly  to  that  presented  in  Figure  3.      

   

Figure  6.  FRC  control  loop  to  enable  inertia  emulation                      

Page 15: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  15  of  19  

 

3 CASE  STUDIES  AND  EXPERIMENTAL  RESULTS    This   section   presents   a   selection   of   results   obtained   in   the   laboratory   experiments   which   allow   confirming   the  capability   of   the   FRC  wind   turbine   technology   to  provide   short-­‐term   frequency   support   (synthetic   inertia),   and   to  understand  what  is  the  impact  if  any,  on  the  power  electronic  converters.  The  approach  adopted  was  to  first  test  the  correct  operation  of  the  additional  control  loop  to  provide  synthetic  inertia  using  small  and  large  load  increases,  and  then   introducing   the   operating   condition   of   the   turbine,   where   experiments   which   represented   different   wind  conditions  were  conducted.  This   latter  case  also  allowed  understanding  the  potential  FRC  contribution   to  network  damping  whilst  supporting  the  inertia  response.        

3.1 VERIFICATION  OF  THE  SYNTHETIC  INERTIA  CONTROL  LOOP    The  correct  operation  of   the  synthetic   inertia   loop  was  verified  under  small  and   large   load   increase.  How  small  or  large  was  somewhat  arbitrary  as  long  as  a  condition  could  be  produced  in  the  lab  which  allowed  observing  the  effect  of  the  controller  on  the  grid  frequency.  The  responses  presented  may  not  be  found  in  practice  but  they  are  clearly  artificially  generated  for  control  design  and  verification  purposes.  The  results  for  both  small  and  large  load  increase  are  presented  in  Figure  7  and  Figure  8,  respectively.      

             

Figure  7.  Results  for  a  small  load  increase  without  and  with  frequency  support  (the  x-­‐axis  represents  time).      

             

Figure  8.  Results  for  a  large  load  increase  without  and  with  frequency  support      

Page 16: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  16  of  19  

 The   results   presented   in   Figure   7   and   Figure   8   demonstrate   the   synthetic   inertia   contribution   of   the   FRC   wind  turbine.  In  can  be  clearly  observed  that  the  frequency  drop  is  reduce  significantly  in  both  cases  when  the  synthetic  inertia   control   loops   is   enabled.   It   is   very   important   to   comment   that   no   drastic   variations  were   observed   in   the  currents  or  dc  voltage  in  the  power  electronics.  However,  further  tests  are  necessary  to  confirm  fully  that  this  is  the  case  (although  not  for  every  operating  condition).  Nevertheless,  it  is  safe  to  note  that  fault  conditions  create  more  demanding  requirements  from  the  turbine.  Of   importance  when  considering  the  provision  of  synthetic   inertia  may  not  be  in  the  sense  of  magnitudes  but  duration  of  the  service  provision.        

3.2 VARYING  WIND  SPEED  CONDITIONS    The   results   discussed   in   this   section   aim   to   illustrate   the   FRC   capabilities   to   provide   synthetic   inertia   support   at  different   power   output   levels   (due   to   different   prevailing  wind   speeds).   The   scenarios   cover   the   range   from   low,  medium  and  near-­‐rated  wind  speed.  This  has  been  achieved  by  manupulation  of  the  wind  turbine  generator  speed.  A  base  case  scenario  was  conducted  with  no  additional  control  loop.  This  is  used  for  comparison  with  case  with  the  contoller  enabled  using  different  control  gains,  Kcontrol.    The  frequency  response  against  time  for  these  scenarios  is  presented  in  Figure  9,  Figure  10,  and  Figure  11.  It  can  be  observed   that   in   every   case,   the   frequency   response   is   significantly   improved  when   the   additonal   control   loop   is  enabled  as  shown  in  the  plots  with  Kcontrol  =  0.2.  It  can  be  seen  that  the  frequency  drop  becomes  less  as  the  wind  speed   increases.   Another   aspect   which   is   quite   noticeable   is   the   contribution   to   system   damping.   It   has   to   be  mentioned   that   this   additional   featured   was   achieved   without   introducing   an   additional   control   loop   but   by   the  introduction  of  a  filter  as  shown  in  Figure  6.  This  feature  needs  to  be  further  explored  by  the  implementation  of  a  multi-­‐machine  grid  in  the  lab.      Low  wind  speed.  In  this  scenario,  the  speed  of  the  wind  generator  was  set  300  rpm.  The  results  are  illustrated  below  in  Figure  9.        

               

Figure  9.  Results  for  a  low  wind  speed  scenario            

Page 17: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  17  of  19  

   

             

Figure  9.  Results  for  a  low  wind  speed  scenario  (continued)        Medium  wind  speed.  In  this  scenario,  the  speed  of  the  wind  generator  was  set  600  rpm.  The  results  are  illustrated  below  in  Figure  10.      

             

             

Figure  10.  Results  for  a  medium  wind  speed  scenario              

Page 18: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  18  of  19  

   Near-­‐rated   wind   speed:   In   this   scenario,   the   speed   of   the   wind   generator   was   set   1000   rpm.   The   results   are  illustrated  below  in  Figure  11.      

             

             

Figure  11.  Results  for  a  near-­‐rated  wind  speed  scenario      

4 CONCLUSIONS    The   experiments   carried   out   under   the   SYNERTIA-­‐PLUS   visit   focused   on   assessing   the   FRC   capabilities   to   provide  synthetic   inertia  and  to   identify   issues  associated  with  controller´s  settings  and  time  delays  associated  to  different  elements  in  the  experimental  set  up.  Initial  investigations  were  conducted  in  order  to  explore  the  capabilities  of  FRC  to  provide  damping  of  power  system  oscillations.    As   it   was   mentioned   before   no   drastic   variations   were   observed   in   the   currents   or   dc   voltage   in   the   power  electronics.   However,   further   tests   are   necessary   to   confirm   fully   that   this   is   the   case   (although   not   for   every  operating  condition).  Nevertheless,  it  is  safe  to  note  that  fault  conditions  create  more  demanding  requirements  from  the  turbine.  Of  importance  when  considering  the  provision  of  synthetic  inertia  may  no  be  in  the  sense  of  magnitudes  but   duration  of   the   service   provision.   The  natural   follow-­‐up   step   to   the  work   conducted   is   to   confirm   the   results  using  a  multi-­‐machine  system.      A   recommendation   for   future  work   is   in   the  direction  of   frequency  measurements  and  commnication   to   the  wind  power  plant  controller  when  it  is  interfaced  through  an  HVDC  link.    

Page 19: MARINET SYNERTIA-PLUS Report Olimpo...InfrastructureAccessReport:SYNERTIA6PLUS! Rev.!01,154Sep42014! Page3!of!19! DOCUMENT&INFORMATION& Title+ Synthetic!inertiafrom!wind!generation!

  Infrastructure  Access  Report:  SYNERTIA-­‐PLUS  

Rev.  01,  15-­‐Sep-­‐2014  Page  19  of  19  

 

5 REFERENCES    [1] Anaya-­‐Lara,  O.,  Hughes,   F.  M.,   Jenkins,  N.,   and   Strbac,  G.:   “Contribution  of  DFIG-­‐based  wind   farms   to   power  

system  short-­‐term  frequency  regulation,”   IEE  Proceedings  Generation,  Transmission  and  Distribution,  Vol.  153,  No.  2,  pp.  164-­‐170,  March  2006.  

[2] Hughes,  F.  M.,  Anaya-­‐Lara,  O.,   Jenkins,  N.,  and  Strbac,  G.:   “Control  of  DFIG-­‐based  wind  generation   for  power  network  support,”  IEEE  Transactions  on  Power  Systems,  Vol.  20,  No.  4,  pp.  1958-­‐1966,  November  2005.  

[3] Kundur,  P.  (1994):  “Power  system  stability  and  control”,  McGraw-­‐Hill,  ISBN:  0-­‐07-­‐035958-­‐X.  [4] Erinmez,  I.A.,  Bickers,  D.O.,  Wood,  G.F.,  Hung,  W.  W.  (1999):  “NGC  Experience  with  frequency  control  in  England  

and  Wales  –  Provision  of  frequency  response  by  generator”,  IEEE  PES  Winter  Meeting.  [5] Ekanayake,  J.  and  Jenkins,  N.,  "Comparison  of  the  response  of  doubly  fed  and  fixed-­‐speed  induction  generator  

wind  turbines  to  changes  in  network  frequency,"  Energy  Conversion,  IEEE  Transactions  on,  vol.  19,  pp.  800-­‐802,  2004.  

[6] Lalor,   G.,  Mullane,   A.   and  O'Malley,  M.,   "Frequency   control   and  wind   turbine   technologies,"   Power   Systems,  IEEE  Transactions  on,  vol.  20,  pp.  1905-­‐1913,  2005.  

[7] Stoeylen,   H.,   Laboratory   Demonstration   of   Provision   of   Primary   Frequency   Control   Services   from   HVDC-­‐VSC  Connected  Wind,  Farms,  MSc  Thesis,  NTNU,  May  2014.