mark 20121024

38
1 Simulation and Analysis of the Data in TPS 2012/10/24 Cheng-Chin Chiang 江政錦

Upload: chengchin-chiang

Post on 27-Jun-2015

150 views

Category:

Career


8 download

DESCRIPTION

My career report (~2012.10.24).

TRANSCRIPT

Page 1: Mark 20121024

1

Simulation and Analysis of the Data in TPS

2012/10/24

Cheng-Chin Chiang 江政錦

Page 2: Mark 20121024

Personal Data Present Position: Assistant Researcher in Beam Dynamics Group, NSRRC

Education: National Taiwan University (2004~2009), Ph.D. in Physics

Experience: 2004~2010 (1) Member of BELLE collaboration in KEK (2) On call shift of BELLE sub-detector in KEK (3) System manger of NTU High Energy Lab. (4)  Internal referee of Physical analysis group in BELLE collaboration 2010~2012 (5) Computer programming for TPS project

2

Page 3: Mark 20121024

Working Experience at KEK-BELLE

3

Page 4: Mark 20121024

KEK Campus (Tsukuba, Japan)

4

Page 5: Mark 20121024

5

8.0 GeV e- Belle

•  Two separate rings for e+ and e-

•  Energy in CM is 10.58GeV Y(4S) •  Ring length 3Km

3.5 GeV e+

KEK-BELLE e+e- Collider

Page 6: Mark 20121024

6 e+ Generator of linac

e+/e- Linac Straight Section Arc Section

Electron Source of linac

KEK e+e- Accelerator

Page 7: Mark 20121024

7

Extreme Forward Calorimeter γ, π0 reconstruction e+- identification

The BELLE Detector

Page 8: Mark 20121024

My Working Place at KEK

8

Electronic-Hut BELLE control room Extreme Forward Calorimeter

Spring Autumn Kitty

Page 9: Mark 20121024

Study the CP (Charge × Parity) Violation

9

For example: B0→J/ψ K0 Decay (Time dependent CP violation)

-- B0 Decay -- B0 Decay

Page 10: Mark 20121024

The Challenge of CP Violation

10

Tree diagram Penguin diagram

•  In theoretical calculations: - We need a good model to explain the behavior of B meson decays from experimental measurements

•  In experiment: - We need to produce the maximum number of B meson decays for good measurements in statistics (i.e. good luminosity). - We need good analysis methods and tools to evaluate the huge amount of experimental data

Page 11: Mark 20121024

11

657 Million BB Data Measurement (B0→ρ0ρ0 Decay)

Mode Yield Eff.(%) Σ BF (x10-6) UL (x10-6)

ρ0ρ0 9.16 (fL=1) 1.0 <1.0 (fL=1)

ρ0ππ 2.90 1.3 <12.0

4π 1.98 2.5 <19.3

ρ0f0 9.81 … … <0.3

f0f0 10.17 … … <0.1

f0ππ 2.98 … <3.8 €

161.2−59.4−25.1+61.2+27.7

112.5−65.6+67.4 ± 52.3

24.5−22.1−16.2+23.6+10.1

−11.8−12.9−3.6+14.5+4.8

−7.7−3.5+4.7 ± 3.0

6.3−34.7+37.0 ±18.0 €

12.4−4.6−1.9+4.7+2.1

5.9−3.4+3.5 ± 2.7

0.3−1.8+1.9 ± 0.9

0.4 ± 0.4−0.3+0.2

: B0 →ρ0ρ0 : Continuum : b→c decays : Other charmless B decays

Page 12: Mark 20121024

Publications 1.  C.C. Chiang et al. (Belle Collaboration), ``Measurement of B0 → ππππ

decays and search for B → ρ0ρ0”, Phys. Rev. D, 78, 111102(R) (2008); arXiv:0808.2576.

2.  C.C. Chiang et al. (Belle Collaboration), ``Measurement of B0 → ππππ decays and search for B → ρ0ρ0 at Belle”, in the Book ``Les Rencontres de physique de la Vallée d'Aoste”, Edited by M. Greco, ISBN 978-88-86409-56-8, p.365-378 (2008).

3.  C.C. Chiang et al. (Belle Collaboration), ``b → d and other charmless B decays at Belle”, European Physical Society Europhysics Conference on High Energy Physics (2009), PoS(EPS-HEP2009) 207; http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=84.

4.  C.C. Chiang et al. (Belle Collaboration), ``Search for B0 → K*0 anti-K*0, B0 → K*0 K*0 and B0 → KKππ decays”, Phys. Rev. D, 81, 071101(R) (2010); arXiv:1001.4595.

5.  C.C. Chiang et al. (Belle Collaboration),``Improved Measurement of the Electroweak Penguin Process B → Xs l+l-“, 35th International Conference of High Energy Physics, PoS(ICHEP2010) 231; http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=120.

12

Page 13: Mark 20121024

Working Experience at NSRRC

13

Page 14: Mark 20121024

14

(a) Baseline Design: Qx= 14.3796, Qy= 9.3020 Cx= 1.0, Cy= 1.0

(b) From Magnet Group Data: Qx= 14.3781, Qy= 9.3057 (ΔQx= -0.0015, ΔQy= +0.0037) Cx= 0.95, Cy= 1.25

(c) New Re-Matching Result: Qx= 14.3799, Qy= 9.3027 (ΔQx= +0.0003, ΔQy= +0.0007) Cx= 1.0, Cy= 1.0

0.0 10. 20. 30. 40. 50. 60. 70. 80. 90.s (m)

E/ p0 c = 0 .Table name = TWISS

FULLTPS booster b6p4d2Linux version 8.23/08 28/09/12 10.28.00

0.02.4.6.8.

10.12.14.16.18.20.

(m),

DX10 x y DX10

0.0 10. 20. 30. 40. 50. 60. 70. 80. 90.s (m)

E/ p0 c = 0 .Table name = TWISS

FULLTPS booster b6p4d2Linux version 8.23/08 28/09/12 10.28.20

0.02.4.6.8.

10.12.14.16.18.20.

(m),

DX10 x y DX10

0.0 10. 20. 30. 40. 50. 60. 70. 80. 90.s (m)

E/ p0 c = 0 .Table name = TWISS

FULLTPS booster b6p4d2Linux version 8.23/08 28/09/12 10.28.30

0.02.4.6.8.

10.12.14.16.18.20.

(m),

DX10 x y DX10

Optimize the TPS/BR Lattice

Page 15: Mark 20121024

Check the Dynamic Aperture (DA) for TPS/BR with 10 Random Machines

15

Blue: baseline lattice (a) Red: new matched lattice (c)

The size of DA is related to the injection efficiency. We do not yet consider the close orbit distortion and orbit variations due to ramping.

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 0%123456789

10123456789

10

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = -1.5%123456789

10123456789

10

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 1.5%123456789

10123456789

10

βx=14.926, βy=6.749 βx=14.904, βy=6.683

βx=15.942, βy=5.928 βx=15.928, βy=5.854

βx=13.898, βy=7.643 βx=13.872, βy=7.577

The multipole field errors are adopted in the lattice model.

Page 16: Mark 20121024

Estimate Eddy Current Effect in TPS/BR

16

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140 160

Chr

omat

icity

Time (ms)

x (S.Y. Lee) y (S.Y. Lee)

x (SLS) y (SLS)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160 0

0.5

1

1.5

2

2.5

3

K2 (1

/m3 )

Ener

gy (G

eV)

Time (ms)

K2 (S.Y. Lee)

K2 (SLS)

Energy

(DESY formula) (S.Y. Lee’s formula)

The beam is injected from linac to TPS/BR at 150 MeV

Check DA for the worst (Eddy) case (at 23 ms)

ΔK2(at Dipole) vs. Time Chromaticity vs. Time

The beam energy is increased in TPS/BR from 150 MeV to 3 GeV

Page 17: Mark 20121024

Check DA with 100 Random Machines

17

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = -1.5% dynap

chamber

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 1.5% dynap

chamber

TPS/BR Original lattice model

w/ Eddy effect (worst case)

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 0% dynap

chamber

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = -1.5% dynap

chamber

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 0% dynap

chamber

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 1.5% dynap

chamber

Page 18: Mark 20121024

Apply Sextupole Magnets for Chromaticity Correction During TPS/BR Ramping

18

-6

-5

-4

-3

-2

-1

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

K2

(SD

Sex

tupo

le S

treng

th) (

1/m

^3)

K2 (Sextupole Strength Induced by Eddy Current Effect) (1/m^3)

Chromaticity = (+1.07, +1.50)

’check.log’ u 1:(2.0*$2)fit result: a1=-28.2654, b1=-0.012603

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

K2

(SF

Sext

upol

e St

reng

th) (

1/m

^3)

K2 (Sextupole Strength Induced by Eddy Current Effect) (1/m^3)

Chromaticity = (+1.07, +1.50)

’check.log’ u 1:(2.0*$3)fit result: a2=2.27689, b1=0.00534554 -6

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100 120 140 160

K2 (1

/m3 )

Time (ms)

K2 (Eddy current effect, DESY formula) K2 (SD sextupole strength) K2 (SF sextupole strength)

K2SD = (−28.2654) × K2EDDY − 0.0126

K2EDDY vs. K2SD

K2EDDY vs. K2SF

K2SF = (2.2769) × K2EDDY + 0.0053€

(ξx, ξy ) ~ (+1, +1)MAD Chromaticity

(For a ramping period)

K2 (SF, SD) vs. Time

Page 19: Mark 20121024

Check DA with 100 Random Machines

19

w/ Eddy effect (worst case) + sext. corrections

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = -1.5% dynap

chamber

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30y

(mm

)x (mm)

E/E = 0% dynap

chamber

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

y (m

m)

x (mm)

E/E = 1.5% dynap

chamber

In summary, applying sextupole magnets in TPS/BR during the energy ramping allows us to improve the DA.

Page 20: Mark 20121024

Establish Analysis Tools (MIA&ICA)

•  To prepare the analysis tools for TPS commissioning, we apply MIA (Model Independent Analysis) [1] and ICA (Independent Component Analysis) [2] in turn-by-turn BPM data mining.

[1] Y. T. Yan et al., Report No. SLAC-PUB-11209 (2005). [2] X. Huang et al., Phys. Rev. ST Accel. Beams 8, 064001 (2005).

•  MIA or ICA are fast analyses (one-shot) for BPM beam signal, which are used to measure the lattice parameters such as beta, phase advance, dispersion, betatron and synchrotron tunes.

•  We test MIA and ICA methods with TPS/BR simulation data and TLS/SR experimental data.

•  For TPS/BR analysis, we have included the multipole errors, eddy current effects, and BPM noise in track simulation.

20

Page 21: Mark 20121024

21

The Principle of MIA •  We decompose the equal time covariance matrix of turn-by-

turn BPM data with Singular Value Decomposition (SVD):

X(t) =

x1(1) x1(2) x1(1000)x2(1) x2(2) x2(1000)

x60(1) x60(2) x60(1000)

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

For 60 BPMs and 1000 turns:

CX = X(t)X(t)T =UΛUT (decomposed with SVD)

∴X =U(UT X) = A1 A2 A3 A4 A5 ( )

S1S2S3S4S5

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

Dx νx 2νx

Dx

νx

2νx

Dispersion

Betatron motion

Sextupole terms

Spatial Temporal

Page 22: Mark 20121024

22 22

For horizontal betatron motion:

X =U(UT X) = A1 A2 A3 0( )

s1s2s30

⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟

=

aDx1βx1Msin(ν xφ1)

βx1Mcos(ν xφ1)

aDx2βx2Msin(ν xφ2)

βx2Mcos(ν xφ2)

aDxmβxmMsin(ν xφm )

βxmMcos(ν xφm )

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

×

λ1Nsin(2πν syn. • 0)

λ1Nsin(2πν syn. •1)

λ1Nsin(2πν syn. • N)

λ2Ncos(2πν x • 0) λ2

Ncos(2πν x •1) λ2

Ncos(2πν x • N)

λ3Nsin(2πν x • 0 λ3

Nsin(2πν x •1) λ3

Nsin(2πν x • N)

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

Spatial Matrix (a = constant, Dx= dispersion)

Temporal Matrix (νsyn.=synchrotron tune)

Extract Beta, Phase, Dsipersion and Tunes from the First Three of Largest Singular Values

Dx = A1 × const.βx = (A2

2 + A32) × const.

φx = tan−1 A2A3

⎝ ⎜

⎠ ⎟

ν syn. = FFT(s1)ν x = FFT(s2,3)

Page 23: Mark 20121024

Ramping Effects vs. Turn Number

23

It takes about 100,660 turns to accomplish a ramping cycle.

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000

Ener

gy (G

eV)

Turn Number

Ramping Energy

1-10000 turn10001-20000 turn20001-30000 turn30001-40000 turn40001-50000 turn50001-60000 turn60001-70000 turn70001-80000 turn80001-90000 turn

90001-100660 turn 0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

RF

Volta

ge (M

V)

Turn Number

Ramping RF Voltage

1-10000 turn10001-20000 turn20001-30000 turn30001-40000 turn40001-50000 turn50001-60000 turn60001-70000 turn70001-80000 turn80001-90000 turn

90001-100660 turn

Beam Energy

RF Voltage

-6

-5

-4

-3

-2

-1

0

1

2

0 20000 40000 60000 80000 100000

K2 (1

/m^3

)

Turn Number

Ramping Sextupole Strength K2

Eddy current effect, DESY formula

SF sextupole strength

SD sextupole strength 1-10000 turn10001-20000 turn20001-30000 turn30001-40000 turn40001-50000 turn50001-60000 turn60001-70000 turn70001-80000 turn80001-90000 turn

90001-100660 turn

Eddy Effect Each color represents specific ramping period (for every 10,000 turns).

1

5

3 4

2

6 7

8 9 10

1 2

3 4

5 6 7 8 9 10

1 5 3 4 2 6 7 8 9 10

Page 24: Mark 20121024

6-D Phase Space for a Ramping Cycle

24

BPM1

X vs. PX Y vs. PY -ct vs. ΔE/E

.

.

.

.

.

.

. Each color represents specific tracking period (for every 10,000 turns).

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

PX/P

0

X (m)

BPM1 {X-PX} - plane

1-10000 turn10001-20000 turn20001-30000 turn30001-40000 turn40001-50000 turn50001-60000 turn60001-70000 turn70001-80000 turn80001-90000 turn

90001-100660 turn-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

PY/P

0

Y (m)

BPM1 {Y-PY} - plane

1-10000 turn10001-20000 turn20001-30000 turn30001-40000 turn40001-50000 turn50001-60000 turn60001-70000 turn70001-80000 turn80001-90000 turn

90001-100660 turn

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 0.02 0.04 0.06 0.08 0.1

dE/E

-ct (m)

BPM1 {T-PT} - plane

1-10000 turn10001-20000 turn20001-30000 turn30001-40000 turn40001-50000 turn50001-60000 turn60001-70000 turn70001-80000 turn80001-90000 turn

90001-100660 turn

BPM60

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Page 25: Mark 20121024

Reconstruct TPS/BR Lattice Parameters with MIA

25

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350 400 450 500

(a)

s (m)

x (m

)

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5

Horizontal Tune

Pow

er

(b)

x = 0.380(Model: 0.3796)

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350 400 450 500

(c)

s (m)

y (m

)

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5

Vertical Tune

Pow

er

(d)

y = 0.302(Model: 0.3020)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400 450 500

(e)

s (m)

Dx (

m)

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5

Synchrotron Tune

Pow

er

(f)

s = 0.025(Model: 0.0250)

The reconstructed values of βx, βy and horizontal dispersion Dx at BPMs are shown as red dots in (a), (c) and (e), respectively. The gray lines are model values along the TPS booster. The reconstructed tunes for νx, νy and νs are shown in (b), (d) and (f), respectively.

Model

Reconstructed value at BPM

Page 26: Mark 20121024

26

The Principle of ICA •  We diagonalize the non-equal time covariance matrices of turn-by-

turn BPM data:

X(t) =

x1(1) x1(2) x1(1000)x2(1) x2(2) x2(1000)

x60(1) x60(2) x60(1000)

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

For 60 BPMs and 1000 turns:

CX (τ = 0) = X(t)X(t)T = U1,U2( )Λ1 00 Λ2

⎝ ⎜

⎠ ⎟ U1

T

U2T

⎝ ⎜

⎠ ⎟ ,

CX (τk ≠ 0) = X(t)X(t +τk )T , k =1,2,3...

⇒ CX (τk ) =WDkWT ,

s =W T (Λ1−1/ 2U1

T )XA = (Λ1

−1/ 2U1T )−1W

The Jacobi-like joint diagonalization is applied to find out a unitary matrix W which is a joint diagonalizer for all the auto-covariance matrices:

whitening

(spatial)

(temporal)

(k =1,2,3...)

Page 27: Mark 20121024

Reconstruct TLS/SR Lattice Parameters with ICA

27

0 10 20 30 40 50 6022

24

26

28

30

32

34

36

SVx Index

log(

SVx)

Mode 1: βx

Mode 2: βx

Mode 7: Dx

Mode 3: βy

Mode 5: βy

There are vertical betatron couplings, the magnitude of coupling is about 10-7 of horizontal betaton oscillation.

0 20 40 60 80 100 1200

5

10

15

20

25

s (m)

y (m)

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

1.2

1.4

s (m)

D x (m)

Model value at BPM Model

Reconstructed value at BPM

•  We practice the ICA in experimental turn-by-turn data for TLS/SR. •  The horizontal and vertical tunes of TLS/SR model are 0.310 and 0.277, respectively;

the horizontal and vertical tunes from measurement are 0.302 and 0.180, respectively.

0 10 20 30 40 50 6022

24

26

28

30

32

34

36

SVy Index

log(

SVy)

Mode 1: βy

Mode 2: βy

Mode 3: βx

Mode 4: βx

There are horizontal betatron couplings, the magnitude of coupling is about 10-3 of vertical betatron oscillation.

Horizontal singular values Vertical singular values

0 20 40 60 80 100 1200

5

10

15

20

25

s (m)

x (m)

Page 28: Mark 20121024

Summary of MIA&ICA

•  We have successfully extracted lattice parameters, like beta, phase advance, dispersion and tunes with MIA or ICA for TPS/BR and TLS/SR.

•  We have included MIA&ICA analysis codes in MATLAB based system.

•  The property of MIA&ICA is fast analysis, so we can measure the machine status within seconds. It is suitable for TPS/BR analysis.

•  The MIA&ICA provides another information for LOCO, which would be helpful in machine measurement and modeling.

28

Page 29: Mark 20121024

Injection Study for TPS/SR

•  In order to reduce the radiation level, we study the tolerance of injected beam condition

•  Use Tracy-II for 6-D tracking. The lattice model includes the injection kicker strength, septum arrangement, chamber limits, multipole field errors (10 random machines are used), close orbit distortion and its correction by applying correctors, etc.

•  We generate a thousand particles as a bunch of a beam and track these particles for a thousand turns

•  Check the survival rate of a beam bunch and record the lost information of particles, including lost position, lost plane and lost turn number. These information are useful for radiation protection.

29

Page 30: Mark 20121024

Schematic Layout of TPS/SR Injection

30

K4

0.6

K3 K2

0.6

K1

Pulsed septum (AC septum)

0.8

3.6 2.8 3.6

Kicker magnet 0.6

0.6 Injected beam

Stored beam

0.8 DC septum

Unit:(m)

Bumped stored beam

K1 K2 K3 K4

Injection pt. Injection pt.

t0= 0 t1=T0 t1~T0

e-

Page 31: Mark 20121024

31

Simplified model for chamber limit used in injection simulations.

Septum wall

Injected beam Stored beam

Bumped stored beam

3 mm

Acceptance

Bumped beam acceptance

x’

Beam stay clear = 20.0 mm

Xoffset = 23.8 mm

x

K1 K2 K3 K4

Middle of R1 straight Injection point

800 400 QL1 QL1

3000 3000 1100 1100

600 600 600 600

700 700

68 mm 54 mm [-34, +34] [-20, +34]

The chamber limits in long and short straight sections are: [x = ±34 mm, y = ±5 mm]

Page 32: Mark 20121024

Phase Space (Px/P0 vs. x)

32

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum -4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

Choose one of the random machines and scan injected beam position in horizontal.

Xoffset = 23.8 mm Xoffset = 24.8 mm Xoffset = 25.8 mm Xoffset = 26.8 mm

Xoffset = 27.8 mm Xoffset = 28.8 mm Xoffset = 29.8 mm Xoffset = 30.8 mm

Xoffset = 31.8 mm Xoffset = 32.8 mm Xoffset = 33.8 mm Only show 9 turns Results

Page 33: Mark 20121024

Phase Space (Px/P0 vs. x)

33

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

-4

-3

-2

-1

0

1

2

3

4

-30 -20 -10 0 10 20 30

P x /

P 0 (x

10-3

)

x (mm)

Turn 0Turn 1Turn 2Turn 3Turn 4Turn 5Turn 6Turn 7Turn 8

SeptumSeptum

Px/P0 = -0.002 Px/P0 = -0.0016 Px/P0 = -0.0012 Px/P0 = -0.0008

Px/P0 = -0.0004 Px/P0 = 0.0 Px/P0 = 0.0004 Px/P0 = 0.0008

Px/P0 = 0.0012 Px/P0 = 0.0016 Px/P0 = 0.002

Only show 9 turns Results

Choose one of the random machines and scan injected beam angle in horizontal.

Page 34: Mark 20121024

Information of Loss Particles

34

0

10

20

30

40

50

60

70

80

90

100

-34 -32 -30 -28 -26 -24 -22 -20

Surv

ival

Rat

e (%

)

x (mm)

rand. mach. 1rand. mach. 2rand. mach. 3rand. mach. 4rand. mach. 5rand. mach. 6rand. mach. 7rand. mach. 8rand. mach. 9

rand. mach. 10

0

10

20

30

40

50

60

70

80

90

100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Surv

ival

Rat

e (%

)

Px / P0 (x10-3)

rand. mach. 1rand. mach. 2rand. mach. 3rand. mach. 4rand. mach. 5rand. mach. 6rand. mach. 7rand. mach. 8rand. mach. 9

rand. mach. 10

0

10

20

30

40

50

60

70

80

90

100

-10 -5 0 5 10

Surv

ival

Rat

e (%

)

y (mm)

rand. mach. 1rand. mach. 2rand. mach. 3rand. mach. 4rand. mach. 5rand. mach. 6rand. mach. 7rand. mach. 8rand. mach. 9

rand. mach. 10

0

10

20

30

40

50

60

70

80

90

100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Surv

ival

Rat

e (%

)

Py / P0 (x10-3)

rand. mach. 1rand. mach. 2rand. mach. 3rand. mach. 4rand. mach. 5rand. mach. 6rand. mach. 7rand. mach. 8rand. mach. 9

rand. mach. 10

0

20

40

60

80

100

-10 -5 0 5 10

Surv

ival

Rat

e (%

)

E/E (%)

rand. mach. 1rand. mach. 2rand. mach. 3rand. mach. 4rand. mach. 5rand. mach. 6rand. mach. 7rand. mach. 8rand. mach. 9

rand. mach. 10

0

10

20

30

40

50

60

70

80

90

100

-1200 -1000 -800 -600 -400 -200 0 200 400 600 800

Surv

ival

Rat

e (%

)

Time (ps)

rand. mach. 1rand. mach. 2rand. mach. 3rand. mach. 4rand. mach. 5rand. mach. 6rand. mach. 7rand. mach. 8rand. mach. 9

rand. mach. 10

(Use 10 random machines for checking) Survival Rate (%) vs. Injection x Survival Rate (%) vs. Injection xp Survival Rate (%) vs. Injection y

Survival Rate (%) vs. Injection yp Survival Rate (%) vs. Injection ΔE/E Survival Rate (%) vs. Injection Δτ

We find the efficiency of injection is crucial in vertical position and vertical angle. This is because the double-mini-βy lattice for TPS/SR has limited chamber limits in vertical direction (±5 mm).

Page 35: Mark 20121024

Miscellaneous •  Explore software tools for accelerator simulation, like MAD-X,

ELEGANT, etc. •  Apply statistical methods in data analysis (PAW, Mn_Fit, etc). •  Dipole ray tracing •  …

35

Z (mm) X (mm)

Field (gauss)

The distribution of magnet field for a bending magnet in TPS storage ring, which is measured by magnet group.

We calculate the effective length for a dipole by tracing a particle through the center of magnet. Using Runge-Kutta method for ray tracing, the effective length by calculating is 1095.37 mm, compared to the design effective length 1080 mm the error is 1.42%.

Page 36: Mark 20121024

Publications and Poster Presented 1.  C.C. Chiang, H.P. Chang, P.J. Chou (NSRRC), and S.Y. Lee

(IUCEEM), ``Simulation and Analysis of the Beam Signal in Taiwan Photon Source Booster”, Proceedings of IPAC 2012, New Orleans, Louisiana, USA; MOPPC077.

2.  H.-J. Tsai, C.C. Chiang, P.J. Chou and C.-C. Kuo (NSRRC), ``Top-Up Safety Simulations for the TPS Storage Ring”, TUPS073.

3.  H.-P. Chang, C.C. Chiang and M.-S. Chiu (NSRRC), ``Decoupling Problem of Weakly Linear Coupled Double Mini-beta-y Lattice of TPS Storage Ring”, WEPC033.

4.  F.H. Tseng, H.-P. Chang and C.C. Chiang (NSRRC), ``High-level Application Programs for the TPS Commissioning and Operation at NSRRC”, WEPC034.

5.  M.-S. Chiu, H.-P. Chang, C.-T. Chen, C.C. Chiang, C.-C. Kuo, Y.C. Lee and H.-J. Tsai (NSRRC), ``Double Mini-beta-y Lattice for TPS Storage Ring”, WEPC035.

6.  C.Y. Lee (NTHU), H.-P. Chang, C.C. Chiang, M.-S. Chiu, P.J. Chou, H.-J. Tsai (NSRRC) and S.-Y. Lee (IUCEEM), ``Design Studies of Low Emittance lattice for Taiwan Light Source at 1 GeV”, THPC064.

36

Page 37: Mark 20121024

Future Plan •  Keep updating the current works •  Extend the capability of beam measurement, lattice

modeling and optimization •  Study the beam instability and collective effects •  Prepare for TPS commissioning •  Explore the applications of software for theoretical

calculations •  …

37

Page 38: Mark 20121024

Thank You!

38