master index 1 2 3 - instituto huergo · mc14000ub dual 3–input nor gate plus inverter 6–2 ......

571

Upload: phamtruc

Post on 30-Apr-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

CMOS Reliability

Packaging InformationIncluding Surface Mounts

Equivalent Gate Count

Data Sheets

CMOS Handling and Design Guidelines

B and UB Series Family Data

The Better Program

Product Selection Guide

Master Index 1

2

3

4

6

7

9

8

5

ii MOTOROLA CMOS LOGIC DATA

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formativestages or in design (under development). The disclaimer at the bottom of thefirst page reads: This document contains information on a product underdevelopment. Motorola reserves the right to change or discontinue thisproduct without notice.

Advance Information

This heading on a data sheet indicates that the device is in sampling,preproduction, or first production stages. The disclaimer at the bottom of thefirst page reads: This document contains information on a new product.Specifications and information herein are subject to change without notice.

Fully Released

A fully released data sheet contains neither a classification heading nor adisclaimer at the bottom of the first page. This document contains informationon a product in full production. Guaranteed limits will not be changed withoutwritten notice to your local Motorola Semiconductor Sales Office.

iiiMOTOROLA CMOS LOGIC DATA

CMOS LOGICDATA

Prepared byTechnical Information Center

This book presents technical data for the broad line of CMOS logic integratedcircuits and demonstrates Motorolas continued commitment to MetalGateCMOS. Complete specifications are provided in the form of data sheets. In addi-tion, a Product Selector Guide and a Handling and Design Guidelines chapter havebeen included to familiarize the user with these circuits.

Motorola reserves the right to make changes without further notice to any prod-ucts herein to improve reliability, function or design. Motorola does not assume anyliability arising out of the application or use of any product or circuit described here-in; neither does it convey any license under its patent rights nor the rights of others.Motorola products are not designed, intended, or authorized for use as compo-nents in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failureof the Motorola product could create a situation where personal injury or death mayoccur. Should Buyer purchase or use Motorola products for any such unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its offi-cers, employees, subsidiaries, affiliates, and distributors harmless against allclaims, costs, damages, and expenses, and reasonable attorney fees arising outof, directly or indirectly, any claim of personal injury or death associated with suchunintended or unauthorized use, even if such claim alleges that Motorola wasnegligent regarding the design or manufacture of the part. Motorola and areregistered trademarks of Motorola, Inc. Motorola, Inc. is an Equal EmploymentOpportunity/Affirmative Action Employer.

Series C MOTOROLA INC., 1991

Previous Edition 1990Printed in U.S.A. All Rights Reserved

iv MOTOROLA CMOS LOGIC DATA

Master Index 1

MOTOROLA CMOS LOGIC DATACHAPTER 112

MASTER INDEX

This index includes Motorolas entire MC14000 series CMOS products, although this book containsdata sheets for Logic Devices only. Data sheets for devices in the CMOS/NMOS Special Functions Databook (DL130) are designated in the page number column as SF.

Products which have been cancelled are designated in the page number column as .

Device Function PageMC14000UB Dual 3Input NOR Gate Plus Inverter 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14001B Quad 2Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14001UB Quad 2Input NOR Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14002B Dual 4Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14002UB Dual 4Input NOR Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14006B 18Bit Static Shift Register 619. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14007UB Dual Complementary Pair Plus Inverter 623. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14008B 4Bit Full Adder 627. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14011B Quad 2Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14011UB Quad 2Input NAND Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14012B Dual 4Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14012UB Dual 4Input NAND Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14013B Dual D FlipFlop 633. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14014B 8Bit Static Shift Register 637. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14015B Dual 4Bit Static Shift Register 641. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14016B Quad Analog Switch/Multiplexer 647. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14017B Decade Counter 654. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14018B Presettable DividebyN Counter 659. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14020B 14Bit Binary Counter 663. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14021B 8Bit Static Shift Register 637. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14022B Octal Counter 667. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14023B Triple 3Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14023UB Triple 3Input NAND Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14024B 7Stage Ripple Counter 672. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14025B Triple 3Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14025UB Triple 3Input NOR Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14027B Dual JK FlipFlop 677. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14028B BCDtoDecimal/BinarytoOctal Decoder 681. . . . . . . . . . . . . . . . . . . . . . . . . MC14029B Presettable Binary/BCD Up/Down Counter 686. . . . . . . . . . . . . . . . . . . . . . . . . . MC14032B Triple Serial Adder (Positive Logic) 692. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14034B 8Bit Universal Bus Register 697. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14035B 4Bit Shift Register 6104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14038B Triple Serial Adder (Negative Logic) 692. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14040B 12Bit Binary Counter 6108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14042B Quad Transparent Latch 6112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14043B Quad NOR RS Latch 6116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14044B Quad NAND RS Latch 6116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14046B PhaseLocked Loop 6120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC DATA13

CHAPTER 1

Device Function PageMC14049B Hex Inverting Buffer 6125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14049UB Hex Inverting Buffer 6129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14050B Hex Noninverting Buffer 6125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14051B 8Channel Analog Multiplexer/Demultiplexer 6133. . . . . . . . . . . . . . . . . . . . . . . MC14052B Dual 4Channel Analog Multiplexer/Demultiplexer 6133. . . . . . . . . . . . . . . . . . MC14053B Triple 2Channel Analog Multiplexer/Demultiplexer 6133. . . . . . . . . . . . . . . . . MC14060B 14Bit Binary Counter and Oscillator 6140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14066B Quad Analog Switch/Multiplexer 6144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14067B 16Channel Analog Multiplexer/Demultiplexer 6150. . . . . . . . . . . . . . . . . . . . . . MC14068B 8Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14069UB Hex Inverter 6158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14070B Quad Exclusive OR Gate 6160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14071B Quad 2Input OR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14072B Dual 4Input OR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14073B Triple 3Input AND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14075B Triple 3Input OR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14076B Quad DType Register with TriState Outputs 6162. . . . . . . . . . . . . . . . . . . . . . MC14077B Quad Exclusive NOR Gate 6160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14078B 8Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14081B Quad 2Input AND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14082B Dual 4Input AND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14093B Quad 2Input NAND Schmitt Trigger 6166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14094B 8Stage Shift/Store Register with TriState Outputs 6170. . . . . . . . . . . . . . . . . MC14097B Dual 8Channel Analog Multiplexer/Demultiplexer 6150. . . . . . . . . . . . . . . . . . MC14099B 8Bit Addressable Latch 6174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14106B Hex Schmitt Trigger 6180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14160B Synchronous Presettable BCD Counter 6184. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14161B Synchronous Presettable 4Bit Binary Counter 6184. . . . . . . . . . . . . . . . . . . . . MC14162B Synchronous Presettable BCD Counter 6184. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14163B Synchronous Presettable 4Bit Binary Counter 6184. . . . . . . . . . . . . . . . . . . . . MC14174B Hex D FlipFlop 6193. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14175B Quad D FlipFlop 6197. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14194B 4Bit Universal Shift Register 6201. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14415 Quad Precision Timer/Driver 6205. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14433 31/2 Digit A/D Converter SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14442 MicroprocessorCompatible A/D Converter SF. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14443 6Channel A/D Converter Subsystem SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC DATACHAPTER 114

Device Function PageMC14444 MicroprocessorCompatible A/D Converter SF. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14447 6Channel A/D Converter Subsystem SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14457 Remote Control Transmitter SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14458 Remote Control Receiver SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14460 Automotive Speed Control Processor SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14466 Low Cost Smoke Detector SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC144671 Low Cost Smoke Detector SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14468 Interconnectable Smoke Detector SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14469 Addressable Asynchronous Receiver/Transmitter SF. . . . . . . . . . . . . . . . . . . . . . MC14490 Hex Contact Bounce Eliminator 6210. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC144951 Hexadecimalto7 Segment Latch/Decoder ROM/Driver SF. . . . . . . . . . . . . . . MC14497 PCM Remote Control Transmitter SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14499 7Segment LED Display Decoder/Driver with Serial Interface SF. . . . . . . . . . . MC14500B Industrial Control Unit 6217. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14501UB Triple Gate 6223. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14502B Strobed Hex Inverter/Buffer 6227. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14503B Hex 3State Buffer 6231. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14504B TTL or CMOS to CMOS Hex Level Shifter 6235. . . . . . . . . . . . . . . . . . . . . . . . . MC14506UB Dual Expandable AOI Gate 6238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14508B Dual 4Bit Latch 6243. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14510B Presettable BCD Up/Down Counter 6248. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14511B BCDto7Segment Latch/Decoder/Driver 6256. . . . . . . . . . . . . . . . . . . . . . . . MC14512B 8Channel Data Selector 6262. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14513B BCDto7Segment Latch/Decoder/Driver with Ripple Blanking 6266. . . . . . MC14514B 4Bit Transparent Latch/4to16 Line Decoder (High) 6274. . . . . . . . . . . . . . . MC14515B 4Bit Transparent Latch/4to16 Line Decoder (Low) 6274. . . . . . . . . . . . . . . MC14516B Presettable Binary Up/Down Counter 6280. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14517B Dual 64Bit Static Shift Register 6288. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14518B Dual BCD Up Counter 6292. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14519B 4Bit AND/OR Selector 6297. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14520B Dual Binary Up Counter 6292. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14521B 24Stage Frequency Divider 6301. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14522B Presettable BCD Down Counter 6307. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC DATA15

CHAPTER 1

Device Function PageMC14526B Presettable 4Bit Binary Down Counter 6307. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14527B BCD Rate Multiplier 6315. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14528B Dual Monostable Multivibrator 6321. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14529B Dual 4Channel Analog Data Selector 6327. . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14530B Dual 5Input Majority Logic Gate 6333. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14531B 12Bit Parity Tree 6338. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14532B 8Bit Priority Encoder 6341. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14534B 5 Cascaded BCD Counters 6347. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14536B Programmable Timer 6354. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14538B Dual Precision Monostable Multivibrator 6365. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14539B Dual 4Channel Data Selector/Multiplexer 6373. . . . . . . . . . . . . . . . . . . . . . . . . MC14541B Programmable Oscillator/Timer 6377. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14543B BCDto7Segment Latch/Decoder/Driver for Liquid Crystals 6382. . . . . . . . MC14544B BCDto7Segment Latch/Decoder/Driver with Ripple Blanking 6387. . . . . . MC14547B HighCurrent BCDto7Segment Decoder/Driver 6393. . . . . . . . . . . . . . . . . MC14549B Successive Approximation Registers 6398. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14551B Quad 2Channel Analog Multiplexer/Demultiplexer 6405. . . . . . . . . . . . . . . . . MC14553B 3Digit BCD Counter 6412. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14554B 2 X 2Bit Parallel Binary Multiplier 6418. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14555B Dual Binary to 1of4 Decoder (Active High Outputs) 6422. . . . . . . . . . . . . . . MC14556B Dual Binary to 1of4 Decoder (Active Low Outputs) 6422. . . . . . . . . . . . . . . . MC14557B 1to64 Bit Variable Length Shift Register 6425. . . . . . . . . . . . . . . . . . . . . . . . . MC14558B BCDto7 Segment Decoder 6429. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14559B Successive Approximation Registers 6398. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14560B NBCD Adder 6434. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14561B 9s Complementer 6445. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14562B 128Bit Static Shift Register 6451. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14566B Industrial Time Base Generator 6455. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14568B Phase Comparator and Programmable Counters 6461. . . . . . . . . . . . . . . . . . . MC14569B Programmable Dual 4Bit Binary/BCD Down Counter 6471. . . . . . . . . . . . . . . MC14572UB Hex Gate 6481. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14573 Quad Programmable Op Amp SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14574 Quad Programmable Comparator SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14575 Programmable Dual Op Amp/Dual Comparator SF. . . . . . . . . . . . . . . . . . . . . . . . MC14580B 4 X 4 Multiport Register 6484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14581B 4Bit Arithmetic Logic Unit 6489. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14582B LookAhead Carry Block 6494. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC DATACHAPTER 116

Device Function PageMC14583B Dual Schmitt Trigger 6498. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14584B Hex Schmitt Trigger 6504. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14585B 4Bit Magnitude Comparator 6507. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14597B 8Bit BusCompatible Counter Latch 6511. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14598B 8Bit BusCompatible Addressable Latch 6511. . . . . . . . . . . . . . . . . . . . . . . . . MC14599B 8Bit Addressable Latch 6174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC144110 Hex D/A Converter with Serial Interface SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC144111 Quad D/A Converter with Serial Interface SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC145000 48Segment Multiplexed LCD Driver (Master) SF. . . . . . . . . . . . . . . . . . . . . . . . . MC145001 44Segment Multiplexed LCD Driver (Slave) SF. . . . . . . . . . . . . . . . . . . . . . . . . . MC145026 Remote Control Encoder SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC145027 Remote Control Decoder SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC145028 Remote Control Decoder SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC145029 Remote Control Decoder SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC145040 AnalogtoDigital Converter with Serial Interface SF. . . . . . . . . . . . . . . . . . . . . . MC145041 AnalogtoDigital Converter with Serial Interface SF. . . . . . . . . . . . . . . . . . . . . . MC145104 PLL Frequency Synthesizer (Not Recommended for New Designs) SF. . . . . . MC145106 PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC145107 PLL Frequency Synthesizer (Not Recommended for New Designs) SF. . . . . . MC145109 PLL Frequency Synthesizer (Not Recommended for New Designs) SF. . . . . . MC145112 PLL Frequency Synthesizer (Not Recommended for New Designs) SF. . . . . . MC145143 PLL Frequency Synthesizer (Not Recommended for New Designs) SF. . . . . . MC145144 4Bit Data Bus Input PLL Frequency Synthesizer

(Not Recommended for New Designs) SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451451 4Bit Data Bus Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . MC1451461 4Bit Data Bus Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . MC1451511 Parallel Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451521 Parallel Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451551 Serial Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451561 Serial Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451571 Serial Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451581 Serial Input PLL Frequency Synthesizer SF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC1451591 Serial Input PLL Frequency Synthesizer with Analog Phase Detector SF. . . . . MC145453 33Segment LCD Driver with Serial Interface SF. . . . . . . . . . . . . . . . . . . . . . . . .

Product Selection Guide 2

MOTOROLA CMOS LOGIC D ATACHAPTER 222

CMOS Selection Guide by Function

Device Function Page

NAND GatesMC14011B Quad 2Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14011UB Quad 2Input NAND Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14093B Quad 2Input NAND Schmitt Trigger 6166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14023B Triple 3Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14023UB Triple 3Input NAND Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14012B Dual 4Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14012UB Dual 4Input NAND Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14068B 8Input NAND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NOR GatesMC14001B Quad 2Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14001UB Quad 2Input NOR Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14025B Triple 3Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14025UB Triple 3Input NOR Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14000UB Dual 3Input NOR Gate Plus Inverter 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14002B Dual 4Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14002UB Dual 4Input NOR Gate 614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14078B 8Input NOR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AND GatesMC14081B Quad 2Input AND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14073B Triple 3Input AND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14082B Dual 4Input AND Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OR GatesMC14071B Quad 2Input OR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14075B Triple 3Input OR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14072B Dual 4Input OR Gate 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Complex GatesMC14070B Quad Exclusive OR Gate 6160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14077B Quad Exclusive NOR Gate 6160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14501UB Triple Gate 6223. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14506UB Dual Expandable AOI Gate 6238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14530B Dual 5Input Majority Logic Gate 6333. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14519B 4Bit AND/OR Selector 6297. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14572UB Hex Gate 6481. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inverters/Buffers/Level TranslatorMC14007UB Dual Complementary Pair Plus Inverter 623. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14049B Hex Inverting Buffer 6125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14049UB Hex Inverting Buffer 6129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14050B Hex Noninverting Buffer 6125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14069UB Hex Inverter 6158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14502B Strobed Hex Inverter/Buffer 6227. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14503B Hex 3State Buffer 6231. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14504B TTL or CMOS to CMOS Hex Level Shifter 6235. . . . . . . . . . . . . . . . . . . . . . . . . MC14584B Hex Schmitt Trigger 6504. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC D ATA23

CHAPTER 2

Device Function Page

Decoders/EncodersMC14028B BCDtoDecimal/BinarytoOctal Decoder 681. . . . . . . . . . . . . . . . . . . . . . . . . MC14511B BCDto7Segment Latch/Decoder/Driver 6256. . . . . . . . . . . . . . . . . . . . . . . . MC14513B BCDto7Segment Latch/Decoder/Driver with Ripple Blanking 6266. . . . . . MC14543B BCDto7Segment Latch/Decoder/Driver for Liquid Crystals 6382. . . . . . . . MC14544B BCDto7Segment Latch/Decoder/Driver with Ripple Blanking 6387. . . . . . MC14547B HighCurrent BCDto7Segment Decoder/Driver 6393. . . . . . . . . . . . . . . . . MC14558B BCDto7Segment Decoder 6429. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14514B 4Bit Transparent Latch/4to16 Line Decoder (High) 6274. . . . . . . . . . . . . . . MC14515B 4Bit Transparent Latch/4to16 Line Decoder (Low) 6274. . . . . . . . . . . . . . . MC14532B 8Bit Priority Encoder 6341. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14555B Dual Binary to 1of4 Decoder (Active High Outputs) 6422. . . . . . . . . . . . . . . MC14556B Dual Binary to 1of4 Decoder (Active Low Outputs) 6422. . . . . . . . . . . . . . . .

Multiplexers/Demultiplexers/Bilateral SwitchesMC14016B Quad Analog Switch/Multiplexer 647. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14066B Quad Analog Switch/Multiplexer 6144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14551B Quad 2Channel Analog Multiplexer/Demultiplexer 6405. . . . . . . . . . . . . . . . . MC14053B Triple 2Channel Analog Multiplexer/Demultiplexer 6133. . . . . . . . . . . . . . . . . MC14052B Dual 4Channel Analog Multiplexer/Demultiplexer 6133. . . . . . . . . . . . . . . . . . MC14097B Dual 8Channel Analog Multiplexer/Demultiplexer 6150. . . . . . . . . . . . . . . . . . MC14529B Dual 4Channel Analog Data Selector 6327. . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14539B Dual 4Channel Data Selector/Multiplexer 6373. . . . . . . . . . . . . . . . . . . . . . . . . MC14067B 16Channel Analog Multiplexer/Demultiplexer 6150. . . . . . . . . . . . . . . . . . . . . . MC14051B 8Channel Analog Multiplexer/Demultiplexer 6133. . . . . . . . . . . . . . . . . . . . . . . MC14512B 8Channel Data Selector 6262. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14519B 4Bit AND/OR Selector 6297. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Schmitt TriggersMC14093B Quad 2Input NAND Schmitt Trigger 6166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14583B Dual Schmitt Trigger 6498. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14106B Hex Schmitt Trigger 6180. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14584B Hex Schmitt Trigger 6504. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FlipFlops/LatchesMC14042B Quad Transparent Latch 6112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14043B Quad NOR RS Latch 6116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14044B Quad NAND RS Latch 6116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14076B Quad DType Register with TriState Outputs 6162. . . . . . . . . . . . . . . . . . . . . . MC14175B Quad D FlipFlop 6197. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14013B Dual D FlipFlop 633. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14027B Dual JK FlipFlop 677. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14508B Dual 4Bit Latch 6243. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14174B Hex D FlipFlop 6193. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14099B 8Bit Addressable Latch 6174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14597B 8Bit BusCompatible Counter Latch 6511. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14598B 8Bit BusCompatible Addressable Latch 6511. . . . . . . . . . . . . . . . . . . . . . . . . MC14599B 8Bit Addressable Latch 6174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC D ATACHAPTER 224

Device Function Page

Shift RegistersMC14015B Dual 4Bit Static Shift Register 641. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14517B Dual 64Bit Static Shift Register 6288. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14562B 128Bit Shift Register 6451. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14557B 1to64 Bit Variable Length Shift Register 6425. . . . . . . . . . . . . . . . . . . . . . . . . MC14006B 18Bit Static Shift Register 619. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14014B 8Bit Static Shift Register 637. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14021B 8Bit Static Shift Register 637. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14034B 8Bit Universal Bus Register 697. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14094B 8Stage Shift/Store Register with TriState Outputs 6170. . . . . . . . . . . . . . . . . MC14035B 4Bit Shift Register 6104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14194B 4Bit Universal Shift Register 6201. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14549B Successive Approximation Registers 6398. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14559B Successive Approximation Registers 6398. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CountersMC14017B Decade Counter 654. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14018B Presettable DividebyN Counter 659. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14020B 14Bit Binary Counter 663. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14022B Octal Counter 667. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14024B 7Stage Ripple Counter 672. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14029B Presettable Binary/BCD Up/Down Counter 686. . . . . . . . . . . . . . . . . . . . . . . . . . MC14040B 12Bit Binary Counter 6108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14060B 14Bit Binary Counter and Oscillator 6140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14160B Synchronous Presettable BCD Counter 6184. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14161B Synchronous Presettable 4Bit Binary Counter 6184. . . . . . . . . . . . . . . . . . . . . MC14162B Synchronous Presettable BCD Counter 6184. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14163B Synchronous Presettable 4Bit Binary Counter 6184. . . . . . . . . . . . . . . . . . . . . MC14510B Presettable BCD Up/Down Counter 6248. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14516B Presettable Binary Up/Down Counter 6280. . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14518B Dual BCD Up Counter 6292. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14520B Dual Binary Up Counter 6292. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14522B Presettable BCD Down Counter 6307. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14526B Presettable 4Bit Binary Down Counter 6307. . . . . . . . . . . . . . . . . . . . . . . . . . . MC14534B 5 Cascaded BCD Counters 6347. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14553B 3Digit BCD Counter 6412. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14566B Industrial Time Base Generator 6455. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14569B Programmable Dual 4Bit Binary/BCD Counter 6471. . . . . . . . . . . . . . . . . . . . .

Oscillators/TimersMC14521B 24Stage Frequency Divider 6301. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14536B Programmable Timer 6354. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14541B Programmable Oscillator/Timer 6377. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MultivibratorsMC14528B Dual Monostable Multivibrator 6321. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14538B Dual Precision Monostable Multivibrator 6365. . . . . . . . . . . . . . . . . . . . . . . . . . .

MOTOROLA CMOS LOGIC D ATA25

CHAPTER 2

Device Function Page

Adders/ComparatorsMC14008B 4Bit Full Adder 627. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14032B Triple Serial Adder (Positive Logic) 692. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14038B Triple Serial Adder (Negative Logic) 692. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14560B NBCD Adder 6434. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14561B 9s Complementer 6445. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14582B LookAhead Carry Block 6494. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14585B 4Bit Magnitude Comparator 6507. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ALU/Rate MultipliersMC14527B BCD Rate Multiplier 6315. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14554B 2 X 2 Bit Parallel Binary Multiplier 6418. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14581B 4Bit Arithmetic Logic Unit 6489. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parity CheckerMC14531B 12Bit Parity Tree 6338. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MemoryMC14580B 4 X 4 Multiport Register 6484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Microprocessor/Industrial ControlMC14500B Industrial Control Unit 6217. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Other Complex FunctionsMC14046B PhaseLocked Loop 6120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14415 Quad Precision Timer/Driver 6205. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14490 Hex Contact Bounce Eliminator 6210. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14568B Phase Comparator and Programmable Counters 6461. . . . . . . . . . . . . . . . . . .

The Better Program 3

CHAPTER 332

MOTOROLA CMOS LOGIC DATA

The BETTER program is offered on logic only, in dualinline plastic packages.

Better Processing Standard Product Plus:

Level II (Suffix D)

100% burnin to MILSTD883 test conditions 160hours at + 125C or 1.0 eV Arrhenus time/temperatureequivalent.

100% post burnin functional and dc parametric tests at25C (or max rated TA at Motorolas option). MaximumPDA of 2% (functional) and 5% (DC and functional).

HOW TO ORDERMC14000B CP D

Part Standard BETTERIdentification Package PROCESSING

Suffix LEVEL II = SUFFIX D

Part MarkingThe Standard Motorola part number with the correspond-

ing BETTER suffix can be order from your local authorizedMotorola distributor or Motorola sales offices. BETTERpricing will be quoted as an adder to standard commercialproduct price.

RAPReliability Audit Program

For Logic Integrated Circuits

1.0 INTRODUCTION

The Reliability Audit Program developed in March 1977 isthe Motorola internal reliability audit which is designed to as-sess outgoing product performance under accelerated stressconditions. Logic Reliability Engineering has overall respon-sibility for RAP, including updating its requirements, interpret-ing its results, administration at offshore locations, andmonthly reporting of results. These reports are available at

all sales offices. Also available is the Reliability and QualityHandbook which contains data for all Motorola Semiconduc-tors (#BR518S).

RAP is a system of environmental and electrical tests per-formed periodically on randomly selected samples of stan-dard products. Each sample receives the tests specified insection 2.0. Frequency of testing is specified per internaldocument 12MRM15301A.

33CHAPTER 3MOTOROLA CMOS LOGIC DATA

Pull 500* piece sample from lot following Group Aacceptance.

2.0 RAP TEST FLOW

#One sample per month for FAST, LS, 10H, 10K, MG CMOS, and HSL CMOS.* PTHB or PTH not required for hermetic products: reduce total sample size to 450 pcs.

** Seal (Fine & Gross Leak) required only for hermetic products.*** PTH to be used when sockets for PTHB are not available.

PTHB48 HRS

45* 340 100

PTH***48 HRS

INITIALSEAL**

TEMP CYCLES40 CYCLES

OP LIFE40 HOURS

INTERIMELECTRICAL

OP LIFE210 HRS (ADDITIONAL)

FINALINTERIM #

ELECTRICAL

OP LIFE #750 HRS

(ADDITIONAL)

FINAL #ELECTRICAL(1000 HRS)

SCRAP

INTERIMTEST

ADD 460 CYCLES

INTERIMTEST

ADD 500 CYCLESFINAL

INTERIM*TEST

TEMP CYCLES #1000 CYCLES(ADDITIONAL)

FINALELECTRICAL

& SEAL**(2000 CYCLES)

FINALELECTRICAL

(96 HRS)

FINALELECTRICAL

(48 HRS)

PTH48 HRS

(ADDITIONAL)

INTERIMELECTRICAL

SCRAP SCRAP

3.0 TEST CONDITIONS AND COMMENTS

PTHB 15 psig/121C/100% RH at rated VCC or VEE tobe performed on plastic encapsulated devicesonly.

TEMP CYCLING MILSTD883, Method 1010, Condi-tion C, 65C/+ 150C.

OP LIFE MILSTD883, Method 1005, Condition C(Power plus Reverse Bias), TA = 145C.

NOTES:

1. All standard 25C dc and functional parameters will bemeasured Go/No/Go at each readout.

2. Any indicated failure is first verified and then submitted tothe Product Analysis Lab for detailed analysis.

3. Sampling to include all package types routinely.

4. Device types sampled will be by generic type within eachlogic I/C product family (CMOS, TTL, etc.) and will includeall assembly locations (Korea, Philippines, Malaysia, etc.).

5. 16 hrs. PTHB is equivalent to approximately 800 hours of85C/85% RH THB for VCC 15 V.

6. Only moisture related failures (like corrosion) are criteriafor failure on PTHB test.

7. Special device specifications (48As) for logic products willreference 12MRM15301A as source of generic data forany customer required monthly audit reports.

B and UB Series Family Data 4

CHAPTER 442

MOTOROLA CMOS LOGIC DATA

The CMOS Devices in this volume which have a B or UBsuffix meet the minimum values for the industrystandard-ized# family specification. These standardized values areshown in the Maximum Ratings and Electrical Characteris-tics Tables. In addition to a standard minimum specificationfor characteristics the B/UB devices feature:

318 volt operational limits Capable of driving two lowpower TTL loads or one low

power Schottky TTL load over the rated temperaturerange

Direct Interface to HighSpeed CMOS Maximum input current of 1 A at 15 volt power supply

over the temperature range Parameters specified at 5.0, 10, and 15 volt supply Noise margins: B Series

1.0 V min @ 5.0 V supply2.0 V min @ 10 V supply2.5 V min @ 15 V supply

UB Series0.5 V min @ 5.0 V supply1.0 V min @ 10 V supply1.0 V min @ 15 V supply

The industrystandardized maximum ratings are shown atthe bottom of this page. Limits for the static characteristicsare shown in two formats: Table 1 is in the industry formatand Table 2 is in the equivalent Motorola format. TheMotorola format is used throughout this data book. Additionalspecification values are shown on the individual data sheets.

Switching characteristics for the B and UB series devicesare specified under the following conditions:

Load Capacitance, CL, of 50 pFInput Voltage equal to VSS VDD (RailtoRail swing)Input pulse rise and fall times of 20 nsPropagation Delay times measured from 50% point ofinput voltage to 50% point of output voltageThree different supply voltages: 5, 10, and 15 V

Exceptions to the B and UB Series FamilySpecification

There are a number of devices which have a B or UB suffixwhose inputs and/or outputs vary somewhat from the familyspecification because of functional requirements. Somecategories of notable exceptions are:

Devices with specialized outputs on the chip, such asNPN emitterfollower drivers or transmission gates, donot meet output specifications.

#Specifications coordinated by EIA/JEDEC SolidState ProductsCouncil.

Devices with specialized inputs, such as oscillator in-puts, have unique input specifications.

Input VoltageThe input voltage specification is interpreted as the worst-

case input voltage to produce an output level of 1 or 0.This 1 or 0 output level is defined as a deviation from thesupply (VDD) and ground (VSS) levels. For a 5.0 V supply,this deviation is 0.5 V; for a 10 V supply, 1.0 V; and for 15 V,1.5 V. As an example, in a device operating at a 5.0 V supply,the device with the input starting at ground is guaranteed toswitch on or before 3.5 V and not to switch up to 1.5 V.Switching and not switching are defined as within 0.5 V of theideal output level for the example with a 5.0 V supply. Theactual switching level referred to the input is between 1.5 Vand 3.5 V.

Noise MarginThe values for input voltages and the defined output devi-

ations lead to the calculated noise margins. Noise margin isdefined as the difference between VIL or VIH and Vout(output deviation). As an example, for a noninverting buffer atVDD = 5.0 volts: VIL = 1.5 volts and Vout = 0.5 volts. There-fore, Noise Margin equals VIL Vout = 1.0 volt. This figure isuseful while cascading stages (See Figure 1). With the inputto the first stage at a worstcase voltage level (VIL = 1.5 V),the output is guaranteed to be no greater than 0.5 volts witha 5.0 volt supply. Since the maximum allowable logic 0 forthe second stage is 1.5 volts, this 0.5 volt output provides a1.0 volt margin for noise to the next stage.

Output Drive CurrentDevices in the B Series are capable of sinking a minimum

of 0.36 mA over the temperature range with a 5.0 V supply.This value guarantees that these CMOS devices will driveone lowpower Schottky TTL input.

B Series vs UB CMOSThe primary difference between B series and UB series

devices is that UB series gates and inverters are constructedwith a single inverting stage between input and output. Thedecreased gain caused by using a single stage results in lessnoise immunity and a transfer characteristic that is less ideal.

The decreased gain is quite useful when CMOS Gates andinverters are used in a Linear mode to form oscillators,monostables, or amplifiers. The decreased gain results in in-creased stability and a cleaner output waveform. In additionto linear operation, the UB gates and inverters offer an in-crease in speed, since only a single stage is involved.

The B and UB series, and devices with no suffix can beused interchangeably in digital circuits that interface to otherCMOS devices, such as HighSpeed CMOS Logic.

43CHAPTER 4MOTOROLA CMOS LOGIC DATA

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol

Parameters

Value

Unit

VDD

DC Supply Voltage

0.5 to + 18.0

V

Vin, Vout

Input or Output Voltage (DC or Transient)

0.5 to VDD + 0.5

V

Iin, lout

Input or Output Current (DC or Transient),per Pin

10

mA

PD

Power Dissipation, per Package

500

mW

Tstg

Storage Temperature

65 to + 150

C

TL

Lead Temperature (8Second Soldering)

260

C

* Maximum Ratings are those values values beyond which damage to the device may occur.Temperature Derating:

Plastic P and D/DW Packages: 7.0 mW/C From 65C To 125CCeramic L Packages: 12 mW/C From 100C To 125C

VIL = 1.5 VVout = 0.5 V Vout

5.0 V

FIRST STAGE(NONINVERTING BUFFER)

SECOND STAGE(NONINVERTING BUFFER)

VIL = 1.5 V

Figure 1.

Table 1. EIA/JEDEC Format for CMOS Industry B and UB Series Specifications

ELECTRICAL CHARACTERISTICS

P

T

V

C di i

Limits

U i

P

Temp

VDDC di i

TLOW*

+ 25C

THIGH* U i

Parameter

TempRange

VDD(Vdc)

Conditions

Min

Max

Min

Max

Min

Max

Units

IDD

QuiescentDevice Current

Mil

51015

Vin = VSS or VDD

0.250.51.0

0.250.51.0

7.51530

Adc

GATES

Comm

51015

All valid inputcombinations

1.02.04.0

1.02.04.0

7.51530

Adc

Mil

51015

VIN = VSS or VDD

1.02.04.0

1.02.04.0

3060120

Adc

BUFFERS,FLIPFLOPS

Comm

51015

All valid inputcombinations

4816

4.08.016.0

3060120

Adc

Mil

51015

VIN = VSS or VDD

51020

51020

150300600

Adc

MSI

Comm

51015

All valid inputcombinations

204080

204080

150300600

Adc

VOL

LowLevelOutput Voltage

All

51015

VIN = VSS or VDD|IO| < 1 A

0.050.050.05

0.050.050.05

0.050.050.05

Vdc

VOH

HighLevelOutput Voltage

All

51015

VIN = VSS or VDD|IO| < 1 A

4.959.9514.95

4.959.9514.95

4.959.9514.95

Vdc

VIL

InputLow Voltage#

B Types

All

51015

VO = 0.5V or 4.5VVO = 1.0V or 9.0VVO = 1.5V or 13.5V|IO| < 1 A

1.53.04.0

1.53.04.0

1.53.04.0

Vdc

CHAPTER 444

MOTOROLA CMOS LOGIC DATA

Table 1. EIA/JEDEC Format for CMOS Industry B and UB Series Specifications (continued)

ELECTRICAL CHARACTERISTICS

Units

Limits

Conditions

VDD(Vdc)

TempRange

Parameter

Units

THIGH*

+ 25C

TLOW*Conditions

VDD(Vdc)

TempRange

Parameter

Units

Max

Min

Max

Min

Max

Min

Conditions

VDD(Vdc)

TempRange

Parameter

VIL

InputLow Voltage#

UB Types

All

51015

VO = 0.5V or 4.5VVO = 1.0V or 9.0VVO = 1.5V or 13.5V|IO| < 1 A

1.02.02.5

1.02.02.5

1.02.02.5

VIH

InputHigh Voltage#

B Types

All

51015

VO = 0.5V or 4.5VVO = 1.0V or 9.0VVO = 1.5V or 13.5V|IO| < 1 A

3.57.011.0

3.57.011.0

3.57.011.0

Vdc

VIH

InputHigh Voltage#UB Types

All

51015

VO = 0.5V or 4.5VVO = 1.0V or 9.0VVO = 1.5V or 13.5V|IO| < 1 A

4.08.012.5

4.08.012.5

4.08.012.5

Vdc

IOL

Output Low(Sink) Current

Mil

5

10

15

VO = 0.4V,VIN = 0 or 5V

VO = 0.5V,VIN = 0 or 10V

VO = 1.5V,VIN = 0 or 15V

0.64

1.6

4.2

0.51

1.3

3.4

0.36

0.9

2.4

mAdc

Com

5

10

15

VO = 0.4V,VIN = 0 or 5V

VO = 0.5V,VIN = 0 or 10V

VO = 1.5V,VIN = 0 or 15V

0.52

1.3

3.6

0.44

1.1

3.0

0.36

0.9

2.4

mAdc

IOH

Output High(Source) Current

Mil

5

10

15

VO = 4.6V,VIN = 0 or 5V

VO = 9.5V,VIN = 0 or 10V

VO = 13.5V,VIN = 0 or 15V

0.25

0.62

1.8

0.2

0.5

1.5

0.14

0.35

1.1

mAdc

Com

5

10

15

VO = 4.6V,VIN = 0 or 5V

VO = 9.5V,VIN = 0 or 10V

VO = 13.5VVIN = 0 or 15V

0.2

0.5

1.4

0.16

0.4

1.2

0.12

0.3

1.0

mAdc

IIN

Input Current

MilComm

1515

VIN = 0 or 15VVIN = 0 or 15V

0.1 0.3

0.1 0.3

1.0 1.0

AdcAdc

Ioz

3State OutputLeakage Current

MilComm

1515

VIN = 0 or 15VVIN = 0 or 15V

0.4 1.6

0.4 1.6

12 12

AdcAdc

CIN

Input Capacitanceper unit load

All

Any Input

7.5

pF

* TLOW = 55C for Military temperature range device, 40C for Commercial temperature range device. THIGH = + 125C for Military temperature range device, + 85C for Commercial temperature range device.

#Applies for Worst Case input combinations.

45CHAPTER 4MOTOROLA CMOS LOGIC DATA

Table 2. Motorola Format for CMOS Industry B and UB Series Specifications

ELECTRICAL CHARACTERISTICSCh i i

S b l

VDD

55C

25C

+ 125C U i

Characteristic

Symbol

DDVdc

Min

Max

Min

Max

Min

Max

Unit

Output Voltage 0 LevelVin = VDD or 0

VOL

5.01015

0.050.050.05

0.050.050.05

0.050.050.05

Vdc

1 LevelVin = 0 or VDD

VOH

5.01015

4.959.9514.95

4.959.9514.95

4.959.9514.95

Vdc

Input Voltage B Types 0 Level(VO = 4.5 or 0.5 Vdc)(VO = 9.0 or 1.0 Vdc)(VO = 13.5 or 1.5 Vdc)

VIL

5.01015

1.53.04.0

1.53.04.0

1.53.04.0

Vdc

1 Level(VO = 0.5 or 4.5 Vdc)(VO = 1.0 or 9.0 Vdc)(VO = 1.5 or 13.5 Vdc)

VIH

5.01015

3.57.011

3.57.011

3.57.011

Vdc

Input Voltage UB Types 0 Level(VO = 4.5 or 0.5 Vdc)(VO = 9.0 or 1.0 Vdc)(VO = 13.5 or 1.5 Vdc)

VIL

5.01015

1.02.02.5

1.02.02.5

1.02.02.5

Vdc

1 Level(VO = 0.5 or 4.5 Vdc)(VO = 1.0 or 9.0 Vdc)(VO = 1.5 or 13.5 Vdc)

VIH

5.01015

4.08.012.5

4.08.012.5

4.08.012.5

Vdc

Output Drive Current B Gates(VOH = 2.5 Vdc) Source(VOH = 4.6 Vdc)(VOH = 9.5 Vdc)(VOH = 13.5 Vdc)

IOH

5.05.01015

3.0 0.64 1.6 4.2

2.4 0.51 1.3 3.4

1.7 0.36 0.9 2.4

mAdc

(VOL = 0.4 Vdc) Sink(VOL = 0.5 Vdc)(VOL = 1.5 Vdc)

IOL

5.01015

0.641.64.2

0.511.33.4

0.360.92.4

Output Drive Current UB Gates(VOH = 2.5 Vdc) Source(VOH = 4.6 Vdc)(VOH = 9.5 Vdc)(VOH = 13.5 Vdc)

IOH

5.05.01015

1.2 0.25 0.62 1.8

1.0 0.2 0.5 1.5

0.7 0.14 0.35 1.1

mAdc

(VOL = 0.4 Vdc) Sink(VOL = 0.5 Vdc)(VOL = 1.5 Vdc)

IOL

5.01015

0.641.64.2

0.511.33.4

0.360.92.4

Output Drive Current Other Devices(VOH = 4.6 Vdc) Source(VOH = 9.5 Vdc)(VOH = 13.5 Vdc)

IOH

5.01015

0.64 1.6 4.2

0.51 1.3 3.4

0.36 0.9 2.4

mAdc

(VOL = 0.4 Vdc) Sink(VOL = 0.5 Vdc)(VOL = 1.5 Vdc)

IOL

5.01015

0.641.64.2

0.511.33.4

0.360.92.4

Input Current

Iin

15

0.1

0.1

1.0

Adc

Input Capacitance(Vin = 0)

Cin

7.5

pF

Gate Quiescent Current(Per Package)

IDD

5.01015

0.250.51.0

0.250.51.0

7.51530

Adc

FlipFlop and Buffer Quiescent Current(Per Package)

IDD

5.01015

1.02.04.0

1.02.04.0

3060120

Adc

MSI Quiescent Current(Per Package)

IDD

5.01015

5.01020

5.01020

150300600

Adc

LSI Quiescent Current

IDD

See Individual Data Sheets.

CMOS Handling and Design Guidelines 5

CHAPTER 552

MOTOROLA CMOS LOGIC DATA

HANDLING PRECAUTIONS

All MOS devices have insulated gates that are subject tovoltage breakdown. The gate oxide for Motorola CMOS de-vices is about 900 thick and breaks down at a gatesourcepotential of about 100 volts. To guard against such a break-down from static discharge or other voltage transients, theprotection networks shown in Figures 1A and 1B are used oneach input to the CMOS device.

Static damaged devices behave in various ways, depend-ing on the severity of the damage. The most severely dam-aged inputs are the easiest to detect because the input hasbeen completely destroyed and is either shorted to VDD,shorted to VSS, or opencircuited. The effect is that the de-vice no longer responds to signals present at the damagedinput. Less severe cases are more difficult to detect becausethey show up as intermittent failures or as degraded perfor-mance. Another effect of static damage is that the inputsgenerally have increased leakage currents.

Although the input protection network does provide a greatdeal of protection, CMOS devices are not immune to largestatic voltage discharges that can be generated during han-dling. For example, static voltages generated by a personwalking across a waxed floor have been measured in the415 kV range (depending on humidity, surface conditions,etc.). Therefore, the following precautions should beobserved:

1. Do not exceed the Maximum Ratings specified by thedata sheet.

2. All unused device inputs should be connected to VDD orVSS.

3. All lowimpedance equipment (pulse generators, etc.)should be connected to CMOS inputs only after the de-vice is powered up. Similarly, this type of equipmentshould be disconnected before power is turned off.

4. Circuit boards containing CMOS devices are merelyextensions of the devices, and the same handlingprecautions apply. Contacting edge connectors wireddirectly to device inputs can cause damage. Plasticwrapping should be avoided. When external connec-

tions to a PC board are connected to an input of a CMOSdevice, a resistor should be used in series with the input.This resistor helps limit accidental damage if the PCboard is removed and brought into contact with staticgenerating materials. The limiting factor for the seriesresistor is the added delay. This is caused by the timeconstant formed by the series resistor and inputcapacitance. Note that the maximum input rise and falltimes should not be exceeded. In Figure 2, two possiblenetworks are shown using a series resistor to reduceESD (Electrostatic Discharge) damage. For conve-nience, an equation for added propagation delay andrise time effects due to series resistance size is given.

5. All CMOS devices should be stored or transported inmaterials that are antistatic. CMOS devices must not beinserted into conventional plastic snow, styrofoam, orplastic trays, but should be left in their original containeruntil ready for use.

6. All CMOS devices should be placed on a groundedbench surface and operators should ground them-selves prior to handling devices, since a worker can bestatically charged with respect to the bench surface.Wrist straps in contact with skin are strongly recom-mended. See Figure 3 for an example of a typical workstation.

7. Nylon or other static generating materials should notcome in contact with CMOS devices.

8. If automatic handlers are being used, high levels ofstatic electricity may be generated by the movement ofthe device, the belts, or the boards. Reduce static buildup by using ionized air blowers or room humidifiers. Allparts of machines which come into contact with the top,bottom, or sides of IC packages must be grounded tometal or other conductive material.

9. Cold chambers using CO2 for cooling should beequipped with baffles, and the CMOS devices must becontained on or in conductive material.

10. When leadstraightening or handsoldering is neces-sary, provide ground straps for the apparatus used andbe sure that soldering ties are grounded.

INPUT PROTECTION NETWORK

Figure 1a. Input Protection NetworkDouble Diode

Figure 1b. Input Protection NetworkTriple Diode

VDD VDD

CMOSINPUT TO CIRCUIT

< 1500

VSS

CMOSINPUT 300

VSS

53CHAPTER 5MOTOROLA CMOS LOGIC DATA

11. The following steps should be observed during wavesolder operations:a. The solder pot and conductive conveyor system of

the wave soldering machine must be grounded to anearth ground.

b. The loading and unloading work benches shouldhave conductive tops which are grounded to an earthground.

c. Operators must comply with precautions previouslyexplained.

d. Completed assemblies should be placed in antistaticcontainers prior to being moved to subsequentstations.

12. The following steps should be observed during boardcleaning operations:a. Vapor degreasers and baskets must be grounded to

an earth ground.b. Brush or spray cleaning should not be used.c. Assemblies should be placed into the vapor

degreaser immediately upon removal from theantistatic container.

d. Cleaned assemblies should be placed in antistaticcontainers immediately after removal from the clean-ing basket.

e. High velocity air movement or application of solventsand coatings should be employed only whenassembled printed circuit boards are grounded anda static eliminator is directed at the board.

13. The use of static detection meters for production linesurveillance is highly recommended.

14. Equipment specifications should alert users to the pres-ence of CMOS devices and require familiarization withthis specification prior to performing any kind of mainte-nance or replacement of devices or modules.

15. Do not insert or remove CMOS devices from testsockets with power applied. Check all power supplies tobe used for testing devices to be certain there are novoltage transients present.

16. Double check test equipment setup for proper polarityof VDD and VSS before conducting parametric or func-tional testing.

17. Do not recycle shipping rails or trays. Repeated usecauses deterioration of their antistatic coating.

RECOMMENDED FOR READING:

Total Control of the Static in Your Business

Available by writing to:3M CompanyStatic Control SystemsP.O. Box 2963Austin, Texas 787692963

Or by Calling:18003281368

Figure 1. Networks for Minimizing ESD and ReducingCMOS Latch Up Susceptibility

TO OFFBOARDCONNECTION

R1CMOSINPUT

OROUTPUT

TO OFFBOARDCONNECTION

CMOSINPUT

OROUTPUT

R2

VDD

D1

D2

VSSAdvantage:

Disadvantage:

Requires minimal board area

R1 > R2 for the same level ofprotection, therefore rise and falltimes, propagation delays, and outputdrives are severely affected.

Advantage:

Disadvantage:

R2 < R1 for the samelevel of protection.Impact on ac and dccharacteristics is minimized

More board area, higher initial cost

Note: These networks are useful for protecting the followingAB

digital inputs and outputsanalog inputs and outputs

CD

3state outputsbidirectional (I/O) ports

PROPAGATION DELAY AND RISE TIMEvs. SERIES RESISTANCE

R tC kwhere:

RtC

kk

= the maximum allowable series resistance in ohms= the maximum tolerable propagation delay or rise time in seconds= the board capacitance plus the driven devices= input capacitance in farads= 0.7 for propagation delay calculations= 2.3 for rise time calculations

CHAPTER 554

MOTOROLA CMOS LOGIC DATA

Figure 2. Typical Manufacturing Work Station

RESISTOR =1 MEGAOHM

1

2

3

4

5

NOTES: 1. 1/16 inch conductive sheet stock covering benchtop work area.

2. Ground strap.3. Wrist strap in contact with skin.4. Static neutralizer. (Ionized air blower directed at

work.) Primarily for use in areas where directgrounding is impractical.

5. Room humidifier. Primarily for use in areas wherethe relative humidity is less than 45%. Caution:building heating and cooling systems usually drythe air causing the relative humidity inside ofbuildings to be less than outside humidity.

POWER SUPPLIES

CMOS devices have low power requirements and the abil-ity to operate over a wide range of supply voltages. Thesetwo characteristics allow CMOS designs to be implementedusing inexpensive, conventional power supplies, instead ofswitching power supplies and power supplies with coolingfans. In addition, batteries may be used as either a primarypower source or for emergency backup.

The absolute maximum power supply voltage for 14000Series Metalgate CMOS is 18.0 Vdc. Figure 4 offers someinsight as to how this specification was derived. In the figure,VS is the maximum power supply voltage and IS is the sus-taining current of the latchup mode. The value of VS waschosen so that the secondary breakdown effect may beavoided.

In an ideal system design, a power supply should bedesigned to deliver only enough current to insure properoperation of all devices. The obvious benefit of this typedesign is cost savings; an added benefit is protection against

the possibility of latchup related failures. This systemprotection can be provided by the power supply filter and/orvoltage regulator.

CMOS devices can be used with battery or battery backupsystems. A few precautions should be taken when designingbatteryoperated systems:

1. The recommended power supply voltage should be ob-served. For battery backup systems such as the one inFigure 5, the battery voltage must be at least 3.7 Volts(3 Volts from the minimum power supply voltage and0.7 Volts to account for the voltage drop across the se-ries diode).

2. Inputs that might go above the battery backup voltageshould either use a series resistor to limit the input cur-rent to less than 10 mA or use the MC14049UB orMC14050B hightolow voltage translators.

3. Outputs that are subject to voltage levels above VDD orbelow VSS should be protected with a series resistor tolimit the current to less than 10 mA or with clampingdiodes.

Figure 3. Secondary Breakdown Characteristics

IDD

IS

VS VDD

LATCHUP MODE

SECONDARYBREAKDOWN

LOW CURRENTJUNCTION

AVALANCHE

VS = DATA SHEET MAXIMUM SUPPLY RATING

55CHAPTER 5MOTOROLA CMOS LOGIC DATA

Figure 4. Battery Backup Interface

POWER SUPPLY

LINE POWER ONLYSYSTEM

CMOSSYSTEM

MC14049UBMC14050B

BATTERY BACKUPSYSTEM

MC14049UBMC14050B

BATTERY BACKUPRECHARGE

CMOSSYSTEM

INPUTS

All inputs, while in the recommended operating range (VSS< Vin < VDD) can be modeled as shown in Figure 6. For inputvoltages in this range, diodes D1 and D2 are modeled asresistors, representing the reverse bias impedance of thediodes. The maximum input current is worst case, 1 A,when the inputs are at VDD or VSS, and VDD = 15.0 V. Thismodel does not apply to inputs with pullup or pulldownresistors.

Figure 5. Input Model for V SS Vin VDD

VDD

R1

7.5 pF

R1 = R2 = HIGH Z

R2

When left opencircuited, the inputs may selfbias at ornear the typical switchpoint, where both the Pchannel andNchannel transistors are conducting, causing excessivecurrent drain. Due to the high gain of the inverters (seeFigure 7), the device may also go into oscillation from anynoise in the system. Since CMOS devices dissipate the mostpower during switching, this oscillation can cause very largecurrent drain and undesired switching.

Figure 6. Typical Transfer Characteristicsfor Buffered Devices

5.0

4.0

3.0

2.0

1.0

00 1.0 2.0 3.0 4.0 5.0

Vin, INPUT VOLTAGE (V)

V out

, OU

TPU

T VO

LTAG

E (V

)

VDD = 5.0 Vdc

SINGLE INPUT NAND, ANDMULTIPLE INPUT NOR, OR

SINGLE INPUT NOR, ORMULTIPLE INPUT NAND, AND

For these reasons, all unused inputs should be connectedeither to VDD or VSS. For applications with inputs going toedge connectors, a 100 kilohm resistor to VSS should beused, as well as a series resistor for static protection andcurrent limiting (Figure 8). The 100 kilohm resistor will helpeliminate any static charges that might develop on theprinted circuit board. See Figure 2 for other possibleprotection arrangements.

Figure 7. External Protection

RS

100 k

FROMEDGE

CONNECTOR

CMOSDEVICE

CHAPTER 556

MOTOROLA CMOS LOGIC DATA

For input voltages outside of the recommended operatingrange, the CMOS input is modeled as in Figure 9. Theresistordiode protection network allows the user greaterfreedom when designing a worst case system. The deviceinputs are guaranteed to withstand voltages from VSS 0.5 Vto VDD + 0.5 V and a maximum current of 10 mA. With theabove input ratings, most designs will require no specialterminations or design considerations.

Figure 8. Input Model for V in > VDD or Vin < VSS

1.5 k

D2 7.5 pF

D1

Other specifications that should be noted are the maxi-mum input r ise and fal l t imes. Figure 10 shows theoscillations that may result from exceeding the 15 smaximum rise and fall time at VDD = 5.0 V, 5 s at 10 V, or4 s at 15 V. As the voltage passes through the switchingthreshold region with a slow rise time, any noise that is on theinput is amplified, and passed through to the output, causingoscillations. The oscillation may have a low enough fre-quency to cause succeeding stages to switch, givingunexpected results. If input rise or fall times are expected toexceed 15 s at 5.0 V, 5 s at 10 V, or 4 s at 15 V,Schmitttrigger devices such as the MC14093B, MC14583B,MC14584B, MC14106B, HC14, or HC132 are recommendedfor squaringup these slow transitions.

Figure 9. Maximum Rise and Fall Time Violations

Vin

Vout

VDD

VSS

VOH

VOL

OUTPUTS

All CMOS BSeries outputs are buffered to insure consis-tent output voltage and current performance. All buffered out-puts have guaranteed output voltages of VOL = 0.05 V andVOH = VDD 0.05 V for Vin = VDD or VSS and lout = 0 A. Theoutput drives for all buffered CMOS devices are such that1 LSTTL load can be driven across the full temperaturerange.

CMOS outputs are limited to externally forced outputvoltages of VSS 0.5 V Vout VDD + 0.5 V. Whenvoltages are forced outside of this range, a silicon controlledrectifier (SCR) formed by parasitic transistors can betriggered, causing the device to latch up. For more informa-tion on this, see the explanation of CMOS Latch Up in thissection.

The maximum rated output current for most outputs is10 mA. The output shortcircuit currents of these devicestypically exceed these limits. Care must be taken not to ex-ceed the maximum ratings found on every data sheet.

For applications that require driving high capacitive loadswhere fast propagation delays are needed (e.g., drivingpower MOSFETs), two or more outputs on the same chipmay be externally paralleled.

CMOS LATCH UP

Latch up will not be a problem for most designs, but thedesigner should be aware of it, what causes it, and how toprevent it.

Figure 11 shows the crosssection of a typical CMOS in-verter and Figure 12 shows the parasitic bipolar devices. Thecircuit formed by the parasitic transistors and resistors is thebasic configuration of a silicon controlled rectifier, or SCR. Inthe latch up condition, transistors Q1 and Q2 are turned ON,each providing the base current necessary for the other toremain in saturation, thereby latching the devices in the ONstate. Unlike a conventional SCR, where the device is turnedON by applying a voltage to the base of the NPN transistor,the parasitic SCR is turned ON by applying a voltage to theemitter of either transistor. The two emitters that trigger theSCR are the same point, the CMOS output. Therefore, tolatch up the CMOS device, the output voltage must be great-er than VDD + 0.5 V or less than VSS 0.5 V and have suffi-cient current to trigger the SCR. The latchup mechanism issimilar for the inputs.

Once a CMOS device is latched up, if the supply current isnot limited, the device will be destroyed. Ways to preventsuch occurrences are listed below:

1. Insure that inputs and outputs are limited to the maxi-mum rated values, as follows: 0.5 V Vin or Vout VDD + 0.5 V (referenced to VSS)|Iin or Iout| 10 mA (unless otherwise indicated on thedata sheet)

2. If voltage transients of sufficient energy to latch up thedevice are expected on the inputs or outputs, externalprotection diodes can be used to clamp the voltage.Another method of protection is to use a series resistorto limit the expected worst case current to the maximumrating of 10 mA. (See Figure 2).

3. Sequence power supplies so that the inputs or outputsof CMOS devices are not active before the supply pinsare powered up (e.g., recessed edge connectors and/or series resistors may be used in plugin board ap-plications).

4. Voltage regulating or filtering should be used in boarddesign and layout to insure that powersupply lines arefree of excessive noise.

5. Limit the available power supply current to the devicesthat are subject to latchup conditions. This can be ac-complished with the power supply filtering network orwith a currentlimiting regulator.

57CHAPTER 5MOTOROLA CMOS LOGIC DATA

Figure 10. CMOS Wafer Cross Section

VDD VDD

PCHANNEL NCHANNELINPUT

OUTPUTPCHANNELOUTPUT

NCHANNELOUTPUT

VSS

FIELD OXIDE FIELD OXIDE FIELD OXIDEN+ P+ P+ N+ N+ P+

P WELLN SUBSTRATE

Figure 11. Latch Up Circuit Schematic

VSS

VSS

NCHANNEL OUTPUTNSUBSTRATE RESISTANCE

Q1

N+

P

PCHANNEL OUTPUTPWELL RESISTANCE

N

P+

P

VDD

VDD

N+ N

P+Q2

CMOS Handling and Design Guidelines 5

CHAPTER 552

MOTOROLA CMOS LOGIC DATA

HANDLING PRECAUTIONS

All MOS devices have insulated gates that are subject tovoltage breakdown. The gate oxide for Motorola CMOS de-vices is about 900 thick and breaks down at a gatesourcepotential of about 100 volts. To guard against such a break-down from static discharge or other voltage transients, theprotection networks shown in Figures 1A and 1B are used oneach input to the CMOS device.

Static damaged devices behave in various ways, depend-ing on the severity of the damage. The most severely dam-aged inputs are the easiest to detect because the input hasbeen completely destroyed and is either shorted to VDD,shorted to VSS, or opencircuited. The effect is that the de-vice no longer responds to signals present at the damagedinput. Less severe cases are more difficult to detect becausethey show up as intermittent failures or as degraded perfor-mance. Another effect of static damage is that the inputsgenerally have increased leakage currents.

Although the input protection network does provide a greatdeal of protection, CMOS devices are not immune to largestatic voltage discharges that can be generated during han-dling. For example, static voltages generated by a personwalking across a waxed floor have been measured in the415 kV range (depending on humidity, surface conditions,etc.). Therefore, the following precautions should beobserved:

1. Do not exceed the Maximum Ratings specified by thedata sheet.

2. All unused device inputs should be connected to VDD orVSS.

3. All lowimpedance equipment (pulse generators, etc.)should be connected to CMOS inputs only after the de-vice is powered up. Similarly, this type of equipmentshould be disconnected before power is turned off.

4. Circuit boards containing CMOS devices are merelyextensions of the devices, and the same handlingprecautions apply. Contacting edge connectors wireddirectly to device inputs can cause damage. Plasticwrapping should be avoided. When external connec-

tions to a PC board are connected to an input of a CMOSdevice, a resistor should be used in series with the input.This resistor helps limit accidental damage if the PCboard is removed and brought into contact with staticgenerating materials. The limiting factor for the seriesresistor is the added delay. This is caused by the timeconstant formed by the series resistor and inputcapacitance. Note that the maximum input rise and falltimes should not be exceeded. In Figure 2, two possiblenetworks are shown using a series resistor to reduceESD (Electrostatic Discharge) damage. For conve-nience, an equation for added propagation delay andrise time effects due to series resistance size is given.

5. All CMOS devices should be stored or transported inmaterials that are antistatic. CMOS devices must not beinserted into conventional plastic snow, styrofoam, orplastic trays, but should be left in their original containeruntil ready for use.

6. All CMOS devices should be placed on a groundedbench surface and operators should ground them-selves prior to handling devices, since a worker can bestatically charged with respect to the bench surface.Wrist straps in contact with skin are strongly recom-mended. See Figure 3 for an example of a typical workstation.

7. Nylon or other static generating materials should notcome in contact with CMOS devices.

8. If automatic handlers are being used, high levels ofstatic electricity may be generated by the movement ofthe device, the belts, or the boards. Reduce static buildup by using ionized air blowers or room humidifiers. Allparts of machines which come into contact with the top,bottom, or sides of IC packages must be grounded tometal or other conductive material.

9. Cold chambers using CO2 for cooling should beequipped with baffles, and the CMOS devices must becontained on or in conductive material.

10. When leadstraightening or handsoldering is neces-sary, provide ground straps for the apparatus used andbe sure that soldering ties are grounded.

INPUT PROTECTION NETWORK

Figure 1a. Input Protection NetworkDouble Diode

Figure 1b. Input Protection NetworkTriple Diode

VDD VDD

CMOSINPUT TO CIRCUIT

< 1500

VSS

CMOSINPUT 300

VSS

53CHAPTER 5MOTOROLA CMOS LOGIC DATA

11. The following steps should be observed during wavesolder operations:a. The solder pot and conductive conveyor system of

the wave soldering machine must be grounded to anearth ground.

b. The loading and unloading work benches shouldhave conductive tops which are grounded to an earthground.

c. Operators must comply with precautions previouslyexplained.

d. Completed assemblies should be placed in antistaticcontainers prior to being moved to subsequentstations.

12. The following steps should be observed during boardcleaning operations:a. Vapor degreasers and baskets must be grounded to

an earth ground.b. Brush or spray cleaning should not be used.c. Assemblies should be placed into the vapor

degreaser immediately upon removal from theantistatic container.

d. Cleaned assemblies should be placed in antistaticcontainers immediately after removal from the clean-ing basket.

e. High velocity air movement or application of solventsand coatings should be employed only whenassembled printed circuit boards are grounded anda static eliminator is directed at the board.

13. The use of static detection meters for production linesurveillance is highly recommended.

14. Equipment specifications should alert users to the pres-ence of CMOS devices and require familiarization withthis specification prior to performing any kind of mainte-nance or replacement of devices or modules.

15. Do not insert or remove CMOS devices from testsockets with power applied. Check all power supplies tobe used for testing devices to be certain there are novoltage transients present.

16. Double check test equipment setup for proper polarityof VDD and VSS before conducting parametric or func-tional testing.

17. Do not recycle shipping rails or trays. Repeated usecauses deterioration of their antistatic coating.

RECOMMENDED FOR READING:

Total Control of the Static in Your Business

Available by writing to:3M CompanyStatic Control SystemsP.O. Box 2963Austin, Texas 787692963

Or by Calling:18003281368

Figure 1. Networks for Minimizing ESD and ReducingCMOS Latch Up Susceptibility

TO OFFBOARDCONNECTION

R1CMOSINPUT

OROUTPUT

TO OFFBOARDCONNECTION

CMOSINPUT

OROUTPUT

R2

VDD

D1

D2

VSSAdvantage:

Disadvantage:

Requires minimal board area

R1 > R2 for the same level ofprotection, therefore rise and falltimes, propagation delays, and outputdrives are severely affected.

Advantage:

Disadvantage:

R2 < R1 for the samelevel of protection.Impact on ac and dccharacteristics is minimized

More board area, higher initial cost

Note: These networks are useful for protecting the followingAB

digital inputs and outputsanalog inputs and outputs

CD

3state outputsbidirectional (I/O) ports

PROPAGATION DELAY AND RISE TIMEvs. SERIES RESISTANCE

R tC kwhere:

RtC

kk

= the maximum allowable series resistance in ohms= the maximum tolerable propagation delay or rise time in seconds= the board capacitance plus the driven devices= input capacitance in farads= 0.7 for propagation delay calculations= 2.3 for rise time calculations

CHAPTER 554

MOTOROLA CMOS LOGIC DATA

Figure 2. Typical Manufacturing Work Station

RESISTOR =1 MEGAOHM

1

2

3

4

5

NOTES: 1. 1/16 inch conductive sheet stock covering benchtop work area.

2. Ground strap.3. Wrist strap in contact with skin.4. Static neutralizer. (Ionized air blower directed at

work.) Primarily for use in areas where directgrounding is impractical.

5. Room humidifier. Primarily for use in areas wherethe relative humidity is less than 45%. Caution:building heating and cooling systems usually drythe air causing the relative humidity inside ofbuildings to be less than outside humidity.

POWER SUPPLIES

CMOS devices have low power requirements and the abil-ity to operate over a wide range of supply voltages. Thesetwo characteristics allow CMOS designs to be implementedusing inexpensive, conventional power supplies, instead ofswitching power supplies and power supplies with coolingfans. In addition, batteries may be used as either a primarypower source or for emergency backup.

The absolute maximum power supply voltage for 14000Series Metalgate CMOS is 18.0 Vdc. Figure 4 offers someinsight as to how this specification was derived. In the figure,VS is the maximum power supply voltage and IS is the sus-taining current of the latchup mode. The value of VS waschosen so that the secondary breakdown effect may beavoided.

In an ideal system design, a power supply should bedesigned to deliver only enough current to insure properoperation of all devices. The obvious benefit of this typedesign is cost savings; an added benefit is protection against

the possibility of latchup related failures. This systemprotection can be provided by the power supply filter and/orvoltage regulator.

CMOS devices can be used with battery or battery backupsystems. A few precautions should be taken when designingbatteryoperated systems:

1. The recommended power supply voltage should be ob-served. For battery backup systems such as the one inFigure 5, the battery voltage must be at least 3.7 Volts(3 Volts from the minimum power supply voltage and0.7 Volts to account for the voltage drop across the se-ries diode).

2. Inputs that might go above the battery backup voltageshould either use a series resistor to limit the input cur-rent to less than 10 mA or use the MC14049UB orMC14050B hightolow voltage translators.

3. Outputs that are subject to voltage levels above VDD orbelow VSS should be protected with a series resistor tolimit the current to less than 10 mA or with clampingdiodes.

Figure 3. Secondary Breakdown Characteristics

IDD

IS

VS VDD

LATCHUP MODE

SECONDARYBREAKDOWN

LOW CURRENTJUNCTION

AVALANCHE

VS = DATA SHEET MAXIMUM SUPPLY RATING

55CHAPTER 5MOTOROLA CMOS LOGIC DATA

Figure 4. Battery Backup Interface

POWER SUPPLY

LINE POWER ONLYSYSTEM

CMOSSYSTEM

MC14049UBMC14050B

BATTERY BACKUPSYSTEM

MC14049UBMC14050B

BATTERY BACKUPRECHARGE

CMOSSYSTEM

INPUTS

All inputs, while in the recommended operating range (VSS< Vin < VDD) can be modeled as shown in Figure 6. For inputvoltages in this range, diodes D1 and D2 are modeled asresistors, representing the reverse bias impedance of thediodes. The maximum input current is worst case, 1 A,when the inputs are at VDD or VSS, and VDD = 15.0 V. Thismodel does not apply to inputs with pullup or pulldownresistors.

Figure 5. Input Model for V SS Vin VDD

VDD

R1

7.5 pF

R1 = R2 = HIGH Z

R2

When left opencircuited, the inputs may selfbias at ornear the typical switchpoint, where both the Pchannel andNchannel transistors are conducting, causing excessivecurrent drain. Due to the high gain of the inverters (seeFigure 7), the device may also go into oscillation from anynoise in the system. Since CMOS devices dissipate the mostpower during switching, this oscillation can cause very largecurrent drain and undesired switching.

Figure 6. Typical Transfer Characteristicsfor Buffered Devices

5.0

4.0

3.0

2.0

1.0

00 1.0 2.0 3.0 4.0 5.0

Vin, INPUT VOLTAGE (V)

V out

, OU

TPU

T VO

LTAG

E (V

)

VDD = 5.0 Vdc

SINGLE INPUT NAND, ANDMULTIPLE INPUT NOR, OR

SINGLE INPUT NOR, ORMULTIPLE INPUT NAND, AND

For these reasons, all unused inputs should be connectedeither to VDD or VSS. For applications with inputs going toedge connectors, a 100 kilohm resistor to VSS should beused, as well as a series resistor for static protection andcurrent limiting (Figure 8). The 100 kilohm resistor will helpeliminate any static charges that might develop on theprinted circuit board. See Figure 2 for other possibleprotection arrangements.

Figure 7. External Protection

RS

100 k

FROMEDGE

CONNECTOR

CMOSDEVICE

CHAPTER 556

MOTOROLA CMOS LOGIC DATA

For input voltages outside of the recommended operatingrange, the CMOS input is modeled as in Figure 9. Theresistordiode protection network allows the user greaterfreedom when designing a worst case system. The deviceinputs are guaranteed to withstand voltages from VSS 0.5 Vto VDD + 0.5 V and a maximum current of 10 mA. With theabove input ratings, most designs will require no specialterminations or design considerations.

Figure 8. Input Model for V in > VDD or Vin < VSS

1.5 k

D2 7.5 pF

D1

Other specifications that should be noted are the maxi-mum input r ise and fal l t imes. Figure 10 shows theoscillations that may result from exceeding the 15 smaximum rise and fall time at VDD = 5.0 V, 5 s at 10 V, or4 s at 15 V. As the voltage passes through the switchingthreshold region with a slow rise time, any noise that is on theinput is amplified, and passed through to the output, causingoscillations. The oscillation may have a low enough fre-quency to cause succeeding stages to switch, givingunexpected results. If input rise or fall times are expected toexceed 15 s at 5.0 V, 5 s at 10 V, or 4 s at 15 V,Schmitttrigger devices such as the MC14093B, MC14583B,MC14584B, MC14106B, HC14, or HC132 are recommendedfor squaringup these slow transitions.

Figure 9. Maximum Rise and Fall Time Violations

Vin

Vout

VDD

VSS

VOH

VOL

OUTPUTS

All CMOS BSeries outputs are buffered to insure consis-tent output voltage and current performance. All buffered out-puts have guaranteed output voltages of VOL = 0.05 V andVOH = VDD 0.05 V for Vin = VDD or VSS and lout = 0 A. Theoutput drives for all buffered CMOS devices are such that1 LSTTL load can be driven across the full temperaturerange.

CMOS outputs are limited to externally forced outputvoltages of VSS 0.5 V Vout VDD + 0.5 V. W