martin golubitsky- symmetry and visual hallucinations

Upload: jmasn

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    1/50

    Symmetry and Visual Hallucinations

    Martin GolubitskyMathematical Biosciences Institute

    Ohio State University

    Paul Bressloff Jack CowanUtah Chicago

    Peter Thomas Matthew Wiener

    Case Western Neuropsychology, NIHLie June Shiau Andrew Trk

    Houston Clear Lake Houston

    Klver: We wish to stress . . . one point, namely, that under

    diverse conditions the visual system responds in terms of a

    limited number of form constants.

    . 1/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    2/50

    Why Study Patterns I

    1. Science behind patterns

    . 2/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    3/50

    Columnar Joints on Staffa near Mull

    . 3/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    4/50

    Columns along Snake River

    . 4/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    5/50

    Giants Causeway - Irish Coast

    . 5/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    6/50

    Experiment on Corn Starch

    Goehring and Morris, 2005

    . 6/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    7/50

    Why Study Patterns II

    1. Science behind patterns

    2. Change in patterns provide tests for models

    . 7/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    8/50

    A Brief History of Navier-Stokes

    Navier-Stokes equations for an incompressible fluid

    ut = 2u (u )u 1p0 =

    u

    u = velocity vector = mass densityp = pressure = kinematic viscosity

    Navier (1821); Stokes (1856); Taylor (1923)

    . 8/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    9/50

    The Couette Taylor Experiment

    o i

    i = speed of innercylinder

    o = speed of outercylinder

    Andereck, Liu, and Swinney (1986)

    Couette flow Taylor vortices

    . 9/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    10/50

    .I. Taylor: Theory & Experiment (1923

    . 10/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    11/50

    Why Study Patterns III

    1. Science behind patterns2. Change in patterns provide tests for models

    3. Model independence

    Mathematics provides menu of patterns

    . 11/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    12/50

    Planar Symmetry-Breaking

    Euclidean symmetry: translations, rotations, reflections

    Symmetry-breaking from translation invariant state inplanar systems with Euclidean symmetry leads to

    Stripes:States invariant under translation in one direction

    Spots:

    States centered at lattice points

    . 12/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    13/50

    Sand Dunes in Namibian Desert

    . 13/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    14/50

    Zebra Stripes

    . 14/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    15/50

    Mud Plains

    . 15/

    L d S

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    16/50

    Leopard Spots

    . 16/

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    17/50

    Outline

    1. Geometric Visual Hallucinations

    2. Structure of Visual Cortex

    Hubel and Wiesel hypercolumns; local and lateralconnections; isotropy versus anisotropy

    3. Pattern Formation in V1Symmetry; Three models

    4. Interpretation of Patterns in Retinal Coordinates

    . 17/

    Vi l H ll i i

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    18/50

    Visual Hallucinations

    Drug uniformly forces activation of cortical cells

    Leads to spontaneous pattern formation on cortex

    Map from V1 to retina;translates pattern on cortex to visual image

    . 18/

    Vi l H ll i ti

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    19/50

    Visual Hallucinations

    Drug uniformly forces activation of cortical cells

    Leads to spontaneous pattern formation on cortex

    Map from V1 to retina;translates pattern on cortex to visual image

    Patterns fall into four form constants(Klver, 1928)

    tunnels and funnels

    spirals

    lattices includes honeycombs and phosphenes cobwebs

    . 18/

    F l d S i l

    http://scriptfunnels/http://scriptspirals/http://scripthoneycombs/http://scriptphosphenes/http://scriptcobwebs/http://scriptcobwebs/http://scriptphosphenes/http://scripthoneycombs/http://scriptspirals/http://scriptfunnels/
  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    20/50

    Funnels and Spirals

    . 19/

    Lattices: Hone combs & Phosphenes

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    21/50

    Lattices: Honeycombs & Phosphenes

    . 20/

    C b b

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    22/50

    Cobwebs

    . 21/

    Orientation Sensitivity of Cells in V1

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    23/50

    Orientation Sensitivity of Cells in V1

    Most V1 cells sensitive to orientation of contrast edge

    Distribution of orientation preferences in Macaque V1 (Blasdel)

    Hubel and Wiesel, 1974Each millimeter there is a hypercolumnconsisting of

    orientation sensitive cells in every direction preference

    . 22/

    Structure of Primary Visual Cortex (V1)

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    24/50

    Structure of Primary Visual Cortex (V1)

    Optical imaging exhibits pattern of connection

    V1 lateral connections: Macaque (left, Blasdel) and Tree Shrew (right, Fitzpatrick)

    Two kinds of coupling: local and lateral

    (a) local: cells < 1mm connect with most neighbors

    (b) lateral: cells make contact each mm along axons;

    connections in direction of cells preference

    . 23/

    Anisotropy in Lateral Coupling

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    25/50

    Anisotropy in Lateral Coupling

    Macaque: most anisotropydue to stretching indirection orthogonal toocular dominance

    columns. Anisotropy isweak.

    . 24/

    Anisotropy in Lateral Coupling

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    26/50

    Anisotropy in Lateral Coupling

    Macaque: most anisotropydue to stretching indirection orthogonal toocular dominance

    columns. Anisotropy isweak.

    Tree shrew: anisotropypronounced

    . 24/

    Action of Euclidean Group: Anisotropy

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    27/50

    Action of Euclidean Group: Anisotropy

    hypercolumn

    lateral connections

    local connections

    . 25/

    Action of Euclidean Group: Anisotropy

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    28/50

    Action of Euclidean Group: Anisotropy

    hypercolumn

    lateral connections

    local connections

    Abstract physical space ofV1 is R2 S1 not R2Hypercolumn becomes

    circle of orientations

    Euclidean group on R2:translations, rotations,

    reflections

    Euclidean groups acts

    on R2

    S1

    byTy(x, ) = (Tyx, )

    R(x, ) = (Rx, + )

    (x, ) = (x,) . 25/

    Isotropic Lateral Connections

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    29/50

    Isotropic Lateral Connections

    hypercolumn

    lateral connections

    local connections

    . 26/

    Isotropic Lateral Connections

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    30/50

    Isotropic Lateral Connections

    hypercolumn

    lateral connections

    local connections

    New O(2) symmetry

    (x, ) = (x, + )

    Weak anisotropy isforced symmetrybreaking of

    E(2)+O(2) E(2)

    . 26/

    Three Models

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    31/50

    Three Models

    E(2) acting on R2

    (Ermentrout-Cowan)neurons located at each point xActivity variable: a(x) = voltage potential of neuronPattern given by threshold a(x) > v0

    . 27/

    Three Models

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    32/50

    Three Models

    E(2) acting on R2

    (Ermentrout-Cowan)neurons located at each point xActivity variable: a(x) = voltage potential of neuronPattern given by threshold a(x) > v0

    Shift-twist action of E(2) on R2 S1 (Bressloff-Cowan)hypercolumns located at x; neurons tuned to

    strongly anisotropic lateral connectionsActivity variable: a(x, )Pattern given by winner-take-all

    . 27/

    Three Models

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    33/50

    Three Models

    E(2) acting on R2

    (Ermentrout-Cowan)neurons located at each point xActivity variable: a(x) = voltage potential of neuronPattern given by threshold a(x) > v0

    Shift-twist action of E(2) on R2 S1 (Bressloff-Cowan)hypercolumns located at x; neurons tuned to

    strongly anisotropic lateral connectionsActivity variable: a(x, )Pattern given by winner-take-all

    Symmetry breaking: E(2)+O(2) E(2)weakly anisotropic lateral couplingActivity variable: a(x, )

    Pattern given by winner-take-all

    . 27/

    Planforms For Ermentrout-Cowan

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    34/50

    Planforms For Ermentrout Cowan

    Threshold Patterns

    3 2 1 0 1 2 33

    2

    1

    0

    1

    2

    3

    3 2 1 0 1 2 33

    2

    1

    0

    1

    2

    3

    Square lattice: stripes and squares

    3 2 1 0 1 2 33

    2

    1

    0

    1

    2

    3

    2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.52

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    Hexagonal lattice: stripes and hexagons

    . 28/

    Winner-Take-All Strategy

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    35/50

    a S a gy

    Creation of Line Fields

    Given: Activity a(x, ) of neuron in hypercolumn at x

    sensitive to direction

    Assumption: Most active neuron in hypercolumnsuppresses other neurons in hypercolumn

    Consequence: For all x find direction x where activityis maximum

    Planform: Line segment at each x oriented at angle x

    . 29/

    Planforms For Bressloff-Cowan

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    36/50

    Planforms For Bressloff Cowan

    1.5 1 0.5 0 0.5 1 1.5

    1

    0.5

    0

    0.5

    1

    x

    y

    O(2) Z2

    Erolls

    1.5 1 0.5 0 0.5 1 1.5

    1

    0.5

    0

    0.5

    1

    x

    y

    O(2) Z4

    Orolls

    1 0.5 0 0.5 1

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    x

    y

    D4

    Esquares

    1 0.5 0 0.5 1

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    x

    y

    D4

    Osquares

    . 30/

    Cortex to Retina

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    37/50

    Cortex to Retina

    Neurons on cortex are uniformly distributed

    Neurons in retina fall off by 1/r2 from fovea

    Unique angle preserving map takes uniform density

    square to 1/r2 density disk: complex exponential

    Straight lines on cortex circles, logarithmic spirals, and rays in retina

    . 31/

    Visual Hallucinations

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    38/50

    1

    1 1

    1 1 1 1 8

    (I) funnel and (II) spiral images LSD [Siegel & Jarvik, 1975], (III) honeycomb marihuana

    [Clottes & Lewis-Williams (1998)], (IV) cobweb petroglyph [Patterson, 1992]

    . 32/

    Planforms in the Visual Field

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    39/50

    ( a ) ( b )

    ( c )

    ( d )

    V i s u a l f i e l d p l a n f o r m s

    . 33/

    Weakly Anisotropic Coupling

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    40/50

    y p p g

    In addition to equilibria found in Bressloff-Cowanmodel there exist periodic solutions that emanatefrom steady-state bifurcation

    1. Rotating Spirals

    2. Tunneling Blobs Tunneling Spiraling Blobs

    3. Pulsating Blobs

    . 34/

    Pattern Formation Outline

    http://scriptrotating/http://scripttunneling/http://scripttunnelingsp/http://scriptpulsating/http://scriptpulsating/http://scripttunnelingsp/http://scripttunneling/http://scriptrotating/
  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    41/50

    1. Bifurcation Theory with Symmetry

    Equivariant Branching Lemma

    Model independent analysis

    2. Translations lead to plane waves

    3. Planforms: Computation of eigenfunctions

    . 35/

    Primer on Steady-State Bifurcation

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    42/50

    Solve x = f(x, ) = 0 where f : Rn R Rn

    Local theory: Assume f(0, 0) = 0 & find solns near (0, 0)

    If L = (dxf)0,0 nonsingular, IFT implies unique soln x()

    . 36/

    Primer on Steady-State Bifurcation

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    43/50

    Solve x = f(x, ) = 0 where f : Rn R Rn

    Local theory: Assume f(0, 0) = 0 & find solns near (0, 0)

    If L = (dxf)0,0 nonsingular, IFT implies unique soln x()

    Bifurcation of steady states ker L = {0}

    Reduction theory implies that steady-states are foundby solving (y, ) = 0 where

    : ker L R ker L

    . 36/

    Equivariant Steady-State Bifurcation

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    44/50

    Let : Rn Rn be linear

    is a symmetry iff (soln)=soln iff f(x,) = f(x, )

    Chain rule = L = L = ker L is -invariant

    Theorem: Fix symmetry group . Genericallyker L is an absolutely irreducible representation of

    Reduction implies that there is a unique steady-statebifurcation theory for each absolutely irreducible rep

    . 37/

    Equivariant Bifurcation Theory

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    45/50

    Let be a subgroup

    Fix() =

    {x

    ker L : x = x

    } is axial if dim Fix() = 1

    Equivariant Branching Lemma:

    Generically, there exists a branch of solutions with symmetryfor every axial subgroup

    MODEL INDEPENDENT

    Solution types do not depend on the equation onlyon the symmetry group and its representation on ker L

    . 38/

    Translations

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    46/50

    Let Wk = {u()eikx + c.c.} k R2 = wave vector

    Translations act on Wk by

    Ty(u()eikx) = u()eik(x+y) =

    eikyu()

    eikx

    L : Wk WkEigenfunctions of L have plane wavefactors

    . 39/

    Axials in Ermentrout-Cowan Model

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    47/50

    Name Planform Eigenfunction

    stripes cos xsquares cos x + cos y

    hexagons cos(k0 x) + cos(k1 x) + cos(k2 x)

    k0 = (1, 0) k1 =12(1,3) k2 = 12(1,3)

    . 40/

    Axials in Bressloff-Cowan Model

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    48/50

    Name Planform Eigenfunction u

    squares u()cos x+ u

    2

    cos y even

    stripes u()cos x evenhexagons

    2

    j=0 u (j/3) cos(kj x) evensquare u()cos x

    u

    2 cos y odd

    stripes u()cos x odd

    hexagons

    2

    j=0 u (j/3) cos(kj x) odd

    triangles2

    j=0 u (j/3) sin(kj x) oddrectangles u

    3

    cos(k1 x) u

    +

    3

    cos(k2 x) odd

    . 41/

    How to Find Amplitude Function u()

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    49/50

    Isotropic connections imply EXTRA O(2) symmetry

    O(2) decomposes Wk into sum of irreducible subspaces

    Wk,p = {zepieikx + c.c. : z C} = R2

    Eigenfunctions lie in Wk,p for some p

    W+k,p = {cos(p)eikx} even case

    Wk,p = {sin(p)eikx} odd case

    With weak anisotropy

    u() cos(p) or u() sin(p)

    . 42/

    Rotating waves

  • 8/3/2019 Martin Golubitsky- Symmetry and Visual Hallucinations

    50/50

    Suppose Fix() is two-dimensional

    Suppose N() = SO(2)

    Then generically solutions are rotating waves of apattern with symmetry

    . 43/