mark's 2002 research seminar 4

Upload: hala-salah

Post on 10-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Mark's 2002 Research Seminar 4

    1/44

    1

    Complexation and Reduction/Oxidation

    Reactions of Selected Flavonoids withIron and Iron Complexes: Implications

    on In-Vitro Antioxidant Activity

    O

    O

    OH

    OH

    OH

    OH

    OH

    Quercetin

  • 8/8/2019 Mark's 2002 Research Seminar 4

    2/44

    2

    A quote by Dr. Barry Halliwell from

    the American Journal of Medicine1:

    It is difficult these days to open a medical journal and not

    find some paper on the role of reactive oxygen species or

    free radicals in human disease.

    These species have been implicated in over 50 diseases.

    This large number suggests that radicals are not something

    esoteric, but that they participate as a fundamental component

    of tissue injury in most, if not all, human disease.

    1. Halliwell, B. American Journal of Medicine. 1991, 91(3), 14.

    2. Burda S. and Wieslaw O. J. Agric. Food Chem. 2001, 49, 2774-2779.

    Despite a vast volume of research on flavonoids as antioxidants,

    the mechanism of their action is incomplete2.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    3/44

    3

    Reactive Oxygen Species (ROS)

    ROS are a minor productof the oxidative respiratory

    chain (~1-2%), mostly in

    the form of superoxide.

    Excess production of ROS

    may result from iron

    overload and inflammation

    or immune responses.

    O2

    2O2-

    O2.-

    O22-

    [O2- + O.-]

    e-

    e-

    e-

    e-

    HO2.H

    +

    H+

    3H+

    2H+

    HO2-

    H2O + HO.

    2OH-

    H2O2

    2H2O

    H+

    H+

    dioxygen

    oxide

    peroxide

    superoxide anion

    hydroxide water

    water hydroxyl

    hydrogen peroxidehydroperoxide

    radical

    3. Kaim w. and Schwederski B. Bioinorganic Chemistry: Inorganic Elements in the

    Chemistry of Life. J. Wiley and Sons, 1994, New York.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    4/44

    4

    ROS Induced Damage

    Lipid peroxidation

    DNA scission/cross-linking

    Protein disruption anddisintegration Above damage has been

    correlated to Alzheimersand Parkinsons disease,

    cancer, arthritis, diabetes,Lupus and many other agerelated degenerativediseases4.

    R

    R

    .OH

    H

    H2O +

    R

    R

    .

    R

    R

    O2

    .R

    R

    OO.

    R

    R

    OO.

    R

    R

    +

    R

    R

    OOH

    +

    R

    R

    . R

    R.+

    R

    R

    R

    R

    1. Initiation

    2. Propagation

    3. Termination

    Lipid crosslinkage

    Hydrogen Abstraction

    4. Pieta P. J. Nat. Prod.2000

    , 63, 1035-1042.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    5/44

    5

    Natural ROS Defenses

    2 O2

    . - 2 H + H 2 O 2 + O 2S O D

    2 H 2 O 2 2 H 2 O + O 2

    c t l s

    2GSH+ R-OOH

    gl t t ir i s

    GSSG+ R-OH+H2O

  • 8/8/2019 Mark's 2002 Research Seminar 4

    6/44

    6

    Hydroxyl Radical and The Fenton Reaction

    H2O2 + e- p HO + HO- E = 0.30 V, S.H.E., pH 7.0

    Fe(II)p Fe(III) + e- E = depends on complex

    Fe(II) + H2O2 p Fe(III) + HO + HO-

    The impact of Ferrous salts on H2O2 reduction wasdiscovered over 100 years ago.5

    The Fenton reaction in form above, including the hydroxylradical, was suggested over75 years ago.6

    5. H.J.H. Fenton. J. Chem. Soc. 1894, 65, 889.

    6. F. Haber and J.J. Weiss. Proc. Roy. Soc. London, Ser. A.1934

    , 147, 332.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    7/44

    7

    Peroxy-FeEDTA and the Fenton

    Reaction

    [F IIIEDT -O2H]2-+-

    [F IIEDT -O2H] -

    [F IIEDT -O2H]-+H+ [F IIIEDT ]-+HO

    .+ HO

    -

  • 8/8/2019 Mark's 2002 Research Seminar 4

    8/44

    8

    Antioxidant Activity

    Enhance or mimic antioxidant enzymes.

    Direct scavenging of ROS.

    Repair damaged cellular components.

    Pro-oxidant metal deactivation.

    * The activity of a potential antioxidant is limited by the

    thermodynamic constants for its reactions involving

    complexation and reduction/oxidation.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    9/44

    9

    Fenton Metal Deactivation

    FeIIATP+ H2O2 FeIIIATP + HO

    .+ HO

    -

    ATP

    FeIIL + H2O2

    (antioxidant)+L

    +L

    (pro-oxidant ligand

    [FeII(ATP)L] + H2O

    2

    displacement) No Reaction

    No Reaction

    7. F. Cheng and K. Breen.B

    iometals.2000

    , 13, 77-83.

    Quercetin deactivates the Fe-ATP complex7, although the

    precise mechanism is still unclear. The use of a strong

    chelate, like EDTA, should provide additional insight.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    10/44

    10

    Flavonoid Structure

    O

    A

    B

    C

    1

    2

    3

    45

    6

    7

    8 1'

    2'

    3'

    4'

    5'

    6'

    O

    OH

    A

    B

    C

    1

    2

    5

    6

    7

    8 1'

    2'

    3'

    4'

    5'

    6'

    O

    O

    A

    B

    C

    1

    2

    3

    5

    6

    7

    8 1'

    2'

    3'

    4'

    5'

    6'

    O

    O

    A

    B

    C

    1

    2

    5

    6

    7

    8 1'

    2'

    3'

    4'

    5'

    6'

    O

    O

    OH

    A

    B

    C

    1

    2

    5

    6

    7

    8 1'

    2'

    3'

    4'

    5'

    6'

    4

    3

    Bas Str ct r

    Flavanonol

    Flavone

    Flavanone

    Flavonol

    A

    B

    C

    1

    2

    5

    6

    7

    8

    1'

    2'

    3'

    4'

    5'

    6'

    O

    O

    Isoflavone

    O

    O

    OH

    OH

    OH

    OH

    OH

    O

    O

    OH

    OH

    OH

    OH

    OH

    O

    O

    OH

    OH

    OH

    OH

    O

    O

    OH

    OH

    OH

    OH

    OH

    OH

    Quercetin Taxifolin

    Kaempferol M

    ricetin

    O

    O

    OH

    OH

    OH

    O

    O

    OH

    OH

    O

    O

    OH

    OH

    OH

    OH

    OH

    O

    O

    OH

    OH

    OH

    Baicalein Chr

    sin

    Morin alan

    in

  • 8/8/2019 Mark's 2002 Research Seminar 4

    11/44

    11

    Flavonoid Facts

    Flavonoids are found in higher vascular plants, particularly

    in the flower, leaves and bark. They are especially

    abundant in fruits, grains and nuts, particularly in the skins.

    Beverages consisting of plant extracts (beer, tea, wine, fruit

    juice) are the principle source of dietary flavonoid intake.

    A glass of red wine has ~200 mg of flavonoids.

    Typical flavonoid intake ranges from 50 to 800 mg/day,

    which is roughly 5, 50 and 100 times that of Vitamins C,

    and E, and carotenoids respectively.

    4. P. Pieta.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    12/44

    12

    Experimental Design

    Observe Metal-Flavonoid binding interactions via shiftsin the visible spectrum of the flavonoid when in thepresence of the metal.

    Investigate the electrochemical behavior of the

    FeEDTA, and peroxy-FeEDTA complexes for thepurpose of assaying flavonoid antioxidant activity andelucidating flavonoid antioxidant mechanisms.

    Measure the proton, metal and mixed-ligand binding

    constants for the flavonoids using potentiometry. Correlate constants and observations to published

    antioxidant efficiency data for structure activityrelationships and mechanism elucidation.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    13/44

    13

    UV-visible Spectrophotometry

    HP 8453 UV-vis diodearray. 25 QM Metal, 25-75 QM flavonoid,unbuffered and at pH 7.4

    with 10 mM HEPES,60/40 vol%water/dioxane.

    Flavonoid-metalinteraction is easilyobserved via shifts in thevisible spectrum.

    Wavelen th (nm)200 250 300 350 400 450 500 550

    Absorbance(A

    U)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Wavelen

    th (nm)200 250 300 350 400 450

    Absorbance(AU)

    0

    0.5

    1

    1.5

    2

    2.5

    FeII, Quercetin

    Ca, Naringenin

    1:3 (M:L)

    1:10:1

    1:3

    1:1 (dashed), 0:1 (solid)

  • 8/8/2019 Mark's 2002 Research Seminar 4

    14/44

    14

    FeII FeIII CuII CaII ZnII

    Quercetin + + + - +7.4

    Galangin + + + - +7.4

    Fisetin + + + - +7.4

    Chrysin - - - - -

    Naringenin - - - - -

    Iron is the most abundant physiological transition metal; copperis second. Ca is the fifth most abundant element (by mass,

    behind O, C, H, and N) in the human body at ~ 1 kilogram

    present. Both Ca and Zn are commonly implicated in pro- and

    anti- oxidant processes.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    15/44

    15

    O

    O

    OH

    OH

    OH

    OH

    OH

    QuercetinO

    O

    OH

    OH

    OH

    Naringenin

    O

    O

    OH

    OH

    Chrysin

    O

    O

    OH

    OH

    OH

    OH

    Fisetin

    O

    O

    OH

    OH

    OH Galangin

    Chelators Non-chelators Structure ActivityRelationship suggests

    that the 4-keto, 3-hydroxy moiety is

    important for chelation.

    This is in agreement

    with numerous other

    studies indicating theimportance of the 3-

    hydroxy group.8

    Catechol moiety cannot

    be discounted withouttesting a flavonoid that

    lacks the 3-hydroxy

    group.

    8. A. Arora et. al. Free RadicalBiology and Medicine. 1998, 24(9)1355-1363.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    16/44

    16

    Voltammetry

    FeII IEDTA

    -1

    -0.5

    0

    0.5

    1

    -0.6-0.300.30.6

    potential (V)

    curre

    nt(A)

    FeIII DTA + e- FeII DTA

    FeIII DTA + e- FeII DTA

    Conditions:

    -0.20 mM Fe(NO3)3-0.10 M NaNO3-20 mM HEPES pH 7.4

    -25 mV/s, carbon disk

    -Ag/AgCl reference

    -Pt wire counter

    electrode

    Gamry PC4 Potentiostat

    with CMS100 framework

    and CMS130 voltammetry

    software

    Fe

    N

    O

    N

    OO

    O

    O

    O

    O

    O

  • 8/8/2019 Mark's 2002 Research Seminar 4

    17/44

    17

    Why EDTA? Its involvement in the Fenton reaction is

    well studied, and its binding constants,

    including very hard-to-find peroxy-mixed-ligand species, are readily available.

    Although not physiologically present, it is acommonly used model for an amine andcarboxylate containing metal chelate.

    And its cheap too!

  • 8/8/2019 Mark's 2002 Research Seminar 4

    18/44

    18

    Fe(III)EDTA

    0 4 8 12

    pH

    0

    20

    40

    60

    80

    100

    %f

    ormation

    relativetoFe

    FeHEDTA

    FeEDTAHO-FeEDTA

    (HO)2-FeEDTA

    Hyperquad Speciation and Simulation software (HySS) by Peter Gans

    Formation Constants obtained from Robert M. Smith and Arthur E. Martell

    -0.1 mM FeII/III

    -0.1 mM EDTAFe(II)EDTA

    0 4 8 12

    pH

    0

    20

    40

    60

    80

    100

    %formationrelativetoFe

    Fe

    FeHEDTA

    FeEDTA

    HO-FeEDTA

    (HO)2-FeEDTA

  • 8/8/2019 Mark's 2002 Research Seminar 4

    19/44

    19

    0.20 mM Fe(III)EDTA (1:1) unbuffered

    -2

    0

    2

    4

    6

    8

    10

    -1.2-0.7-0.20.3

    potential (V)

    current(

    A)

    pH = 4.1

    pH = 6.1

    pH = 7.2

    pH = 7.7

    pH = 8.2

    pH = 9.1

    pH = 9.6pH = 10.1

  • 8/8/2019 Mark's 2002 Research Seminar 4

    20/44

    20

    Nernst Equation

    E=E0 - 0.059 x log[FeIIEDTA][OH-]

    [F

    e

    IIIE

    DTA-OH]

    E=0.059(log[OH-]) + E0 - log[FeIIEDTA]

    [FeIIIEDTA-OH]

  • 8/8/2019 Mark's 2002 Research Seminar 4

    21/44

    21

    FeED E1/2 pH Dependence

    y = 0.0849 0.55742 = 0.9860.35

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0 5 10 15

    pH

    E1/2

    (VvsAg/AgCl)

    FeEDTA

    FeEDTA-

    OH/FeEDTA-(OH)2

    L nea (FeEDTA-

    OH/FeEDTA-(OH)2)

  • 8/8/2019 Mark's 2002 Research Seminar 4

    22/44

    22

    -

    5

    - .5- .3- .0.0.30.5

    volt ge (V)

    u

    ent(

    ,relatve)

    H2O

    2+ e- HO

    .+ HO

    -

    FeIIIEDTA + e- FeIIEDTA

    FeIIIEDTA + HO.+ HO

    -FeIIEDTA + H

    2O

    2

    Conditions:

    -0.20 mM FeEDTA

    -0.10 M NaNO3-20 mM HEPES, 7.4

    -9.5 mM H2O2

    -25 mV/s, C disk-Ag/AgCl reference

    -Pt wire counter

    electrode

    The electrocatalytic current (EC) is highly dependant on pH,

    [H2O2] and [EDTA].

  • 8/8/2019 Mark's 2002 Research Seminar 4

    23/44

    23

    -

    40

    60

    80

    100

    120

    140

    -1.

    -

    .8-

    .400.40.8

    pote tial

    c

    rre

    t

    1:1:540

    1:1:140

    1:1:40

    1:1:10

    Conditions:-0.10 mM Fe(NO3)3-0.10 mM EDTA

    -1.0-54 mM H2O2-0.10 M NaNO3

    -20 mM HEPES pH 7.4-25 mV/s, carbon disk

    -Ag/AgCl reference

    -Pt counter electrode

    -ratios are labeled

    according to

    Fe:EDTA:H2O2

    EC' Current Dependence onrelative [H2O2]

    0

    20

    40

    60

    80100

    120

    140

    0 100 200 300 400 500 600

    [H2O2]excess relativeto FeEDTA

    current(A

    )

    1:1:10

  • 8/8/2019 Mark's 2002 Research Seminar 4

    24/44

    24

    4 6 8 10pH

    0

    20

    40

    60

    80

    100

    %

    formationrelativeto

    Fe

    HOO-FeEDTA

    FeEDTA

    HO-FeEDTA

    pH7.4

    Conditions:

    -0.10 mM FeEDTA (1:1)

    -4.0 mM H2O2(top), 14 mM

    H2O2 (bottom).

    4 6 8 10

    pH

    0

    20

    40

    60

    80

    100

    %

    formationrelativetoFe HOO-FeEDTA

    FeEDTA

    HO-FeEDTA

    pH 7.4

    FeIIIEDTA, H2O2 Speciation

  • 8/8/2019 Mark's 2002 Research Seminar 4

    25/44

    25

    -5

    0

    5

    10

    15

    20

    -1.2-0.8-0.400.40.8

    potential (V)

    current(

    A)

    1:10:540

    1:10:140

    1:10:40

    1:10:10

    Conditions:

    -0.10 mM Fe(NO3)3-1.0 mM Na2EDTA

    -0.10 M NaNO3

    -1.0-54 mM H2O2-20 mM HEPES pH 7.4

    -25 mV/s, carbon disk

    -Ag/AgCl reference

    -Pt counter electrode

    -ratios are labeled

    according to

    Fe:EDTA:H2O2

    EC Current De enden e nre at ve [H2O2]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 100 200 300 400 500 600

    [H2O2] excess, re at ve t 1:10 FeED

    current(A

    )

  • 8/8/2019 Mark's 2002 Research Seminar 4

    26/44

    26

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    -1.2-0.8-0.400.40.8

    pote tial ( )

    c

    e

    t(

    A)

    1:1:40

    1:10:40

    1:1:10

    1:10:10

    Conditions:

    -0.10 mM Fe(NO3)3-0.10/1.0 mM EDTA

    -1.0/4.0 mM H2O2-0.10 M NaNO3-20 mM HEPES pH 7.4

    -25 mV/s, carbon disk

    -Ag/AgCl reference

    -Pt counter electrode

    -ratios are labeledaccording to

    Fe:EDTA:H2O2

    Another way of looking at the data is

    that at relatively low excesses of

    H2O2, the EC current is nearly

    independent of the Fe:EDTA ratio.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    27/44

    27

    -

    1

    1

    1

    -1.- .- ...

    potent al V)

    urrent

    Q

    )

    1:1:540

    1:1:140

    1:10:140

    1:10:540

    Conditions:

    -0.10 mM Fe(NO3)3-0.10/1.0 mM EDTA

    -1.0-54 mM H2O2-0.10 M NaNO3-20 mM HEPES pH 7.4

    -25 mV/s, carbon disk

    -Ag/AgCl reference

    -Pt counter electrode

    -ratios are labeled according

    to Fe:EDTA:H2O2

    At a relatively high excess of H2O2, the EC current exhibits adrastic dependence on the Fe:EDTA ratio. In contrast to the

    EC dependence on [H2O2], the effects of the Fe:EDTA ratio

    on the EC current could not be explained by speciation

    calculations. Kinetic factors may be important.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    28/44

    28

    FeEDT , Q erceti mp site

    -1

    0

    1

    2

    3

    4

    5

    6

    -0.8-0.400.40.8

    p tential V, a s l te)

    current

    Q

    A,

    relative)

    0.20 mMFe(III)E A(1 1)

    0.20 mM quercetin

    sum composite

    0.20 mM

    Fe(III)E A-

    quercetin(1 1 1)

    e perimental 0.20

    mM Fe(III)E

    A-quercetin(1 1 1)

  • 8/8/2019 Mark's 2002 Research Seminar 4

    29/44

    29

    FeIIIEDT /Q H2O2 Catalytic

    -5

    0

    5

    10

    15

    20

    25

    30

    -0.8-0.400.40.8

    potential (V)

    current(

    )

    "blank"-9.5 mM H2O2, 95

    mM NaNO3, 20 mM

    HEPES pH 7.2

    blank + 0.19 mM

    Fe(III)EDTA (1:1)

    blank + 0.19 mM

    Fe(III)EDTA-quercetin

    (1:1:1)

  • 8/8/2019 Mark's 2002 Research Seminar 4

    30/44

    30

    Quercetin shifts the formal

    reduction potential, but what

    about the speciation of theperoxy-FeEDTA complex?

  • 8/8/2019 Mark's 2002 Research Seminar 4

    31/44

    31

    Formation Constant Refinement

    Collect the experimental titration curve.

    Simulate a titration curve using the sameexperimental concentrations and estimatedformation constants.

    Use non-linear least squares regression analysis tominimize the difference between the experimentaldata (pHexp) and the simulated curve (pHcalc).

    When the curves match, the formation constantshave been determined.

    The curve fitting process provides a statisticalevaluation of the data through sigma and Chi-square values.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    32/44

    32

    Potentiometric Titrations

    Denver InstrumentsTitrator280 auto titrator

    Fisher Isotemp 1016Dwater bath

    Accumet Model 20 pH

    Meter Denver Instruments semi-

    micro glass pH Ag/AgClreference combinationelectrode.

    0.50-2.0 mM Flavonoid 0.10 M NaNO3 ionic

    strength

    0.05 M NaNO3 titrant(standardized daily)

    CO2 scrubbed water, N2purged headspace

    60/40 vol% H2O/dioxane

    An ion selective electrode is used to monitor the concentration of aspecies as a titrate involved in competitive binding with anotherspecies which is added as a titrant.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    33/44

    33

    resi uals inpHfor selecteddata.Unwei hted rms 2.86e-02

    0 10 20 30 40 50 60 70point number

    -0.2-0.1

    0.0

    0.1

    0.2

    SpeciationandpH:datafrom c:\mydocuments\research\data\flavonoid ka's\fisetin121101.ppd

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    %f

    ormationrelativetoH

    pH

    6

    7

    8

    9

    10

    11

    O

    OH

    OH

    OH

    OH

    Fisetin

    pka

    11.906

    11.773

    9.965

    8.405

    sigma 1.54

    chi2 11.9

  • 8/8/2019 Mark's 2002 Research Seminar 4

    34/44

    34

    residuals in pH for selected data. Unweighted rms=3.19e-02

    0 20 40 60 80 100 120point number

    -0.1

    0.0

    0.1

    Speciation and pH: data from C:\My Documents\chrysin 092402.ppd

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    %

    formationrelativetoChry

    pH

    4

    5

    6

    7

    8

    9

    10

    O

    OH

    OH

    Chrysin

    pka

    11.406

    7.983

    sigma 1.62

    chi2 73

  • 8/8/2019 Mark's 2002 Research Seminar 4

    35/44

    35

    residuals inpHfor selecteddata.Unwei hted rms 6.32e-03

    0 10 20 30 40 50 60 70point number

    -0.02

    0.0

    0.02

    peciationandpH:datafrom c:\mydocuments\mark's\research\data\flavonoid ka's\ alan in121301.ppd

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    %f

    ormationrelativetoH

    pH

    6

    7

    8

    9

    10

    11

    O

    OH

    OH

    OH

    Galan in

    pka

    11.694

    10.684

    8.232

    sigma 0.53

    chi2 10.7

  • 8/8/2019 Mark's 2002 Research Seminar 4

    36/44

    36

    residuals in pH for selected data. Unweighted rms=4.01e-02

    0 10 20 30 40 50 60 70point number

    -0.2

    -0.1

    0.0

    0.1

    0.2

    ciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\kaempferol 121201.ppd

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    %f

    ormationrelativetoH

    pH

    6

    7

    8

    9

    10

    11O

    O

    OH

    OH

    OH Naringenin

    sigma 1.61

    chi2 7.74

    pka

    11.324

    10.034

    8.238

  • 8/8/2019 Mark's 2002 Research Seminar 4

    37/44

    37

    residuals inpHfor selecteddata.Unwei hted rms 3.79e-02

    0 20 40 60 80 100 120 140point number

    -0.1

    0.0

    0.1

    ciationandpH:datafrom c:\mydocuments\mark's\research\data\flavonoid ka's\morin121401.ppd

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    %f

    ormationrelativetoMor

    pH

    5

    6

    7

    8

    9

    10

    11

    O

    OH

    OH

    OH

    OH

    OH

    Morin

    sigma 3.7

    chi2 21.8

    pka

    11.642

    11.851

    10.555

    8.860

    5.702

  • 8/8/2019 Mark's 2002 Research Seminar 4

    38/44

    38

    residuals inpHfor selecteddata.Unwei hted rms 9.67e-02

    0 10 20 30 40 50 60 70 80 90point number

    -0.5

    0.0

    0.5

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    %fo

    rmationrelativetoH

    pH

    4

    5

    6

    7

    8

    9

    10

    O

    OH

    OH

    OH

    OH

    OH

    Quercetin

    sigma 2.5

    chi2 4.9

    pka11.948

    12.378

    11.211

    9.667

    8.331

  • 8/8/2019 Mark's 2002 Research Seminar 4

    39/44

    39

    quercetin morin naringin galangin chrysin Fisetin

    pk1 8.331 5.702 8.238 8.232 7.983 8.405

    pk2

    9.667 8.860 10.034 10.684 11.406 9.965

    pk3

    11.211 10.555 11.324 11.694 11.773

    pk4 11.948 11.642 11.906

    pk5 12.378 11.851

  • 8/8/2019 Mark's 2002 Research Seminar 4

    40/44

    40

    Flav noid Potentio etric itration Curve

    3.

    4.

    .

    6.

    7.

    8.

    9.

    10.

    11.

    . . .40 0.60 0.80 1.

    Na H added l . 5 )

    pH

    Q on

    Q:Zn( )3:1

    Q:Zn( )1:1

    Q:Fe( )3:1

    Q:Ca( )1:1

  • 8/8/2019 Mark's 2002 Research Seminar 4

    41/44

    41

    Work in Progress Complete spectroscopic studies in order

    reveal SAR.

    Extend the EC assay to other flavonoids.

    Obtain FeEDTA-flavonoid mixed ligand

    binding constants.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    42/44

    42

    4 6 8 10

    pH

    0

    20

    40

    60

    80

    100

    %f

    ormationre

    lativetoFe

    4 6 8 10

    pH

    0

    20

    40

    60

    80

    100

    %f

    ormationrelativetoFe

    FeEDTA

    HO2-FeEDTA

    Q-FeEDTA

    HO-FeEDTA

    Q-FeEDTA

    HO2-F

    eEDTA

    HO-FeEDTA

    FeEDTA

    pH 7.4

    pH 7.4

    [FeEDTA][H2Q]

    [FeEDTA-H2Q]

    k = =1010

    [FeEDTA][H2Q]

    [FeEDTA-H2Q]

    k = =1013

    Assuming 0.1 mM

    FeIIIEDTA, 14 mM H2O2,

    and 0.1 mM quercetin

    Q = quercetin

    Fe = ferric FeIII

  • 8/8/2019 Mark's 2002 Research Seminar 4

    43/44

    43

    Summary The mechanism of Flavonoid antioxidant activity

    by metal chelation is most likely two-fold:

    Flavonoids that posses large enough affinity constantsfor the mixed FeEDTA-flavonoid complex formation

    disfavor the speciation of the highly reactive FeEDTA-

    peroxy complex.

    The newly formed FeEDTA-flavonoid complex shifts

    the metal based electrochemistry beyond the range for

    Fenton redox cycling.

  • 8/8/2019 Mark's 2002 Research Seminar 4

    44/44

    44

    Acknowledgements:

    Cheng Group

    Tom Brandt

    Jessica Poindexter

    Terry HyattRob Bobier

    Kevin Breen

    Ryan Hutcheson

    Chemistry department

    National Institute of Health

    Coworkers:

    Financial:

    Renfrew scholarship

    ...and for moral support:

    The Engelmanns