masterproef_master_banking_and_finance_nicolas_dierick_pieterjan_tilleman

107
UNIVERSITY GHENT FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION ACADEMIC YEAR 2014 – 2015 THE RISK OF CTAs: HIGHER PROFITABILITY IN TIMES OF CRISIS? Masterdissertation submitted in fulfilment of the requirements for the degree of Master of Science in Banking and Finance Nicolas Dierick Pieterjan Tilleman Under supervision of Prof. Dr. Michael Frömmel, University Ghent Dr. Alexander Mende, RPM Risk and Portfolio Management AB

Upload: pieterjan-tilleman

Post on 20-Mar-2017

99 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

UNIVERSITY GHENT

FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION

ACADEMIC YEAR 2014 – 2015

THE RISK OF CTAs: HIGHER PROFITABILITY IN TIMES OF

CRISIS?

Masterdissertation submitted in fulfilment of the requirements for the degree of Master of Science in Banking and Finance

Nicolas Dierick Pieterjan Tilleman

Under supervision of

Prof. Dr. Michael Frömmel, University Ghent

Dr. Alexander Mende, RPM Risk and Portfolio Management AB

Page 2: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 3: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 

 

Abstract  

This   study   investigates   the   ability   of   commodity   trading   advisors   (CTAs),   commonly  

associated   with   managed   futures,   to   provide   investors   with   important   diversification  

benefits   in   times   of   crisis.   By   developing   a   systematic   identification   methodology   and  

employing  a  unique  dataset,  we  show  that  managed  futures  do  acquire  positive  gains   in  

most  sector  crises,  stemming  from  two  sources.  Firstly,  the  asset  class  is  diversified  across  

multiple   futures   markets.   As   a   result,   positive   yields   in   other   markets   are   able   to  

counterbalance   the   lacking   performance   in   the   crisis   sector.   Secondly,   the   downward  

adjustment  of  managed  futures  exposure  to  their  focus  market  allows  them  to  put  a  halt  

to  the  fall  in  their  sector  performance.    

The  authors  would  like  to  acknowledge  that  this  work  could  not  have  been  possible  without  

the  contribution  of  others.  We  would   like  to  express  our  sincere  gratitude  to  Prof.  Michael  

Frömmel   of   Ghent   University   and   Dr.   Alexander   Mende   of   RPM   Risk   and   Portfolio  

Management  AB,  for  their  guidance  throughout  this  graduation  project.  We  would  also  like  

to   thank  RPM  Risk  and  Portfolio  Management  AB   for  providing   the   resources   to  complete  

our  graduation  project.    

 Any   expressed   opinions   are   not   to   be   interpreted   as   anybody’s   but   the   authors.   All  

remaining  errors  lie  with  the  authors  only.  

Page 4: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 5: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  I  

Table  of  Contents  

1   Introduction  ..................................................................................................................................................  1  

2   Literature  Review  .......................................................................................................................................  5  

3   Methodology  ..............................................................................................................................................  17  

3.1   Crisis  Identification  ........................................................................................................................................  17  3.2   CTA  Crisis  Alpha  ..............................................................................................................................................  20  

4   Data  ................................................................................................................................................................  27  

4.1   Crisis  Identification  ........................................................................................................................................  27  4.2   CTA  Crisis  Alpha  ..............................................................................................................................................  27  

5   Empirical  Results  .....................................................................................................................................  29  

5.1   Crisis  Identification  ........................................................................................................................................  29  5.2   CTA  Crisis  Alpha  ..............................................................................................................................................  31  5.2.1   Aggregate  CTA  Performance  Analysis  ...........................................................................................  31  5.2.2   Sector  Specific  CTA  Performance  Analysis  .................................................................................  34  5.2.3   Managed  Futures  Dynamics  in  a  Crisis  Regime  ........................................................................  36  

6   Robustness  Tests  .....................................................................................................................................  41  

7   Conclusion  ..................................................................................................................................................  45  

8   References:  .................................................................................................................................................  47  

9   Appendix  .....................................................................................................................................................  53  

9.1   Tables  ...................................................................................................................................................................  53  9.2   Figures  .................................................................................................................................................................  81  9.3   MATLAB  Code  Crisis  Identification  Methodology  ............................................................................  90  

 

   

Page 6: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 II  

List  of  Abbreviations  

Aggr       Aggregate  AMH         Adaptive  Market  Hypothesis  BMA         Bear  Market  Algorithm  BTOP       Barclays  Top  performing  Index  CMA       Crisis  Market  Algorithm  Comm.  Agr     Commodities  Agriculture  Comm.  Energy   Commodities  Energy  Comm.  Metals     Commodities  Metals  CTA       Commodity  Trading  Advisor  D         Crisis  Dummy  Variable  EMH       Efficient  Market  Hypothesis  EMS       European  Monetary  System  ERM       Exchange  Rate  Mechanism  FI       Fixed  Income  GARCH       Generalized  AutoRegressive  Conditional  Heteroscedasticity  HM       Henriksson  and  Merton  model  IF       Intensity  Factor  IF-­‐adj       Volatility  adjusted  Intensity  Factor  LPM         Linear  Probability  Model  LTCM       Long  Term  Capital  Management  MDI       Market  Divergence  Index  MS       Markov  Switching  NCTA       Newedge  CTA  (Commodity  Trading  Advisor)  OLS       Ordinary  Least  Squares  PTFS       Primitive  Trend-­‐Following  Strategy  RPM       Risk  and  Portfolio  Management  AB  SBC       Schwarz  Bayesian  Criterion  TF       Trend-­‐Following  TM       Treynor  and  Mazuy  model  TW  USD     Trade-­‐Weighted  US  Dollar  VIX       CBOE  (Chicago  Board  Options  Exchange)  Volatility  Index  

 

   

Page 7: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  III  

List  of  Tables  

Table  1:  Data  Crisis  Identification  Methodology  .....................................................................  53  

Table  2:  Summary  Statistics  .....................................................................................................  53  

Table  3:  Employed  Parameters  ................................................................................................  54  

Table  4:  Summary  Statistics  .....................................................................................................  54  

Table  5:  Matching  Contextual  and  CMA  Stock  Market  Crises  .................................................  55  

Table  6:  Overlapping  Crises  .....................................................................................................  56  

Table  7:  Granger  Causality  Test  P-­‐Values  ................................................................................  56  

Table  8:  Aggregate  CTA  Regime  Dependent  Returns  ..............................................................  57  

Table  9:  Regime  Dependent  Correlations  ................................................................................  57  

Table  10:  Aggregate  CTA  HM  Model  .......................................................................................  58  

Table  11:  Sector  Regime  Dependent  Performance  .................................................................  59  

Table  12:  Equity  and  Fixed  Income  Sector  HM  Model  .............................................................  60  

Table  13:  Soft  and  Energy  Commodities  Sector  HM  Model  ....................................................  61  

Table  14:  Commodity  Metals  and  Currencies  Sector  HM  Model  ............................................  62  

Table  15:  HM  Model  Aggregate  Robustness  to  Alternative  CTA  Index  ...................................  63  

Table   16:   HM  Model   Aggregate   Robustness   to   Daniel   and  Moskowitz   (2013)   Bear  Market  

Identification  ...................................................................................................................  64  

Table  17:  HM  Model  Aggregate  Robustness  to  BMA  Indicator  ...............................................  65  

Table  18:  HM  Model  Aggregate  Robustness  to  Chen  and  Liang  (2007)  Indicator  ...................  66  

Table  19:  HM  Model  Aggregate  Robustness  to  the  Exclusion  of  the  Credit  Crunch  ...............  67  

Page 8: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 IV  

Table  20:  HM  Model  Sectorial  Robustness  of  Equity  and  Fixed  Income  Sectors  to  Daniel  and  

Moskowitz  (2013)  Bear  Market  Identification  .................................................................  68  

Table   21:   HM  Model   Sectorial   Robustness   of   Soft   Commodities   and   Commodities   Energy  

Sectors  to  Daniel  and  Moskowitz  (2013)  Bear  Market  Identification  ..............................  69  

Table  22:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  

Sectors  to  Daniel  and  Moskowitz  (2013)  Bear  Market  Identification  ..............................  70  

Table   23:   HM   Model   Sectorial   Robustness   of   Equity   and   Fixed   Income   Sectors   to   BMA  

Indicator  ..........................................................................................................................  71  

Table   24:   HM  Model   Sectorial   Robustness   of   Soft   Commodities   and   Commodities   Energy  

Sectors  to  BMA  Indicator  .................................................................................................  72  

Table  25:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  

Sectors  to  BMA  Indicator  .................................................................................................  73  

Table  26:  HM  Model  Sectorial  Robustness  of  Equity  and  Fixed  Income  Sectors  to  Chen  and  

Liang  (2007)  Indicator  ......................................................................................................  74  

Table   27:   HM  Model   Sectorial   Robustness   of   Soft   Commodities   and   Commodities   Energy  

Sectors  to  Chen  and  Liang  (2007)  Indicator  .....................................................................  75  

Table  28:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  

Sectors  to  Chen  and  Liang  (2007)  Indicator  .....................................................................  76  

Table   29:   HM   Model   Sectorial   Robustness   of   Equity   and   Fixed   Income   Sectors   to   the  

Exclusion  of  the  Credit  Crunch  ........................................................................................  77  

Table   30:   HM  Model   Sectorial   Robustness   of   Soft   Commodities   and   Commodities   Energy  

Sectors  to  the  Exclusion  of  the  Credit  Crunch  .................................................................  78  

Table  31:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  

Sectors  to  the  Exclusion  of  the  Credit  Crunch  .................................................................  79  

 

   

Page 9: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  V  

List  of  Figures  

Figure  1:  Average  Monthly  Return  of  CTAs  in  Five  Equity  Market  Regimes  ............................  81  

Figure  2:  Equity  Market  Crisis  and  Bear  Market  Identification  ................................................  81  

Figure  3:  Fixed  Income  Market  Crisis  and  Bear  Market  Identification  ....................................  81  

Figure  4:  Commodities  Agriculture  Market  Crisis  and  Bear  Market  Identification  ..................  82  

Figure  5:  Commodities  Energy  Market  Crisis  and  Bear  Market  Identification  ........................  82  

Figure  6:  Commodities  Metals  Market  Crisis  and  Bear  Market  Identification  ........................  82  

Figure  7:  Trade-­‐Weighted  USD  Market  Crisis  and  Bear  Market  Identification  ........................  83  

Figure  8:  Overlapping  Crisis  Periods  ........................................................................................  83  

Figure  9:  CTA’s  Time-­‐Varying  Equity  Market  Risk  Factor  Exposures  .......................................  83  

Figure  10:  Managed  Futures  Dynamics  in  an  Equity  Market  Crisis  .........................................  84  

Figure  11:  Managed  Futures  Dynamics  in  a  Fixed  Income  Market  Crisis  ................................  85  

Figure  12:  Managed  Futures  Dynamics  in  a  Commodity  Agriculture  Market  Crisis  ................  86  

Figure  13:  Managed  Futures  Dynamics  in  a  Commodity  Energy  Market  Crisis  .......................  87  

Figure  14:  Managed  Futures  Dynamics  in  a  Commodity  Metals  Market  Crisis  .......................  88  

Figure  15:  Managed  Futures  Dynamics  in  a  Trade-­‐Weighted  USD  Market  Crisis  ....................  89  

 

 

Page 10: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 11: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  1  

1 Introduction  

Most   investment   strategies  are   susceptible   to   suffering  devastating   losses  during  an  equity  

market  crisis.  Given  this,   for  almost  any   investor,   the  key  to   finding  true  diversification   is   in  

finding  an  investment  that  is  able  to  deliver  performance  during  these  turbulent  periods.    

(Greyserman  and  Kaminski,  2014  p  72)  

Quite   recently,  managed   futures   have   gained   renewed   attention,   due   to   their   outstanding  

performance   during   the   past   global   financial   crisis.  Managed   futures   have   therefore   been  

highlighted   as   an   investment   vehicle   providing   important   hedging   capabilities   in   downturn  

markets.   Certain   authors,   such   as   Kaminski   (2011a)   and   Tee   (2012),   have   stressed  

Commodity   Trading   Advisors’   (CTAs)   ability   to   provide   investors   with   “crisis   alpha”.   In  

particular,   the  capability  to  deliver  significant  returns  during  the  great  plummet   in  financial  

markets  of  2008,  and  the  downfall  of  a  number  of  large  hedge  funds,  was  argued  to  be  one  

of  the  main  reasons  why  CTAs  have  undergone  massive  inflows  in  2010  (Tee,  2012).    

The  potential  of  CTAs  during  downturn  markets  is  not  new  in  the  academic  literature.  Fung  

and   Hsieh   (1997)   showed   that   their   returns   exhibit   a   non-­‐linear   relationship   with   global  

equity   markets.   Figure   1   reproduces   this   graph   with   updated   data   and   several   managed  

futures  indices.  More  specifically,  we  divide  monthly  MSCI  World  returns  in  five  quintiles,  and  

calculate  the  average  monthly  CTA  return  in  each  market  regime  between  late  2000  and  the  

beginning   of   2015.   This   regime-­‐dependent   performance   pattern   clearly   illustrates   the  

dynamic   nature   of   managed   futures.   A   static   capital   asset-­‐pricing   model   would   provide   a  

poor  approximation,  because  this  initial  anecdotal  evidence  stipulates  positive  equity  market  

betas  in  up  trends,  and  negative  ones  during  a  severe  downturn.    

The  stability  of  CTAs  during  times  of  general  market  distress  remains  an  empirical  question  

that  requires  additional  attention.  This  study  addresses  this  by  investigating  the  performance  

of  managed   futures  during  past   financial   crises.  Our   research  does  not   restrict   itself   to   the  

former  global   financial  crisis  of  2007-­‐2008,  but  also   incorporates  previous  ones  such  as  the  

Dot  Com  crash  at  the  beginning  of  the  millennium.  In  order  to  explore  this,  we  first  develop  a  

systematic  methodology   to   detect   crisis   periods   inspired  by   the   dating   algorithm  of   Lunde  

and  Timmerman  (2004).  Subsequently,  we  analyze  CTAs’  performance  in  the  identified  time  

Page 12: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 2  

periods  and  their  potential  higher  profitability,  by  drawing  upon  the  market  timing  literature.  

We   conclude   our   empirical   investigation   by   exploring   the   sector   dynamics   of   managed  

futures  in  their  respective  crisis  regimes.    

We   add   to   the   existing   literature   on  managed   futures   in   two  ways.   Firstly,   our   systematic  

crisis  identification  methodology,  and  its  incorporation  within  the  confines  of  market  timing  

models,  allows  to  more  accurately  address  the  potential  higher  profitability  of  CTAs  in  crisis  

regimes.   Through   this   procedure   we   emphasize   the   important   characteristic   of   managed  

futures  as   trend-­‐followers,  exploiting  profitable  directional  movements   in   financial  markets  

during   strained   market   regimes   dominated   by   lower   liquidity   and   behavioral   biases.  

Secondly,  we  employ  a  unique  dataset  provided  by  RPM  Risk  and  Portfolio  Management  AB,  

a   private   market   player   specializing   in   portfolio   management   for   directional   alternative  

Investments.   This   dataset   contains   aggregate   and   trend-­‐following   indices   on   the   real  

performance   of   CTAs   from   the   times   of   investments.   For   this   reason,   it   remains  

uncontaminated  by  well-­‐known   reporting  biases   that   plague  many  of   the   alternative   asset  

class   databases.   In   addition,   the   dataset   contains   information   on   how   managed   futures  

position   in  different  sectors,   such   that  we  gain   insight   into   the  behavior  of   this  asset  class,  

when  confronted  with  this  particular  market  regime.    

Our   results   provide   evidence   that   the   managed   futures   industry   in   aggregate   is   able   to  

deliver   positive   returns,  when  most   sectors   are   in   crisis.   These   gains   are   the   result   of   two  

sources.  CTAs  are  players  active   in  multiple  sectors:  equity,   fixed   income,  commodities  and  

foreign  exchange  rates.  It  goes  without  saying  that  this  diversified  orientation  allows  them  to  

acquire  profits  in  other  sectors,  despite  another  being  in  a  crisis.  However,  their  capability  to  

go  both  long  and  short  permits  them  to  also  adjust  their  sector  positioning  downwards.  For  

this   reason,   a   second   source  of  positive   returns  originates   from   their   capability   to  prevent  

consistent  losses  in  the  plummeting  sector.  In  prolonged  crises  short  positions  may  even  lead  

to   sector   gains   overcoming   their   initial   losses   resulting   from   a   long   bias   at   the   onset   of   a  

crisis.    

The  remainder  of  this  paper   is  structured  as  follows.  Section  two  summarizes  the  literature  

on  managed  futures  and  discusses  the  systematic  methodologies  that  may  be  applied  to  date  

crises.   Section   three   sets   out   our   empirical   methodology   to   systematically   identify   crisis  

Page 13: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  3  

regimes,   and   its   incorporation   in  market   timing  models.   Section   four   describes   our   unique  

dataset   provided   by   RPM   Risk   and   Portfolio  Management   AB,   and   its   difference   from   the  

standard   databases   employed   within   the   alternative   investment   literature.   Section   five  

presents  our  empirical   results,   followed  by  a  series  of  robustness  checks   in  section  six.  The  

final  section  of  this  study  concludes.    

 

Page 14: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 15: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  5  

2 Literature  Review  

Managed   futures   are   generally   classified   as   a   component   of   the   alternative   asset   class  

universe.  Kaminski  (2011a)  defined  managed  futures  in  a  very  appealing  manner:    

Managed   Futures,   commonly   associated   with   Commodity   Trading   Advisors   (CTAs),   is   a  

subclass   of   alternative   investment   strategies   which   take   positions   and   trade   primarily   in  

futures  markets.  Using   futures   contracts   and   sometimes   options   on   futures   contracts,   they  

follow   directional   strategies   in   a   wide   range   of   asset   classes   including   fixed   income,  

currencies,  equity  indices,  soft  commodities,  energy  and  metals.    

(Kaminski,  2011a  p  2)  

They  are  often  considered  a  part  of   the  hedge   fund   industry.  This   is   the  consequence  of  a  

number   of   shared   characteristics   such   as   the   low   level   of   government   regulation,   the  

investment   class’   fee   structure,  and   the  use  of   leverage  and  complex   financial   instruments  

(Liang,  2004  and  Kazemi  and  Li,  2009).   In  spite  of  this,  a  number  of  fundamental  disparities  

form  the  basis   for   the  differential   risk-­‐return  profile,  between  pure  hedge   funds  and  CTAs.  

Liang   (2004)   emphasized   that   CTAs   are   mostly   trend-­‐following   strategies,   active   within  

commodity   and   financial   futures  markets.   In   contrast,   hedge   funds   are   active   in   a  broader  

variety  of  financial  markets  and  use  different  financial  instruments.  They  are  thus  exposed  to  

different  types  of  risk  factors.  Hedge  funds  are  often  regarded  as  being  subject  to  illiquidity  

and  credit  risk.  This   is  however  less  applicable  to  CTAs  that  trade  in  highly   liquid  and  credit  

protected  futures  markets  (Kaminski  and  Mende,  2011).  For  instance,  Liang  (2004)  found  that  

hedge  funds  underperformed  during  market  regimes  when  liquidity  was  eroded.  Kazemi  and  

Li   (2009)   showed   that   CTA   performance   has   more   difficulty   being   explained   by   standard  

factor  models,   in  contrast   to  hedge   fund’s   returns.  The   trend-­‐following  nature  of  managed  

futures   results   in   their   return   structure   being   better   approximated   by   the   primitive   trend-­‐

following   strategy   (PTFS)   factors   of   Fung   and   Hsieh   (2001).   Moreover,   CTAs   exhibit   low  

correlations   with   hedge   funds   or   funds-­‐of-­‐funds   (Liang,   2004).   The   literature   review   will  

therefore   solely   focus   on   managed   futures   as   a   separate   component   of   the   alternative  

investment  industry.    

Page 16: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 6  

CTAs  have  also  come  to  be  classified  in  the  academic  literature  as  trend-­‐followers  (Fung  and  

Hsieh,  2001).  This  may  be  attributed  to  their  directional  orientation.  Surveys  have  indicated  

that   most   of   the   industry   does   identify   as   trend-­‐followers   (Waksman,   2000).   The   use   of  

trend-­‐following   techniques   may   have   a   systematic   or   a   discretionary   nature.   The   former  

refers  to  managed  futures  using  technical  models,  oriented  towards  exploiting  price  trends,  

while   the   latter   involves   an   additional   degree  of   discretionary   judgment   in   the   investment  

process  (Kazemi  and  Li,  2009).    

The   literature   on   the   investment   characteristics   of  managed   futures   has   seen   quite   some  

evolution  over  the  past  35  years.  The  first  studies  on  managed  futures  date  back  to  the  80s.  

In  his  seminal  paper,  Lintner  (1983)  highlighted  the  potential  benefits  that  could  be  acquired  

from  adding  managed   futures   to  a   standard  portfolio  of   stocks  and  bonds.  This  alternative  

asset   class   represented   some   attractive   features,   such   as   their   low   correlations   with  

traditional   asset   classes.   However,   later   studies   on   public   commodity   funds   casted   doubt  

upon  how  appealing  managed  futures  may  truly  be,  for  they  appeared  unable  to  earn  returns  

above   the   risk-­‐free   rate   (Elton,  Gruber   and  Rentzler,   1987/1990  and   Irwin,   Krukemyer   and  

Zulauf,  1993).    

Tee   (2012)  warned   that   some  of   the  earlier   studies  could  possibly   suffer   from   limited  data  

availability  at  the  time.  Subsequent  studies  employing  a  larger  dataset  verified  a  number  of  

the   earlier   studies’   findings.   Edward   and   Liew   (1999)   reaffirmed   CTAs’   lower   performance  

and   their   interesting   correlation   structure.   There   may   however   be   some   variation   in  

managed  futures’  documented  return  profile.  For  example,  CTAs  performed  worse  between  

1989  and  1996  (Edward  and  Liew,  1999).  Gregoriou,  Hübner  and  Kooli  (2010)  noted  that  the  

performance   was   much   higher   when   a   broader   time   period   was   considered   (i.e.   1980   to  

2005).  Tee  (2012)  proposed  that  such  variation  might  stem  from  a   lack  of  profitable  trends  

within   CTAs’   focus  market   during   particular   time   periods.   Some   variation  may   also   be   the  

result   of   a   difference   in   applied   trading   systems.   Brorsen   and   Towsend   (1998)   found   -­‐  

although  with  smaller  performance  -­‐  that  CTAs  using  short-­‐term  trading  systems,  had  returns  

about  one-­‐fourth  less  than  CTAs  using  medium-­‐  or  long-­‐term  systems,  and  supported  the  use  

of  longer  time  series  when  selecting  funds.    

Page 17: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  7  

The  potential   lower   returns  of  managed   futures   respective   to   traditional  asset   classes  may  

not   necessarily   seem   unreasonable.   Schneeweis   and   Spurgin   (1998)   argued   that   CTAs   are  

mostly  active  within  futures  markets  that,  from  a  theoretical  perspective,  should  be  a  zero-­‐

sum   game,   earning   the   riskless   rate   of   return.   Nevertheless,  managed   futures   still   offer   a  

positive   risk-­‐adjusted   performance   that   may   be   a   compensation   for   bearing   certain   risk  

factor  exposures   (Schneeweis  and  Spurgin,  1998).  One  appealing  proposition  relates   to   the  

potential   higher   profitability   of   momentum   strategies   within   lower   transaction   cost   and  

higher   leveraged  futures  markets.   In  particular,  the  concept  of  time  series  momentum  may  

be  quite  in  line  with  the  trend-­‐following  behavior  of  the  CTA  industry.  A  survey  conducted  by  

Wakman   (2000)   showed   that   95%   of   all   trend-­‐following   managed   futures   did   employ  

momentum  related  signals   in  the   investment  process.  Moskowitz,  Ooi  and  Pedersen  (2012)  

found   evidence   of   time   series   momentum   in   different   futures   markets   (i.e.   equity   index,  

currency,  commodity  and  bond  futures).  Hurst,  Ooi  and  Pedersen  (2013)  showed  that  these  

time   series   momentum   strategies   with   different   look-­‐back   horizons   (1,   3   and   12  months)  

have  explanatory  power  for  CTA  returns.    

Nevertheless,  most   authors   have   always   agreed  upon   the   potential   diversification   benefits  

that   managed   futures   may   bring   to   the   fold.   The   lack   of   correlation   with   traditional  

investments,  such  as  bonds  and  equities,  allows  managed  futures  to  improve  the  risk-­‐return  

profile  of  a  standard  portfolio.   In  comparison  to  other  alternative  asset  classes,   some  have  

even   stressed   that   commodity   funds  offer  better  downside   risk  protection   than   traditional  

hedge   funds   (Lintner,   1983;   Oberuc,   1992;   Edwards   and   Liew,   1999;   Kat,   2002;   Jensen,  

Johnson   and   Mercer,   2003;   Edwards   and   Caglayan,   2001).   Liang   (2004)   documented   that  

CTAs’   attrition   rates   are   higher   on   average   than   hedge   funds   and   funds-­‐of-­‐funds,   but  

decrease  during  downturn  markets.   The  difference   lies   in   the   risks   factors   to  which  all   are  

exposed,  as  hedge   funds   shall  be   long  biased   towards  equity  markets,   and   shall   fall   to   the  

emergence   of   liquidity   strains   (Kaminski,   2011a;   Liang,   2004).   Fung   and   Hsieh   (2001)   and  

Liang   (2004)   documented   a   non-­‐linear   relationship   between  managed   futures’   and   equity  

market  returns,  which  reflects  a  conditional  return  pattern  similar  to  those  of  options.  Criton  

and  Scaillet  (2011)  employed  a  static  and  a  time-­‐varying  coefficient  model,  to  investigate  the  

dynamic   performance   of   CTAs   for   data   between   1994   and   2007,   and   reported   significant  

differences  between  the  two.  Managed  futures  were  able  to  deliver  significant  alphas  during  

Page 18: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 8  

the  LTCM  and  Russian  crisis,  and  the  equity  bubble  crisis  of  2001.  The  majority  of  CTAs  under  

their   investigation   have   a   relatively   stable   exposure   to   credit   and   emerging   market   risk  

factors,  as  opposed  to  other  hedge  funds.  Kaminski  (2011a)  and  Kaminski  and  Mende  (2011)  

examined  a  number  of  equity  crises  and  documented   increasing  performance  during   these  

timespans.  Finally,  Hurst,  Ooi  and  Pedersen  (2013)  argued  that  their  time  series  momentum  

strategies,  which  were  able  to  explain  managed  futures’  returns,  also  performed  the  best  in  

strong  up  and  down  markets.    

It   should   be   emphasized   that   managed   futures   are   not   the   same   as   tail   risk   insurance.  

Kaminski  (2011a)  argued  the  Fung  and  Hsieh’s  (2001)  performance  pattern  to  be  similar  to  an  

equity  straddle  option.  CTAs  acquire  profits  during  severe  downturns,  but  also  in  strong  bull  

markets.  The  difference  between  tail  risk  insurance  and  “crisis  alpha”  is  thus  that  the  latter  

would   solely   provide   a   payoff   in   a   crisis   period,   while   managed   futures   are   also   able   to  

achieve  stable  returns  in  normal  times  such  as  market  regime  4  of  figure  1  (Kaminski,  2011b).  

This   is   also   consistent   with   the   aforementioned   findings   from   Hurst,   Ooi   and   Pedersen  

(2013).    

This  begs  the  question:  why  should  managed  futures  be  able  to  provide  higher  performance  

during   periods   of   overall   market   turmoil?   Greyserman   and   Kaminski   (2014)   provided   a  

theoretical   reasoning   based   upon   the   Adaptive   Market   Hypothesis   (AMH)   of   Andrew   Lo  

(2004),   to  explain  why  (systematic)   trend-­‐following  strategies  via  managed  futures  are  able  

to   provide   attractive   returns   during   financial   crises.   The   AMH   tries   to   reconcile   two   views  

within   the   domain   of   finance   from   an   evolutionary   perspective:   the   Efficient   Market  

Hypothesis  (EMH)  and  concepts  from  Behavioral  Finance.  Within  this  context,  the  market  is  a  

dynamic   organism   that   is   not   always   fully   efficient.   In   an   irregular   environment,   such   as   a  

financial  crisis,  market  efficiency  may  in  fact  break  down  and  the  impact  of  behavioral  biases  

on  market  participants  may  be  considerably  elevated.  In  such  turbulent  times,  the  presence  

of   herd   behavior   may   start   to   dominate   sufficiently   for   persistent   trends   to   emerge,  

providing   trend-­‐followers  with   the   ideal   opportunity   to   spread   their  wings.   The   systematic  

trading   strategy   of   many   CTAs   will   leave   them   less   affected   by   the   aforementioned  

behavioral   biases.   As   active   participants   within   futures   markets,   which   retain   a   sufficient  

degree   of   liquidity,   they   are   able   to   adapt   to   the   manifestation   of   exploitable   profit  

opportunities.   From   a   similar   perspective,   Hurst,   Ooi   and   Pedersen   (2013)   accredit   the  

Page 19: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  9  

profitability  of  time  series  momentum  strategies  to  initial  under-­‐reaction  and  delayed  over-­‐

reaction   in   financial   markets.   These   anomalies   are   the   consequence   of   many   well-­‐known  

behavioral  biases,  such  as  the  disposition  effect  and  herd  behavior.    

A   related   strand   of   literature   has   analyzed   the   performance   of   managed   futures   by  

examining  whether  they  exhibit  market  timing  ability.  Market  timing  refers  to  the  ability  of  

portfolio  managers  to  enter  (leave)  the  market  during  upward  (downward)  trending  markets.  

Fung   and  Hsieh   (2001)   reasoned   that  market   timing   and   trend   following   are  quite   alike.  A  

market   timer   would   be   able   to   provide   a   payoff   resembling   that   of   a   primitive   trend-­‐

following  strategy,  where  the  latter’s  payoff  can  be  captured  by  a  lookback  straddle  option.1  

Tee   (2012)   also   stressed   that   trend-­‐followers   and   market   timers   are   related.   As   a  

consequence  of  this  similarity,  and  the  general  consensus  within  the  literature  that  managed  

futures   are   trend-­‐followers,   this   type  of   literature   can  provide   interesting   insights   into   the  

ability  of  CTAs  to  deliver  “crisis  alpha”.    

One  may  distinguish  between  two  approaches  to  examine  market  timing  ability:  a  portfolio-­‐

based   and   a   return-­‐based   method.   The   former   focuses   on   the   change   in   portfolio  

composition,  in  order  to  determine  a  change  in  portfolio  holdings  before  a  particular  market  

regime.  Despite  the  self-­‐evident  nature  of  the  portfolio  composition  technique,  the  academic  

literature  on  market   timing  has  been  dominated  by   the   return-­‐based  methodology,  where  

the  Treynor-­‐Mazuy  (1966)  and  Henriksson-­‐Merton  (1981)  models  reign  supreme,  as  portfolio  

composition  data  is  often  unavailable  (Frömmel,  2013).  These  market  timing  models  may  be  

considered   an   extension   of   standard   factor   models,   which   try   to   explain   the   variation   in  

excess   portfolio   returns   by   attributing   them   to   specific   factor   exposures.2  The   TM   version  

postulates  a  linear  relationship  between  a  portfolio’s  market  beta  and  the  expected  market  

return.   The   HM   model   is   more   restrictive,   distinguishing   between   positive   and   negative  

excess   market   return   regimes,   by   means   of   a   differential   market   beta   coefficient.   Both  

                                                                                                               1  Fung   and   Hsieh   (2001,   p   316)   define   a   lookback   straddle   option   as   follows:   “The   owner   of   a   lookback   call  option   has   the   right   to   buy   the   underlying   asset   at   the   lowest   price   over   the   life   of   the   option.   Similarly,   a  lookback  put  option  allows  the  owner  to  sell  at  the  highest  price.  The  combination  of  these  two  options  is  the  lookback  straddle,  which  delivers  the  ex-­‐post  maximum  payout  of  any  trend-­‐following  strategy.”  2  Note   that   Fung   and   Hsieh   (2001)   have   documented   the   low   explanatory   power   of   most   standard   factors  models   when   applied   to   CTA   excess   returns.   Instead,   the   authors   advocate   the   usage   of   primitive   trend-­‐following  strategy  (PTFS)  risk  factors,  which  are  constructed  from  the  payoff  of  a  portfolio  of  lookback  straddle  options.    

Page 20: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 10  

designs   have   furthermore   formed   the   basis   for   extensions   that   allow   for   volatility   timing  

(Busse,  1999)  and  market  timing  in  multiple  markets  (Aragon,  2007).    

With  data  between  1994  and  2002,  Chen  (2007)  analyzed  whether  managed  futures  do  have  

market  timing  ability  in  their  predefined  focus  markets  (i.e.  U.S.  and  non-­‐U.S.  bonds,  foreign  

exchange  and  commodity  sectors).  The  results  indicated  that  CTAs  are  able  to  time  the  non-­‐

U.S.   bond   and   currency   markets.   In   other   words,   a   significant   increase   in   focus   market  

exposure  was  found  during  regimes  of  positive  excess  sector  return.  Chen  and  Liang  (2007)  

confirmed  the  market  and  volatility  timing  ability  of  self-­‐declared  market  timing  hedge  funds  

(including  managed  futures).  The  authors  furthermore  documented  a  stronger  timing  ability  

during  bear  market  regimes.  Kazemi  and  Li  (2009)  examined  the  difference  in  market  timing  

ability   for   both   systematic   and   discretionary   CTAs   to   conclude   that   the   latter   seems   less  

suitable   for   the   different   timing  models.   They   confirmed   the   former  market   and   volatility  

timing  results  of  Chen  and  Liang  (2007)  for  data  between  1994  and  2004.  Moreover,  sector  

specific  managed   futures  only  possessed   timing  ability   in   their   focus  market,   similar   to   the  

findings  of  Chen   (2007),  but  diversified  CTAs  had  multi-­‐market   timing  ability.   Finally,  Elaut,  

Frömmel  and  Mende  (2014)  altered  the  HM  model  definition  of  market  timing  by  dividing  the  

CTAs’  focus  markets  between  bull  and  bear  regimes.  This  definition  conforms  to  the  general  

consensus   that   managed   futures   represent   trend-­‐followers,   as   opposed   to   market   timers  

forecasting   whether   or   not   the   return   within   a   particular   market   shall   be   positive   the  

subsequent  day,  month  or  year.  Subsequently,  the  authors  analyzed  managed  futures’  ability  

to   time   the   different  market   states   from  1994   to   2012   and   found   a   statistically   significant  

increase  in  exposure  to  the  different  sectors  throughout  the  bull  market  cycles.    

The  previous  paragraph  on  managed  futures’  market  timing  ability  sheds  some  light  on  the  

ability   of   CTAs   to   perform   during   crisis   periods.   Firstly,   the   academic   evidence   indicates   a  

dynamic   adjustment  of   risk   exposures   to   specific  market   regimes.   This   reflects   consistency  

with   Greyserman   and   Kaminski’s   (2014)   notion   that   during   periods   of   market   turmoil,  

managed  futures  may  be  able  to  adapt  to  the  altered  environment,  as  futures  markets  retain  

their   liquidity,  and  systematic   trading   rules  prevent  managers   from  being  severely  affected  

by  behavioral  biases.  Second,  most  of  the  previously  discussed  studies  have  focused  on  the  

more  traditional  implementation  of  market  timing  models  and  the  change  in  exposure  during  

upturn  markets.   Few  of   them  have   truly  attempted   to   systematically   identify   crisis  periods  

Page 21: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  11  

and   subsequently   investigate   the   characteristics   of   CTAs   during   these   specific   market  

regimes,  despite  the  overall  consensus  on  the  diversification  benefits  they  may  bring  to  the  

table.    

Given   the   lack   of   most   past   literature   to   systematically   identify   crises,   and   as   a   way   of  

introducing   the   first   component  of   this   study’s  applied  methodology,   it   is  worth  discussing  

the  general  literature  on  crisis  identification.  Most  studies  restrict  themselves  by  focusing  on  

defining   a   bear   market   instead   of   crises.   For   instance,   in   the   financial   press   a   bear   (bull)  

market  is  commonly  defined  by  a  fall  (rise)  in  the  market  greater  than  20  or  25%  (Pagan  and  

Sossounov,  2003).  Liang  (2004)  and  Chen  and  Liang  (2007)  determined  a  bear  market  regime  

when  the  excess  market  return  is  positive.  Daniel  and  Moskowitz  (2013)  employed  an  ex  ante  

bear  market  indicator  that  equals  1  if  the  cumulative  return  over  the  past  24  months  is  below  

0.    

Others  have  concentrated  on  identifying  crises.  Greyserman  and  Kaminski  (2014)  discussed  a  

number  of  possible  approaches  such  as  the  use  of  the  market  divergence  index  (MDI).  It  is  a  

simple  aggregate  measure  of  “trendiness”  in  prices.  It  takes  into  account  the  signal  to  noise  

ratio,   or   the   level   of   volatility   in   the   price   series.   Larger   levels   of   divergence   characterize  

crises.  This  threshold  is  rather  subjective  in  nature  because  changes  in  volatility  and  market  

divergence  are  interrelated.  As  a  substitute,  the  detection  of  crises  can  be  done  by  using  the  

VIX  index  that  plots  extreme  volatility  changes.  A  second  method  may  be  to  identify  a  crisis  

month  as  any  month  with  a  move  in  the  VIX  greater  than  20%  at  the  end  of  the  last  month  

(Greyserman   and   Kaminski,   2014).   Alternatively,   the   authors   suggested   selecting   sector  

specific   crises   as   those   months   when   the   index   return   is   lower   than   a   specific   threshold,  

which   is   based  on  a   function  of   the   rolling  past   average   return  and   standard  deviation   for  

consistency  across   the  asset   classes.   In  other  words,   a   crisis  month   is  detected  when  each  

corresponding  index  is  below  its  rolling  five-­‐year  mean  and  two  times  its  standard  deviation.  

Li  and  Liaw  (2014)  analyzed  stock  indices  at  one-­‐minute  intervals  during  the  global  financial  

crisis   between   September   2008   and   June  2009.   They   analyzed   categorized   stock   indices   in  

three  stages  according  to  the  change  in  stock  prices:  a  plunging  stage  (stage  1)  during  which  

the   increments   of   the   daily   stock   price   are   always   large   negative   values,   a   fluctuating   or  

rebounding   stage   (stage   2)   when   the   increments   are   near   zero   or   positive,   and   a   soaring  

stage  (stage  3)  when  the  increments  are  mostly  positive  and  large.  Mishkin  and  White  (2002)  

Page 22: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 12  

investigated  stock  market  crises  based  upon  similarities  with  the  commonly  accepted  Great  

Depression  and  Black  Monday  stock  market  crash.    

The   aforementioned   methods   tend   to   be   rather   arbitrary   with   regards   to   the   chosen  

threshold   values   or   do   not   apply   a   systematic   methodology.   However,   the   academic  

literature  has  also  proposed   two   systematic   approaches.   The  parametric  Markov-­‐Switching  

(MS)  models  divide  the  stock  market  in  two  different  regimes.  The  bull  market  represents  a  

regime  of  high  and   stable   returns,   contrasting   the  volatile   low-­‐return  bear  market   (Maheu  

and  McCurdy,  2000).  Maheu,  McCurdy  and  Song  (2012)  expanded  the  two-­‐regime  MS  model  

to   a   four   regime   one,   which   allows   for   richer   and   more   heterogeneous   intra-­‐regime  

dynamics.  Frömmel  (2010)  extended  this  approach  to  detect  volatility  regimes  via  a  GARCH  

MS  model,  and  Antonakakis  and  Scharler  (2012)  allowed  for  three  different  regimes  of  low,  

medium  and  high  volatility,  where  a  crash  tends  to  be  preceded  by  the  high  volatility  regime.    

The   nonparametric   approaches   include   filter   rules   or   dating   algorithms   that   locate   turning  

points  (i.e.  peaks  and  troughs)  within  a  time  series.  In  the  early  70s,  Bry  and  Boschan  (1971)  

developed   such   a   dating-­‐algorithm   that   determined   cyclical   turning   points.   Their   program  

allowed  making  the  distinction  between  expansions  and  contractions  in  individual  economic  

time   series.   The   methodology   encompassed   the   identification   of   initial   turning   points   in  

smoothed  curves,  which  were  subsequently  matched  with  turning  points  in  the  actual  data.  

At  each  point   in  the  program,  the  identified  cycles  are  subjected  to  a  variety  of  restrictions  

such  as   the  proper  alteration  between  peaks  and   troughs,  and  a  minimal  duration  of  each  

cycle.   Pagan   and   Sossounov   (2003)   adapted   the   Bry-­‐Boschan   algorithm   to   identify   similar  

cycles  within  stock  markets.  In  other  words,  their  adaptation  of  the  program  allowed  them  to  

date   bear   and   bull   equity   regimes.     Because   the   original   algorithm   employed   smoothed  

curves   that  might   suppress   important  movements,   the  authors  accounted   for  cycles  within  

the   actual   data   only.   Pagan   and   Sossounov   (2003)   also   broadened   the  window   to   identify  

local  troughs  and  peaks  within  the  data,  increased  the  minimum  duration  of  a  full  bear-­‐bull  

cycle  to  16  months  and  decreased  the  minimum  duration  that  one  must  find  itself  within  a  

specific  market  state  to  4  months.    

The   adapted   version   of   the   Bry-­‐Boschan   program   provides   an   interesting  methodology   to  

identify  bull  and  bear  markets  states  within  a  time  series.  Nevertheless,  it  may  be  less  suited  

Page 23: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  13  

as  a  detection  methodology  for  crises,  due  to  their  difference  with  a  bear  market  state.  For  

example   Sperandeo   (1990,   p   102)   defined   a   bear   market   as:   A   long-­‐term   downtrend  

characterized   by   lower   intermediate   lows   interrupted   by   lower   intermediate   highs.   In  

contrast,  Aboura  (2015,  p  2)  argued  that  a  stock  market  crash  may  be  defined  differently:  …  a  

new  definition  of  stock  market  crash  that  is  risk-­‐management  oriented;  …  stock  market  crash  

is  defined  as  being  sudden,  significant  and  brief.3  As  a  consequence,  the  difference  between  a  

crisis  period  and  a  bear  market  may  lie  with  the  time  period  over  which  the  market  falls,  such  

that   a   crisis   need   not   necessarily   reflect   a   longer-­‐term   downward   trend   in   the   sector.   For  

instance,   the   stock   market   crash   on   October   19   1987,   more   commonly   known   as   Black  

Monday,   represented   a   severe   plunge   in   the   stock   market   during   October.   However,   the  

Pagan   and   Sossounov   (2003)   adapted   version   of   the   Bry-­‐Boschan   algorithm   requires   each  

market  phase  to  last  at  least  4  months  from  peak  to  trough.  This  implies  that  Black  Monday  

may  not  necessarily  be  detected.  Other  more  short-­‐lived  crises,  such  as  LTCM  in  ‘98  and  the  

more  recent  Flash  Crash,  may  similarly  remain  undetected.    

In  contrast  to  the  Pagan  and  Sossounev  (2003)  methodology,  Lunde  and  Timmerman  (2004)  

developed  a  bull-­‐bear  market  filter  that  does  not  impose  the  aforementioned  restriction  on  

the   phase   length   of   a   cycle.   This   approach   encompasses   the   identification   of   a   bull   (bear)  

market   ex-­‐post   by   analyzing   whether   the   market   has   risen   (fallen)   sufficiently   since   the  

former   trough   (peak)   value.   If   the   threshold   value   is   exceeded,   the   program   retroactively  

identifies  the  regime  as  a  bull  (bear)  state  since  the  most  recent  trough  (peak)  value.    

While  the  choice  of  the  phase  length  represents  the  main  problem  for  Pagan  and  Sossounov  

(2003),   the   required   choice  of   threshold   values   forms   the  main  downfall   of   the   Lunde  and  

Timmerman   (2004)   filter   (Elaut,   Frömmel   and   Mende,   2014).   The   authors   proposed  

parameters  for  the  stock  market  that  were  motivated  by  readings  in  the  financial  press.  More  

specifically,  they  proposed  that  a  transition  from  a  bull  to  a  bear  market  requires  the  equity  

index  to  fall  by  at  least  10  or  15%  since  its  former  local  peak,  and  a  subsequent  rebound  from  

its   trough   by   15   or   20%  would   lead   to   a   reversal   back   to   a   bull  market.   Lower   parameter  

values   lead   to   the   identification  of  more  periods   that  may  simply   represent  non-­‐significant  

                                                                                                               3  However,   the   last   definition   understands   brief   as   a   one   day   timeframe,   which   is   oriented   towards   a   risk  management   view   (i.e.   after   one   day   one   may   be   able   to   hedge   the   position)   (Aboura,   2015).   Thus   this  ‘briefness’  definition  may  not  be  optimal  within  the  present  study.  

Page 24: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 14  

short-­‐term  dynamics.  Despite  the  proposals  of  Lunde  and  Timmerman  (2004),   there  are  no  

clear-­‐cut   values   for   other   asset   classes   such   as   fixed   income  or   foreign   exchange  markets.  

Elaut,  Frömmel  and  Mende  (2014)  proposed  to  determine  the  threshold  values  by  iteratively  

identifying   possible   trends   within   the   data,   and   saving   their   magnitudes.4  In   spite   of   this  

progress,  the  parameters  remain  oriented  towards  determining  bear  markets  and  not  crises.    

To  conclude  the  literature  review,  it  is  necessary  to  stress  that  research  on  CTA  performance  

often  has  to  deal  with  a  number  of  important  reporting  biases  present  in  most  databases.  As  

previously  discussed,  managed   futures  are  often  characterized  as  a  part  of   the  hedge   fund  

industry.  This  asset  class’  databases  may  not  necessarily  provide  an  accurate  overview  of  the  

entire   industry   (Fung   and   Hsieh,   2002).   Firstly,   selection   bias   results   from   the   fact   that  

inclusion  within  hedge  fund  databases   is  voluntary,  possibly   leading  to  the  non-­‐inclusion  of  

funds  that  have  delivered  poor  performance  in  the  past  (Bhardwaj,  Gorton  and  Rouwenhorst,  

2008).  Survivorship  bias  arises  when  one  only  analyzes  the  performance  of  managed  futures  

that  haven’t  folded.  Once  more  this  may  lead  to  an  upward  bias  in  CTAs’  performance.  Fung  

and   Hsieh   (2000)   analyzed   the   performance   characteristics   of   managed   futures,   and  

estimated   that   the   probability   of   a   fund   to   drop  out   fluctuates   around   19%  per   year.   This  

figure   is   very   high   compared   to   the   5%   for   mutual   funds   between   1989   and   1995.   As   a  

consequence,   the   survivorship  bias  averaged  3,4%  per   year,   as  opposed   to  0,5   to  1,5%   for  

mutual   funds.  Liang   (2004)   found  a  similar  higher  survivorship  bias   for  CTAs  and  Bhardwaj,  

Gorton   and   Rouwenhorst   (2008)   showed   that   the   average   surviving   fund   delivered   34%  

higher   returns   than   a   group   of   surviving   and   dissolved   CTAs.   Finally,   backfill   bias   leads   to  

positively  skewed  performance  figures.  It  reflects  the  inclusion  of  past  performance  figures  in  

a  database,  once  a  fund  decides  to  be  included.  A  CTA  may  only  voluntarily  join  a  database  

once  it  has  obtained  a  sufficiently  positive  track  record.  Park  (1995)  estimated  the  incubation  

period  or  backfill  bias  to  be  27  months  on  average  in  the  MAR  CTA  database,  as  opposed  to  

15  months   in   the   TASS   hedge   fund   database   (Fung   and   Hsieh,   2000).   For   the   Lipper-­‐Tass  

database,  it  was  shown  that  the  average  real  fund  return  (4,9%)  considerably  contrasted  with  

the  average  backfilled  return  (11,3%)  (Bhardwaj,  Gorton  and  Rouwenhorst,  2008).    

In   conclusion,   the   academic   literature   is   in   agreement   on   the   diversification   benefits   that  

managed  futures  may  bring  to  the  fold.  However,  a  gap  on  the  specific  characteristics  of  CTAs                                                                                                                  4  The  methodology  Elaut,  Frömmel  and  Mende  (2014)  was  inspired  by  the  work  of  Wegscheider  (1994).  

Page 25: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  15  

during   periods   of   financial   crises   remains.   A   systematic   methodology   should   therefore   be  

developed,   in   order   to   detect   crises   and   analyze   their   dynamics   throughout   these  market  

regimes.  In  performing  such  an  analysis,  one  may  draw  upon  the  market  timing  literature  to  

assess  whether  managed  futures  adjust  their  market  exposures  to  a  particular  market  state.  

However,  all   research  should   remain  wary  of   reporting  biases   influencing  empirical   results,  

and  account  for  them  in  order  to  conduct  proper  inference.    

 

 

Page 26: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 27: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  17  

3 Methodology  

3.1 Crisis  Identification  

“On  the  face  of   it,  defining  a  stock  market  crash  or  collapse  is  simple.  When  you  see  it,  you  

know  it.  However,  attempting  a  more  precise  definition  and  measurement  over  the  course  of  

a  century  is  more  difficult.  The  choice  of  stock  market  index,  the  size  of  the  collapse  and  the  

time  frame  of  the  decline  are  key  factors.”    

(Mishkin  and  White,  2002  p  5)      

The  methodology  to  detect  crisis  periods  was   inspired  by  the  two  key  factors  from  Mishkin  

(2002),  and  the  filter  rule  proposed  by  Lunde  and  Timmerman  (2004).  More  specifically,  we  

perform  a   two-­‐step   procedure.   First  we  determine   specific   threshold   values   for   the   Lunde  

and  Timmerman  (2004)  algorithm  through  an  iterative  process,  taking  into  account  both  the  

fall   in   the   market   and   its   duration   simultaneously.   Next,   we   employ   these   determined  

parameters  within   the  algorithm,  and  use   the  detected  market   regimes   for  our  analysis  on  

CTAs’  potential  higher  profitability  in  times  of  crisis.    

As  a  starting  point  we  discuss   the  Lunde  and  Timmerman  (2004)   filter   rule   to   identify  bear  

and  bull   stock  markets.  The  standard  algorithm  of   Lunde  and  Timmerman   (2004)   is  a   filter  

rule  that  identifies  a  regime  as  a  bull  market  if  the  market  has  risen  by  a  certain  percentage  

(i.e.  𝜆!)   above   its   former   trough  value.   Formally,   an  asset   class   transitions   from  a  bull   to  a  

bear  state  if:  

𝑃! > 1+ 𝜆! ∗ 𝑃!!!!"#  

With  Pt  the  value  of  the  index  at  time  t,  𝜆!  the  threshold  value  by  which  the  index  must  have  

risen   since   its   former   trough   value,  𝑃!!!!"#.   If   we   now   define   the   indicator  𝐼!  as   the  market  

state,  which  takes  value  0  if  the  market  is  in  a  bull  state  and  value  1  in  a  bear  regime,  then  

the  filter  rule  shall  administer  the  value  0  between  t-­‐i  and  t  retroactively,  once  the  threshold  

value   has   been   exceeded   (i.e.   the   market   has   already   been   in   a   bull   regime   since   t-­‐i).  

Similarly,  if  

𝑃! < 1− 𝜆! ∗ 𝑃!!!!"#  

Page 28: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 18  

with  𝜆!  being  the  threshold  value  by  which  the  index  must  fall  since  a  former  peak  value,  in  

order   to  have   retroactively   transitioned   from  normal   to   crisis,   then  𝐼!  shall   take  value  1.   In  

other  words,  the  market  has  transitioned  from  a  bull   to  a  bear  market  state  since  t-­‐i.  Note  

that   the   peak   and   trough   values,  𝑃!!!!"#  and  𝑃!!!!"#  are   continuously   updated   to   the   extent  

that:  

𝑃! > 𝑃!!!!"#  𝑖𝑓  𝐼! = 0  𝑡ℎ𝑒𝑛  𝑃!!!!"# = 𝑃!  

𝑃! < 𝑃!!!!"#  𝑖𝑓  𝐼! = 1  𝑡ℎ𝑒𝑛  𝑃!!!!"# = 𝑃!  

In   the   original   work   of   Lunde   and   Timmerman   (2004)   the   𝜆! ∈ [10%  15%]  and   𝜆! ∈

[15%  20%].  However  as  these  thresholds  only  applied  to  the  stock  market,  Elaut,  Frömmel  

and   Mende   (2014)   proposed   additional   parameter   values   for   other   asset   classes:   fixed  

income,  commodities  and  the  USD  exchange  rate.  

Nevertheless,   these   parameter   values   are   suboptimal   within   the   context   of   crisis   market  

identification,  because  they  are  determined  to  identify  bear  markets  as  opposed  to  crises.  To  

adjust   for   this  deficiency,   the  Lunde  and  Timmerman  (2004)  methodology  was  applied,  but  

the  parameter  values  were  adjusted.  More  specifically,  different  combinations  of  𝜆!  and  𝜆!  

were   taken   into  account  and  employed  within   the   standard  Lunde  and  Timmerman   (2004)  

filter  rule.5  Subsequently,  each  combination  is  employed  to  detect  crises,  and  determine  the  

intensity  factor,  𝐼𝐹!:  

𝐼𝐹! =1𝑁 𝐼𝐹!,!

!

!!!

 

𝐼𝐹!,! =𝑅! 𝐼! , 𝐼!𝑇 − 𝑡    

Where  𝐼𝐹!  indicates   the  average   intensity   factor   for   loop   i  with  specific  chosen  values  of  𝜆!  

and  𝜆!.  N  are  the  number  of  crisis  periods  identified  for  the  chosen  values  of  𝜆!  and  𝜆!.  𝐼𝐹!,!  

is  the  intensity  factor  of  a  particular  crisis  n  in  loop  i,  where  𝑅! 𝐼! , 𝐼!  is  the  fall  in  the  market  

during   this   time,   and  𝑇 − 𝑡  is   the   timeframe   over   which   the   fall   occurs   expressed   in   year  

fractions.  Finally,  we  also  determine  the  standard  deviation  of  𝐼𝐹!,!,  𝜎!.    

                                                                                                               5  𝜆!  and  𝜆!  are  allowed  to  take  on  values  between  0,01  and  0,40  with  steps  of  0,01.  This  leads  to  1.600  different  combinations  of  𝜆!  and  𝜆!.    

Page 29: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  19  

These  variables  can  be  used  to  determine  the  optimal  values  of  the  parameters  𝜆!  and  𝜆!  to  

identify   crises  as  opposed   to  bear  markets,  because   they  are  oriented   towards  maximizing  

the   fall   in   the   market   over   a   given   timeframe.   We   thereby   incorporate   the   Mishkin   and  

White’s  (2002)  key  factors.    

The  𝜆!  and  𝜆!  are  eventually  chosen  such  that  they  maximize  the  volatility  adjusted  intensity  

factor:    

𝐼𝐹 − 𝑎𝑑𝑗! =𝐼𝐹!𝜎!

 

The   choice   to   maximize   a   volatility   adjusted   intensity   factor,   as   opposed   to   the   intensity  

factor   itself,  was  made  to   identify   the  parameter  values   that  detect   similarly   intense  crises  

that   aren’t   dominated   by   a   single   and   highly   severe   episode.   The   eventual   parameter  

selection  remains  open  to  a  number  of  additional  restrictions:  

1. All  values  of  𝜆!  and  𝜆!  that  only   identify  a  single  period  are  excluded,  as  this   implies  

that  the  𝜎!  is  equal  to  0  and  the  volatility  adjusted  intensity  factor  shall  be  infinite.    

2. All   values   of  𝜆!  and  𝜆!  where   the  𝐼𝐹! > 𝐼𝐹  are   excluded   to   identify   significant   falls  

within  the  market.  If  this  restriction  wouldn’t  be  applied,  then  the  eventual  values  of  

𝜆!  and  𝜆!  may   result   in   the   identification   of   non-­‐severe   market   downfalls   that   are  

simply   similar   in   size.   The   resulting   low  𝜎!  would   then  be   the  main   reason   for   their  

selection.  

3. Those   combinations   of  𝜆!  and  𝜆!  for   which  𝜆! < 𝜆!  are   excluded.   This   restriction  

implies  that  for  a  specific  market  to  rebound  out  of  a  crisis  state,  it  should  not  have  to  

recover  as  much  as  the  original  plummet  required  to  enter  a  crisis  phase.    

Once   the   optimal   parameters   have   been   identified   they   are   incorporated   in   the   standard  

Lunde  and  Timmerman  (2004)  algorithm  in  order  to  identify  different  periods,  which  can  be  

analyzed   from   a   historical   perspective.   We   compare   these   to   a   number   of   contextually  

defined  crises  from  RPM  Risk  and  Portfolio  Management  AB,  in  order  to  assess  the  adequacy  

of  the  identification  procedure,  and  investigate  the  extent  to  which  the  different  sector  crises  

tend  to  overlap.  

Page 30: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 20  

We  extend  our  descriptive  analysis  slightly  further  by  assessing  whether  the  market  turmoil  

in  one   sector  has   significant  predictive  power   for   a   crisis   in   another.   This  provides  us  with  

some   evidence   on   the   potential   cross-­‐sectorial   crisis   transferal.   To   analyze   this,   we   run  

Granger  causality  tests  on  the  constructed  indicators.  Note  that  performing  Granger  causality  

tests  on  this  data   implies  the  usage  of  a   linear  probability  model   (LPM),   for   the  dependent  

variable   is   a   dummy   that   only   takes   on   the   value   of   one   or   zero.   Fitted   values   for   these  

models  may   then  be   interpreted   as   the   probability   that   a   specific   sector  will   be   in   a   crisis  

regime.    

Most  standard  econometric  textbooks  warn  for  the  problems  that  characterize  the  LPM  (See  

Gujarati   and   Porter,   2009).   The   error-­‐terms   will   be   non-­‐normally   distributed   and  

heteroscedastic.  However,  the  greatest  problem  lies  with  the  fitted  probability  values,  which  

may  not  adhere  to  the  properties  of  standard  probability  bounds  (i.e.  they  are  not  necessarily  

confined  to  values  between  zero  and  one).  For  the  purpose  of  this  study,  these  problems  are  

less   severe.   The   impact   of   heteroscedasticity   may   be   circumvented   by   employing  

heteroscedasticity  robust  standard  errors  (i.e.  HAC  robust  standard  errors).   In  the  presence  

of   non-­‐normally   distributed   error-­‐terms,   inference   is   still   possible   as   OLS   estimators   are  

normally   distributed   asymptotically.   Finally,   the   nonfulfillment   of   standard   probability  

bounds   does   not   pose   a   problem,   since   we   are   only   exploring   the   potential   presence   of  

Granger  causality.  

The  Granger   causality   tests  are  performed  on  a  weekly  and  monthly   frequency.   Lag   length  

selection  criteria  were  employed,  in  order  to  determine  the  optimal  lag  length.  In  the  event  

of   possible  disagreement  between   information   criteria,   preference   is   given   to   the   Schwarz  

Bayesian  Criterion  (SBC).  This   imposes  a  harsher  penalty  for  the   incorporation  of  additional  

regressors,  but  SBC  has  been  shown  to  asymptotically  choose  the  correct  model  (i.e.  SBC  is  a  

consistent  model  selection  criterion).6    

3.2 CTA  Crisis  Alpha  

Following   a   proper   crisis   identification   procedure,   we   now  move   on   to   an   exploration   of  

CTAs’   performance   in   these   crisis   regimes.   We   start   off   our   empirical   results   with   an  

                                                                                                               6  This  potential  problem  posed  no  real  issue  during  the  empirical  investigation.  Information  criteria  were  always  in  consensus  on  the  inclusion  of  only  a  single  lag.    

Page 31: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  21  

investigation   of   the   regime   dependent   performance   of   the   aggregate   CTA   industry.   If  

managed  futures  are  able  to  perform  during  turbulent  market  regimes,  they  should  acquire  

positive  returns.  Subsequently,  we  calculate  regime  dependent  correlations  in  order  to  see  a  

potential  change  in  co-­‐movement  with  the  different  focus  markets.    

A   formal   econometric   investigation   is   performed   through   a   two-­‐fold   analysis.   Firstly,   we  

reexamine   the  non-­‐linear   relationship  between  managed   futures’   returns  and  world  equity  

markets   from   Fung   and   Hsieh   (2001).   This   would   indicate   that,   while   managed   futures  

market  betas  may  be  close  to  zero  in  general,  they  follow  dynamic  trading  strategies,  leading  

to   a   time-­‐variation   in   their   exposure   to   the   equity   market   risk   factor.   Kaminski   (2011a)  

similarly   confirmed   the   former   picture   for   CTAs   between   2000   and   2010,   and   in   the  

introductory  chapter  of  this  paper  we  reconstructed  this  picture  for  a  number  of  CTA  indices.    

To  get  a  look  into  CTAs’  time-­‐varying  betas,  we  follow  the  methodology  employed  by  Daniel  

and   Moskowitz   (2013).   In   this   paper,   the   authors   estimated   rolling   regressions   for   an  

extended   single   factor   model   (i.e.   the   market   risk   factor)   with   126   days   of   data  

(approximately   6   months   in   terms   of   trading   days).   The   applied   extension   refers   to   the  

inclusion  of  10  daily  lags  of  the  excess  market  return.  The  eventual  market  beta  of  each  CTA  

index  is  then  calculated  as  the  sum  of  the  eleven  estimated  coefficients,  in  order  to  account  

for   the   delay   in   incorporation   of  market   information.   The   thus   estimated  model   is   of   the  

following  form:  

𝑟!,! = 𝛼 +  𝛽!𝑟!,! + 𝛽!𝑟!,!!!+  . .+𝛽!"𝑟!,!!!" + 𝜀!,!  

𝛽 = 𝛽! + 𝛽!+  . .+𝛽!"    

Where  𝑟!,!  is  equal  to  the  daily  excess  return  of  a  CTA  index  at  time  t,  𝑟!,!  reflects  the  excess  

market  return  of  the  MSCI  World  at  time  t,  𝜀!,!  is  a  random  error  term,  and  𝛽  is  the  reported  

estimated  market  beta  coefficient  from  the  rolling  regressions.  

If  the  empirical  results  would  be  in  line  with  the  notion  of  CTAs  higher  profitability  in  times  of  

crisis,   then  we   should   expect  market   betas   to   become   negative   during   the   equity  market  

crises.   In  addition,   for  the  estimated  coefficients  to  be  consistent  with  the  positive  average  

monthly   returns   from   figure   1,   we   could   expect   market   betas   to   be   positive   on   average  

Page 32: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 22  

during  normal  times.  These  expectations  are  fully  in  line  with  the  original  reasoning  of  Fung  

and  Hsieh  (2001).    

In   a   second   step,  we   analyze   the   ability   of   CTAs   to   perform   in   the   previously   determined  

crises,   by   drawing   upon   the   market-­‐timing   literature.   Two   models   are   central   within   this  

context:   The  models   of   TM   (1966)   and   HM   (1981).   Both  models   stipulate   that   a   portfolio  

manager  shall  adjust  his  exposure  to  the  market  risk  factor  according  to  the  expectation  of  

the  market  return  (Kazemi  and  Li,  2009).  However,  the  TM  model  differs  from  the  HM  model  

by  the  extent  to  which  the  exposure  changes  with  regards  to  this  signal.  In  the  TM  model,  a  

portfolio  manager’s  market   beta   shall   be   a   linear   function   of   the   expected  market   return,  

which   results   in  a   convex   relationship  between   the  excess  portfolio   return,   and   the  excess  

market  return.  The  model  is  thus  of  the  form:  

𝛽 =  𝛽! + 𝛾  𝐸 𝑟!,!  

𝐸 𝑟!,! = 𝛼! +  𝛽  𝐸 𝑟!,! +  𝜀!  

With  𝐸 𝑟!,!  the   expected   excess   portfolio   return,   and  𝐸 𝑟!,!  the   expected   excess  market  

return.  Via  basic  substitution  this  model  may  be  rewritten:  

𝐸 𝑟!,! = 𝛼! +  𝛽!  𝐸 𝑟!,! + 𝛾  𝐸 𝑟!,!!  +  𝜀!  

The   parameter  𝛾  can   be   used   to   test   whether   the   portfolio   manager   is   able   to   adjust   his  

market  risk  factor  exposure  during  up  and  down  markets.  A  successful  market  timer  will  then  

have  a  significantly  positive  value  for  𝛾.    

In  contrast,  the  HM  model  doesn’t  assume  the  portfolio  manager  to  be  a  magnitude  timer,  

but  a  direction  timer.  The  relationship  between  the  manager’s  excess  return  and  the  excess  

market   return   is   therefore   similar   to   the   payoff   from   a   call   option   (Frömmel,   2013).   The  

model  may  be  represented  as:  

𝑟!,! = 𝛼! +  𝛽!  𝑟!,! + 𝛾max 𝑟!,!; 0 +  𝜀!  

The  max 𝑟!,!; 0  term  may  be  replaced  by  a  dummy  variable  that  takes  on  the  value  of  1,  if  

the  excess  market  return  is  positive,  and  0  otherwise.  Again,  a  significantly  positive  estimate  

Page 33: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  23  

of  𝛾  presents  evidence  of  a  successful  market  timer,  who  is  able  to  increase  his  exposure  to  

the  market  risk  factor  in  up  markets.    

From  the  previous  discussion  it  should  be  clear  that  the  TM  model  is  suboptimal  to  analyze  

the   performance   of   managed   futures   in   specifically   identified   market   environments.   In  

contrast,   the   HM   model   may   be   adjusted   by   applying   a   different   definition   to   the  

aforementioned  dummy  variable.  A  similar  approach  was  already  applied  by  Elaut,  Frömmel  

and  Mende  (2014),  who  adjusted  the  dummy  variable  to  be  equal  to  1  during  a  bull  market.  

Employing   this   adjusted   version   of   the   HM   model   is   thereby   a   natural   extension   to   our  

former  crisis  identification  procedure,  and  also  accommodates  the  traditional  view  that  CTAs  

are   trend-­‐followers,   as   opposed   to   investment   managers   forecasting   whether   or   not   the  

market  return  will  be  positive  the  following  day.7    

CTAs  are  generally  active  within  multiple  futures  markets.  Referring  back  to  the  definition  of  

managed   futures   by   Kaminski   (2011a),   CTAs   are   active   in   sectors   such   as   equities,   fixed  

income,   currencies   and   commodities.   For   this   reason,   the   single  market   framework   of   the  

standard  HM  model  may  be   considered   too   restrictive.   To   accommodate   the  multi-­‐market  

orientation  of  managed  futures,  we  follow  Kazemi  and  Li  (2009)  and  employ  a  multi-­‐market  

timing  version  of  the  HM  model:8  

𝑟!,! = 𝛼! +   𝛽!  𝑟!,!

!

!!!

+ 𝛾!𝐷!,!𝑟!,!

!

!!!

+  𝜀!  

Note  that  as  our  previous  detection  procedure  provides  us  with  a  𝐷!,!  dummy  variable,  equal  

to   1   during   crises   and   0   otherwise,   the   expectations   with   regards   to   the  𝛽!   and  𝛾!  

coefficients  change.  The  𝛽!  estimate  will  be  an  indication  of  the  exposure  to  a  specific  sector  

in   normal   times,   while   the  𝛾!  coefficient   shall   be   a   differential   partial   slope   coefficient,  

stipulating   how   the   normal   times   exposure   changes   during   times   of   crises.   If   managed  

futures  are  able  to  acquire  higher  profitability  in  times  of  crisis,  it  should  be  expected  that  𝛾!  

                                                                                                               7  This  is  an  essential  point,  because  within  this  study  we  employ  daily  data  on  managed  futures  as  opposed  to  the  often-­‐utilized  monthly  data.  Thus  simply  employing  the  standard  approach  of   the  HM  would  assume  that  managed   futures   would   be   daily   market   timers   forecasting   whether   or   not   the   return   will   be   positive   the  following  day.    8  The  initial  work  on  a  market-­‐timing  model  in  multiple  markets  is  accredited  to  Aragon  (2007).    

Page 34: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 24  

is   significantly   smaller   than   0.   In   the  most   ideal   situation,  𝛽! + 𝛾! < 0  such   that   CTAs  will  

profit  from  the  specific  sector  crisis.  

This  analysis  can  be  extended  further  by  allowing  managed  futures  to  also  perform  volatility  

timing.  Kazemi  and  Li   (2009)  argued  that  CTAs  exhibit  volatility   timing  ability.  We  thus  also  

estimate  the  HM  model  with  a  volatility  timing  extension,  as  suggested  by  Busse  (1999),  and  

applied  by  Kazemi  and  Li  (2009):    

𝑟!,! = 𝛼! +   𝛽!  𝑟!,!

!

!!!

+ 𝛾!𝐷!,!𝑟!,!

!

!!!

+ 𝜆𝑟!,! 𝜎!,! − 𝜎! +  𝜀!  

Here  𝜎!,!  is   a   proxy   for   equity   market   volatility   and  𝜎!  represents   the   unconditional  

expected   volatility.   If   CTAs   have   volatility   timing   ability,   then   the  𝜆  would   be   significantly  

negative.   In  other  words,  equity  market  exposure   is  reduced   in  highly  volatile  stock  market  

regimes.  We  only  incorporate  equity  market  volatility,  which  may  be  proxied  by  the  VIX  index  

as   in   Chen   and   Liang   (2007),   because   a  multi-­‐market   volatility   timing   extension   in   futures  

markets  was  shown  to  be  less  relevant  in  past  research  (Kazemi  and  Li,  2009).    

If  the  empirical  results  are  in  line  with  higher  profitability  in  times  of  crisis,  this  may  be  due  to  

two   main   sources.   As   the   RPM   USD   Composite   and   trend-­‐following   index   reflects   the  

aggregated  performance  of  the  included  CTAs  that  are  active  in  multiple  sectors,  the  higher  

profitability  can  be  the  result  of  the  own  sector  performing  during  its  crisis  regime,  or  other  

sectors  acquiring  profits  that  overcome  the  own  sector’s   losses.   It   is  therefore  necessary  to  

provide  a  sectorial  decomposition  of  our  former  methodology.    

In  order  to  dive  deeper   into  a  sectorial  analysis,  we  first  decompose  the  regime-­‐dependent  

aggregate   performance   in   its   different   subsector   components.   If   the   higher   returns   during  

crisis  regimes  are  the  result  of  other  sectors,   their  yields  should  be  positive,  while  those  of  

the  own  sector  should  be  negative.  Next  we  apply  the  same  HM  models  to  the  sector  indices  

in  order  to  detect  whether  the  specific  sector  does  adjust  its  market  exposure.  Even  if  other  

sectors  perform  well  during  another’s  market  crash,  the  individual  sector  may  still  adjust  its  

exposure   to   that   sector   in   order   to   stop   the   bleeding.   Finally,   we   explore   how   managed  

futures  adjust  to  a  crisis  environment,  by  looking  into  their  sector  dynamics  within  an  event  

window.  We  define  each  event  window  as  40  days  preceding  the  onset  of  the  sector  crisis,  

Page 35: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  25  

and  160  days  after.  Then  we  compile  the  evolution  of  the  market  index,  the  sector’s  position  

and   cumulative   return   of   the   sector   and   aggregate   CTA   index,   over   the   event  window   for  

each  sector’s  crises.  All  information  is  then  aggregated  via  an  equally  weighted  average  with  

standard  deviation  bands.    

 

Page 36: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 37: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  27  

4 Data  

4.1 Crisis  Identification  

The  data  employed  within  the  crisis  identification  methodology  spans  across  four  broad  asset  

classes:  equities,  fixed  income,  commodities  and  foreign  exchange  rate  markets.  We  further  

divide  the  commodity  markets  in  three  different  sub-­‐sectors:  energy,  metals  and  agriculture.  

These  reflect  the  main  sectors  in  which  managed  futures  are  broadly  active.  Equity  markets  

are  represented  by  the  MSCI  World,  the  Barclays  U.S.  Aggregate  index  was  chosen  for  fixed  

income  markets,  and  for  commodities  we  employ  the  different  S&P  GSCI  Commodity  indices.  

These   were   termed   to   be   the   standard   asset   pricing   benchmarks   in   the   seminal   paper   of  

Moskowitz,  Ooi   and   Pedersen   (2012).   Finally,   currencies  markets   are   approximated   by   the  

Trade-­‐weighted  USD  (TW  USD)  exchange  rate  as  in  Elaut,  Frömmel  and  Mende  (2014).    

All  data  samples  are  between  1975  and  2015,  but  may  differ   in  total  sample  length,  due  to  

data  availability.  A  summary  of  the  employed  data  and  their  sample  lengths  are  presented  in  

table  1  of  the  appendix.  Note  that  our  equity  market  data  of  the  MSCI  world  is  monthly  until  

the  1st  of  January  2001.  All  values  in  between  the  beginning  and  end  of  the  same  month  are  

the   same.   While   this   may   seem   odd   at   first,   it   does   not   pose   any   real   problems   for   the  

developed  algorithm.  It  simply  implies  that  when  a  market  regime  transition  occurs,  this  shall  

have  a  minimal  duration  of  a  month  for  the  first  part  of  the  data  sample.  

4.2 CTA  Crisis  Alpha  

This  study  employs  a  unique  dataset  provided  to  us  by  RPM  Risk  and  Portfolio  Management  

AB,  a  private  market  player  specializing   in  portfolio  management   for  directional  alternative  

investments.  The  dataset  is  exceptional  within  the  literature  on  managed  futures,  because  it  

contains   real   performance   data   from   CTA   managed   accounts   at   RPM   Risk   and   Portfolio  

Management   AB.   As   such,   it   remains   uncontaminated   by   standard   reporting   biases   that  

plague  alternative  investment  databases  (e.g.  selection,  survival  and  backfill  bias).    

The  daily  dataset  provided  to  us  by  RPM  Risk  and  Portfolio  Management  AB  includes  asset-­‐

weighted   performance   indices   from  manager   accounts   denominated   in   USD   between   the  

16th  of  April  2001  and  the  31st  of  March  2015.  The  broadest  index,  The  RPM  USD  Composite  

Page 38: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 28  

index,   encompasses   all   managers   that   may   follow   a   trend-­‐following,   short-­‐term   or  

fundamental   trading   approach.   Sector   subindices   are   included   that   encompass   the  

performance  of  the  same  managers  incorporated  in  the  RPM  USD  Composite  index  within  a  

specific  market,   such   as   equities   or   fixed   income.   In   addition,   to   provide   a  more   clear-­‐cut  

picture  of  pure  CTA  strategies,  the  RPM  USD  Trend-­‐Following  Composite  index,  and  its  sector  

subindices,  cover  the   live  asset-­‐weighted  performance  of  all  RPM  manager  accounts  where  

the  underlying  managers  are,  or  were,  classified  as  trend-­‐followers.  Finally,  the  dataset  also  

includes   aggregated   position   data   for   each   sector,   as   defined   by   RPM   Risk   and   Portfolio  

Management  AB.    

As   this   is   a   unique  dataset,   it   is  worth  providing   some   summary   statistics.   For   comparison  

reasons  we  have   included  a  number  of  other  standard   indices  as  well.9  Table  2  presents  an  

overview  of   these   summary   statistics.  Overall,   average  monthly   returns   are   very   similar   in  

magnitude,   ranging   from  0,38%  to  0,48%  for   the  aggregate   indices  and  0,59%  to  0,71%  for  

the   trend-­‐following   subindices.   Interestingly,   most   CTAs   achieved   their   highest   monthly  

returns   in   the   midst   of   the   Dot   Com   crisis   and   their   worst   after   the   September   11   stock  

market   crash.   Finally,   all   indices   seem   to   strongly   co-­‐move   with   one   another,   as   all  

correlations  range  from  82  to  97%  and  the  average  correlation  between  the  indices  is  90%.  

Differences   in   dynamics   may   be   attributed   to   methodological   differences   in   index  

construction  (e.g.  equally  or  asset-­‐weighted  index  construction).    

Besides   the  managed   futures   dataset,  we   also   acquired   data   through  DataStream   and   the  

Federal   Reserve   Bank   of   St.   Louis   database.   This   includes   the   market   indices   described  

previously  and  data  on  the  three-­‐month  US  T-­‐bill  rate  and  the  VIX  index.  

 

                                                                                                               9  The  other  CTA   indices  are   the  Newedge  CTA   Index  and   its   trend-­‐following   subindex,   the  Barclays  CTA   index  and  the  Barclays  BTOP  50.  The  Newedge  CTA  index  and  trend-­‐following  subindex  are  an  equally  weighted  index  of  a  pool  of  CTAs   selected   from  the   largest  managers  open   to  new   investment   (Societe  General  Corporate  &  Investment   Banking,   n.d.).   The   Barclays   CTA   index   is   once  more   an   equally  weighted   index   representing   the  overall   CTA   industry   (Barclay   Hedge,   n.d.)   and   the   Barclays   BTOP50   index   is   an   equally   weighted   index   that  contains  the  largest  investable  CTAs  in  terms  of  assets  under  management.  

Page 39: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  29  

5 Empirical  Results  

5.1 Crisis  Identification  

The   results   of   the   parameter   identification   procedure   are   presented   in   table   3   for   the  

different   sectors.   For   comparison,   alternative   parameters,   employed   by   Lunde   and  

Timmerman   (2004)   and  Elaut,   Frömmel  and  Mende   (2014)   from   the   standard  bear  market  

algorithm  (BMA),  are  also  included.    

Table  310  illustrates  that  the  determined  parameter  values  of  𝜆!  and  𝜆!  for  the  crisis  market  

algorithm   (CMA)   are   not   considerably   different   from   those   of   the   BMA.   The   contrast  

between  the  two   is  nevertheless  quite   intuitive.  𝜆!  tends  to  be   larger  for  the  CMA  than  for  

the   BMA,  which   implies   that   for   a   crisis   to  materialize,   the  market   should   plummet  more  

severely.  Furthermore,  the  𝜆!  parameter  is  in  general  lower  in  the  case  of  the  CMA,  such  that  

a  market  must  rebound  to  a  lesser  extent  for  the  regime  to  adjust  back  to  normal.  This  would  

intuitively   lead   to   an   identification  procedure   that  will   detect   bursts   of   significant   declines  

lasting  for  shorter  periods  of  time.  This  is  consistent  with  our  perceived  difference  between  a  

bear  market  and  a  crisis  period.  

We  now  apply  the  Lunde  and  Timmerman  (2004)  algorithm  to  identify  the  crisis  periods  with  

the  parameters  from  table  3.  One  additional  restriction  is  however  imposed  at  this  stage,  i.e.  

when  a  crisis  period  is  identified  that  is  less  than  60  days  apart  from  the  former  one  then  this  

is  considered  to  be  a  single  period.  The  results  of  this  application  are  summarized  in  table  4  

and  figures  2  to  7  highlight  the  different  identified  crises  for  each  sector.  For  comparison,  we  

have  once  more  included  results  from  the  standard  BMA  as  well.    

An  analysis  of  table  4  illustrates  some  differences  in  identified  periods  between  the  BMA  and  

the  CMA.  Overall,   the  CMA  detects  a   similar  amount  of  periods   in  comparison   to   the  BMA  

and   the   average  duration   is   shorter   for   equity,   agricultural,   and  metal   commodity   sectors.  

Furthermore,   the   average   fall   in   the   market   tends   to   be   at   least   as   severe   as   the   BMA  

(𝑅! 𝐼! , 𝐼! ),  but  the  CMA  forces  these  falls  to  occur  over  shorter  periods  of  time,  such  that  the  

                                                                                                               10  For   equity   markets   an   additional   restriction   was   imposed,   which   specified   that  𝜆! < 15%  to   ensure   the  identification  of  the  LTCM  crisis  in  the  ‘98s.    

Page 40: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 30  

𝐼𝐹  is  mostly   higher.  Most   importantly,   the   𝐼𝐹!"#  is   always  higher   than   that   of   the  BMA,  

with  the  exception  for  commodity  metals.  

The   identified   crises   seem   to   be   quite   consistent   with   an   internal   list   of   contextually  

identified  crises  from  RPM  Risk  and  Portfolio  Management  AB.  A  list  of  matching  contextual  

and   CMA   equity   crises   are   highlighted   in   table   5.   This   contextual   definition   first   identifies  

months   where   the  MSCI  World   was   down  more   than   4%.   Then   a   crisis   was   defined   as   a  

fundamental  period  around  an  event  that  caused  a  crisis  according  to  the  former  threshold  

approach.  Differences  between  both  approaches  may  be  due  to  several  reasons,  such  as  the  

usage   of   monthly   versus   daily   data,   and   the   filter   rule   requires   both   up   and   downward  

movements  for  crisis  identification,  as  opposed  to  a  single  downward  evolution  of  the  market  

in  a  given  month.  Note  that  two  conceptual  crises  may  fall  under  a  single  CMA  period.  This  is  

the  case  for  Enron  and  the  September  11  crash.  

In  general,  the  main  undetected  conceptual  crises  are  those  where  the  fall  in  the  MSCI  World  

was  simply  too  small  to  be  considered  a  crisis  by  the  CMA.  An  additional  reason  for  the  non-­‐

detection   lies   with   their   non-­‐direct   relation   to   the   equity   market.   For   instance,   a   great  

number  of  periods  in  the  90s  are  primarily  times  of  currency  market  turmoil:  the  EMS/ERM  

crisis,  the  currency  crisis  in  Turkey  and  the  Mexican  Peso  crisis.    

Figure  8  illustrates  whether  the  different  sectors  tend  to  find  themselves  within  a  crisis  state  

simultaneously.  This  clearly  illustrates  that  at  no  point  in  time,  all  sectors  are  within  a  crisis  at  

the  same  time.11  There  are  nevertheless  multiple  periods  during  which  most  markets  are  in  

turmoil  that  coincide  with  widely  accepted  crises.  An  overview  of  these  periods  is  provided  in  

table  6.  Some  important  examples  include  the  great  stock  market  crash  of  1987,  the  Russian  

crisis  and  LTCM  in  1998,  the  Dot  Com  Bubble  burst  at  the  beginning  of  the  millennium  and  

the   global   financial   crisis   in   2008.   In   addition,   equities   and   commodities   seem   to   be  

consistently   part   of   these   cross-­‐sector   crises,   while   foreign   exchange   markets   are   mostly  

absent,  followed  by  fixed  income.    

To   conclude   the   first   part   of   this   section,  we  perform  Granger   causality   tests   on  our   crisis  

data  in  order  to  explore  potential  cross-­‐sectorial  crisis  transferal.  We  perform  the  analysis  for  

weekly   and  monthly   data   of   which   the   F-­‐tests   are   incorporated   in   table   7.   Unfortunately,                                                                                                                  11  Note  that  due  to  data  availability,  we  have  included  a  line  that  indicates  how  many  sectors  are  present.    

Page 41: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  31  

these   tests   yield   no   strong   conclusions.   Only   the   probability   of   an   agricultural   commodity  

market  crisis  is  Granger  caused  by  equity  and  foreign  exchange  rate  markets  at  the  5%  level  

of   significance,   which   is   robust   to   the   employed   data   frequency.   Less   consistent   findings  

include   the   metal   sector   being   Granger   caused   by   agricultural   commodities   at   a   monthly  

frequency   and   the  metal   sector  Granger   causing  equity   crises   at   a  weekly   frequency.  Both  

results  are  furthermore  only  significant  at  the  10%  level.    

5.2 CTA  Crisis  Alpha  

5.2.1 Aggregate  CTA  Performance  Analysis  

As  sector  specific  crises  have  now  been  identified,  we  proceed  to  explore  the  CTA  industry’s  

performance   during   these   market   regimes.   Table   8   contains   the   overall   performance   of  

managed   futures   between   the   16th   of   April   2001   and   the   31st   of   October   2015   and   their  

conditional  performance   in  crisis   regimes.  This   table  shows  that  CTAs  have  acquired  higher  

returns  than  the  risk-­‐free  rate  (approximately  1%)  over  the  entire  sample  with  an  annualized  

return  of  3,40%  and  5,62%  for  the  RPM  aggregate  and  trend-­‐following  subindex  respectively.  

These  figures  remain  positive  throughout  all  crisis  regimes,  with  the  exception  of  commodity  

metal  crises.  Nevertheless  they  tend  to  be  lower  for  all  asset  classes  in  comparison  to  their  

unconditional  performance.  Only   in  TW  USD  crash  states  do  CTAs  offer  substantially  higher  

performance  figures  than  their  unconditional  counterpart.    

Table  9  provides  an  overview  of  regime  dependent  correlations  of  the  RPM  USD  Composite  

and   trend-­‐following   subindex  with   the   different  market   indices.   This   table   shows   that   the  

aggregate  managed  futures  industry  exhibits  lower  correlations  with  a  specific  sector  in  times  

of   crisis.   Most   importantly,   during   periods   of   market   distress   the   conditional   correlations  

between   the   aggregate   and   trend-­‐following   indices  with   the  MSCI  World   and   the   TW  USD  

markets   turn   substantially   negative.   This   may   clarify   their   very   high   performance   during  

equity  and  currency  crises   illustrated   in  table  8.  For   instance,  the  equity  market  correlation  

plummets  from  0,00  to  -­‐0,28  and  -­‐0,02  to  -­‐0,32  and  the  TW  USD  correlation  falls  from  -­‐0,19  

to  -­‐0,38  and  -­‐0,16  to  -­‐0,35  for  the  aggregate  and  trend-­‐following  subindex  respectively.  The  

remaining   sectors   have   both   full   sample   and   crisis   regime   correlations   fluctuating   around  

zero,  consistent  with  the  common  perception  that  many  hedge  funds  have  a  market  neutral  

exposure  to  their  target  markets.  

Page 42: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 32  

Moving  on  to  the  estimation  results,  we  start  off  with  the  potential  time-­‐varying  exposure  to  

the   equity   market,   which   coincides   with   a   more   formal   analysis   of   the   documented   non-­‐

linear   relationship  between  managed   futures  and   the  equity  market   return   from  Fung  and  

Hsieh  (2001).  This  is  performed  by  means  of  the  rolling  regression  methodology  of  Daniel  and  

Moskowitz  (2013).  Figure  9  plots  the  rolling  betas,  which  indicate  that  the  RPM  CTA  indices  

exhibit   an   important   time   variation   in   its   equity  market   exposure   during   periods   of   equity  

market   crisis.   We   document   a   significant   reduction   in   managed   futures’   exposure   to   the  

market  risk  factor  from  positive  to  negative  territory,  consistent  with  the  notion  of  managed  

futures’  considerable  diversification  benefits  in  times  of  market  distress.  For  instance  during  

the   Dot   Com  Crisis   all  managed   futures   indices   have  market   betas   below   zero,   rising   only  

after   the   end   of   the   detected   period.   In   the   more   recent   global   financial   crisis,   CTAs  

experienced   a   massive   plummet   in   their   market   risk   exposures   between   mid   2007   and  

November  2008.  An  important  finding  from  figure  9  reflects  the  mostly  positive  exposures  to  

the   equity  market   at   the   start   of   each   regime.   Opening   a   crisis   with   a   consistent   positive  

exposure   will   lead   to   an   initial   loss   that   must   be   overcome   by   potential   profits   once   a  

negative  equity  market  exposure  is  achieved.    

The  dynamic  variation  in  market  exposures  is  in  line  with  Greyserman  and  Kaminski’s  (2014)  

theoretical   justification   of   why   managed   futures   are   able   to   perform   during   periods   of  

market   turbulence.   They   exhibit   clear   ability   to   dynamically   adjust   their   equity   risk   factor  

exposure   in  an  equity  sector  crisis.  The  trend-­‐following  subindex  also  displays  more  drastic  

swings   than   the  aggregate   index,   and  may   thus  be   the  driving   force  underlying   their  more  

tempered  dynamics.  They  do  require  some  time   in  order   to  properly  adapt,   such  that   they  

may   still   deliver  negative   returns   at   the  beginning  of   a   crash  or   if   a   crash   lasts   for   a   short  

duration.  This  was  a  common  characteristic  of  commodity  metals  crises  in  particular.    

Up   until   now   results   have   focused   on   equity   market   exposures.   This   is   now   extended   by  

analyzing  the  ability  of  CTAs  to  dynamically  adjust  their  exposure  to  all  markets  that  may  be  

in   turbulence.   For   this   we   draw   upon   the   market   timing   literature   and   estimate   a   multi-­‐

market   HM   model.   Table   10   provides   the   results   for   the   HM   model   and   the   volatility  

extended   version   of   Kazemi   and   Li   (2009).   Model   characteristics,   such   as   the   degree   of  

variation  in  returns  that  can  be  explained  by  the  variation  in  the  explanatory  variables  seem  

to   be   consistent  with   values   obtained   by   previous   research   (e.g.   Kazemi   and   Li,   2009   and  

Page 43: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  33  

Elaut,   Frömmel   and  Mende,   2014).   The   volatility   extended  model  may  be  preferred   above  

the   standard   multi-­‐market   model,   as   the   addition   of   the   stock   market   excess   return   and  

implied   equity  market   volatility   interaction   term   is   highly   significant.   This   is   the   case   both  

statistically  and  economically.  Finally,  the  volatility  extended  model  performs  better  in  terms  

of  R2  and  R2-­‐adjusted.  

All  estimated  models  show  that  the  CTA  industry  in  aggregate  seems  to  have  market  timing  

ability   in   a   number   of   sectors.   Managed   futures   have   small   exposures   to   the   different  

sectors,   which   can   be   significantly   different   from   zero.   Only   with   respect   to   fixed   income  

markets  we  identify  a  positive  exposure  that  may  not  be  classified  as  small.  Interestingly  and  

consistent  with  the  former  findings  from  figure  2,  CTAs  significantly  reduce  their  exposures  to  

most   sectors   during   the   identified   periods.   The   main   exceptions   include   commodities  

agriculture   and   metals,   two   sectors   performing   quite   poorly   during   their   respective   crisis  

regimes.  

The  reductions  in  exposure  to  the  specific  sectors  are  the  largest  for  equity,  fixed  income  and  

currency  markets.   This   finding   is   fully   consistent  with   the   conditional   performance  pattern  

provided   in   table   8,   where   the   highest   regime   dependent   profits   were   found   in   foreign  

exchange  rate,  equity  and  fixed  income  crises.  The  sum  of  the  partial  and  differential  partial  

regression   coefficients   nevertheless   only   turns   negative   for   equity   and   foreign   exchange  

sectors.   Unsurprisingly,   the   volatility   extended   model   leads   to   smaller   equity   sector  

coefficients,   but   are   significantly   negative.   Thus   managed   futures   significantly   decrease  

(increase)   their  market   beta   during   periods   of   high   (low)   equity  market   volatility,   such   as  

equity  market  crises.    

To  conclude,  our  results  show  that  managed  futures  are  able  to  acquire  positive  yields  when  

most  sectors  are  in  crisis.  This  may  stem  from  two  potential  sources.  Firstly,  CTAs  are  active  

in  multiple  sectors,  which  may  acquire  positive  yields,  counteracting  the  losses  of  a  sector  in  

turmoil.  Secondly,  following  the  onset  of  the  crisis,  CTAs  may  adjust  their  sectorial  exposure  

downwards,   putting   a   halt   to   the   distressed   sector’s   losses   and   complement   the   other  

sectors’  profits.      

Page 44: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 34  

5.2.2 Sector  Specific  CTA  Performance  Analysis  

To   examine   the   two   potential   sources   of   CTAs’   positive   returns   in   the   different   market  

regimes   we   perform   a   sectorial   decomposition   of   the   aggregate   performance.   These  

represent  the  sector  performance  of  the  same  managers  in  the  RPM  USD  Composite  index.  

The   figures   from   table   11   show   negative   equity   sector   returns   in   an   equity   crisis,  

counteracted  by  substantial  gains  via  the  performance  in  the  fixed  income  sector  and  smaller  

positive   yields   in   the   soft   commodities   and   trend-­‐following   metals   sector.   Fixed   income  

performance   is   similarly   negative   throughout   a   bond   market   crisis,   but   all   other   sectors  

deliver  positive  yields.  Only  the  composite  currency  sector  produces  high  profits  in  a  TW  USD  

crisis,  complemented  by  gains  in  most  other  sectors  as  well.  In  other  words,  table  11  would  

lead  to  a  preliminary  conclusion  that  CTAs’  positive  returns  in  different  crisis  regimes  are  not  

driven  by  their  sector  specific  performance.    

Despite  managed   futures’  negative   sector  performance   in   their   respective  crises,   they  may  

still  dynamically  adjust  their  exposure  to  that  sector  in  line  with  Greyserman  and  Kaminski’s  

(2014)   proposition   that   CTAs   are   highly   adaptable,   and   able   to   adjust   to   more   extreme  

market   environments.   We   delve   deeper   into   the   second   potential   source   of   CTAs’  

performance  during  crisis  regimes,  by  examining  their  time-­‐varying  exposure  to  the  different  

focus   markets.   For   this   reason,   we   reestimate   the   former   HM   models   with   the   sector  

subindices.   The   results   for   equity,   fixed   income,   soft,   energy   and  metal   commodities,   and  

currency  market  sectors  are  provided  in  tables  12  to  14.    

The   most   important   difference   between   the   sector   specific   results   and   those   from   the  

aggregate   performance   analysis   logically   lies   with   the   specific   markets   within   which   the  

managed  futures  appear  to  have  market  timing  ability.  In  other  words,  the  coefficients  that  

are  found  to  be  consistently  significant  across  model  specifications  are  those  of  the  targeted  

market.   In   addition,   there   is  quite   a  degree  of  divergence   in   the  amount  of   sector   specific  

CTA   return   variation   that   can   be   explained   by   the   explanatory   variables.   The   R2   of   the  

regressions   range   between   3%   for   soft   commodities   and   28%   in   the   case   of   equities   and  

bonds.    

Model  1  and  2  from  table  12  illustrate  small,  but  significantly  positive  exposures  to  the  equity  

market  risk  factor  in  normal  times.  During  the  identified  equity  market  crises,  exposures  are  

Page 45: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  35  

significantly  reduced  to  the  extent  that  they  become  market  neutral  or  have  minor  negative  

market  betas.  The  volatility  timing  extended  model  provides  further  evidence  that  the  equity  

sector   performance   experiences   a   significant   reduction   in   its   market   risk   exposure   during  

times  of  high  equity  market  volatility.  All  these  findings  are  also  slightly  larger  in  magnitude  

for   the   pure   trend-­‐following   subindices.   The   remaining   coefficients   within   the   model   are  

never   consistently   significant,   highlighting   the   fact   that   these   results   are   from   the   CTAs’  

sector  performance.  The  results  would  indicate  that  the  aggregate  industry’s  gains  in  times  of  

an  equity  market  crisis  are  not  solely  driven  by  their  diversified  nature.    

An   important   remark   should   be   raised   at   this   point.   The   ability   of   the   equity   sector   to  

perform  during  a  stock  market  crisis  may  depend  to  a  certain  extent  on  the  duration  of  the  

crisis  state.  For  instance,  in  more  prolonged  equity  market  crises,  such  as  the  global  financial  

crisis,  the  RPM  USD  equity  sector  performance  amounted  to  an  annualized  return  of  6,57%.  

Other  regimes  of  market  turmoil  may  be  too  short  in  duration  for  managed  futures  to  adjust  

their   positions,   such   as   the   Flash   Crash   of   2010,   when   the   equity   sector   performance  

acquired  a  disappointing  annualized  return  of  -­‐3,72%.    

Fixed  income’s  estimation  results  exhibit  significant  positive  exposures  to  the  bond  market  in  

normal   times.  However,   this   positive   factor   loading   is   substantially   reduced   during   a   bond  

market   crisis,   in   line   with   the   aggregate   industry’s   results.   The   sum   of   both   regressions  

coefficients  is  nevertheless  positive,  implying  that  the  sector  is  less  able  to  put  a  halt  to  the  

fall   in   sector   returns   when   the   bond   market   is   in   distress.   Finally,   the   sector   also   has   a  

consistent  negative  market  beta  during  a  standard  and  equity  market  crisis  regime.    

Turning  our  attention  to  the  commodity  sector  performance,  Table  13  reveals  an  inability  of  

the  HM  model   to   account   for   any   of   the   variation   in   the   soft   commodities   sector   returns.  

Either  these  managed  futures  are  market  neutral   in  general  or  the  model   is   inadequate  for  

this   specific   sector.   Moreover,   the   variables   that   are   significant   within   the   model  

specification  are  so  on  an  inconsistent  basis,  casting  doubt  on  their  true  importance,  or  are  of  

a  magnitude  that  may  be  regarded  as  irrelevant  from  an  economic  standpoint.    

A   more   reasonable   picture   is   portrayed   by   CTAs’   estimation   results   in   the   energy   sector.  

While  being   rather   small   in  magnitude,  all  estimated  coefficients  are  both  of   the   right   sign  

and  are  consistently  significant.  This  signals  the  importance  of  the  second  source  in  managed  

Page 46: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 36  

futures’   performance   during   an   energy   crisis.   Once   more   the   volatility   component   of   the  

model  is  statistically  significant  and  adds  to  the  explanatory  power  of  the  model.  

The  metal  commodity  sector  does  not  experience  a  significant  fall  in  its  exposure  to  the  focus  

market  in  times  of  market  turmoil.  Thus,  the  sectors’  dynamic  adjustment  does  not  lead  to  a  

second   source   of   their   higher   profitability   in   times   of   crisis.   This   may   be   explained   by  

commodity   metal   crises   being   generally   smaller   in   length,   leading   to   insufficient   time   for  

factor   loadings   to  be   adapted.   This  was   also   the  only   sector  where   the   aggregate   industry  

was   unable   to   acquire   positive   returns   in   a   crisis   regime.   Despite   the   lack   of   regime  

dependent   exposure  within   their   own   focus  market,   this   sector   specific   performance   does  

have  a  surprisingly  consistent  exposure  to  the  foreign  exchange  and  the  energy  commodity  

sector  to  which  it  adjust  its  factor  loadings  downwards  in  the  event  of  a  crisis.  

Finally,   the   foreign   exchange   sector   results   present   strong   evidence   in   favor   of   the   own  

sectors   performance   being   a   source   of   their   high   profitability   in   times   of   a   TW  USD   crisis.  

During  a  standard  market  regime,  the  foreign  exchange  sector  retains  market  neutrality  that  

is  adjusted  towards  a  significantly  negative  factor  loading  in  a  crisis  regime.  This  sector  also  

exhibits  persistent  factor  loadings  in  the  stock  and  commodity  metals  market  and  seems  to  

possess  volatility  timing  ability.    

To   conclude,   the   sector’s   performance   analysis   showed   that   CTAs’   activity   in   multiple  

markets   is   a   very   important   first   source   for   their   positive   returns   in   each   crisis   regime.  

Furthermore,  the  sector  specific  estimation  results  presented  evidence  of  managed  futures’  

ability  to  dynamically  adjust  their  exposure  downwards  to  the  focus  market  in  most  sectors.  

The   performance   pattern   described   by   table   11   is   therefore   not   the   sole   result   of   higher  

performance  in  the  different  subsectors  that  do  not  find  themselves  in  crisis.  

5.2.3 Managed  Futures  Dynamics  in  a  Crisis  Regime  

To  gain  further  insight  into  the  ability  of  CTAs  to  adapt  their  specific  sectors’  market  exposure  

during   the   respective   crises,  we   analyze   their   cumulative   performance   in   conjunction  with  

how   they   position   in   the   market   over   a   specified   event   window   of   201   days.   More  

specifically,  we  define  an  event  window  of  40  days  preceding  the  onset  of  a  crisis  regime  and  

160  days  after.  Then,  we  determine  the  average  evolution  of  the  market   index,  the  sectors  

Page 47: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  37  

position   and   cumulative   return   of   the   sector   and   aggregate   CTA   index   over   the   event  

window.  The  results  of  this  procedure  are  contained  in  figures  10  to  15  of  the  appendix.  

Figure  10   illustrates   the  managed   futures  dynamics   in   an  equity  market   crisis.  Overall,   the  

characteristics  of  a  stock  market  crisis  are  very  similar  in  nature  over  the  first  120  days  of  the  

event   window.   The  market   acquires   substantial   gains   up   to   the   onset   of   the   crisis.   These  

returns  are  matched  by  similar  gains  in  CTAs  equity  sector  performance,  as  they  on  average  

have  long  equity  positions  in  the  run  up  to  the  equity  market  peak.  Nevertheless,  the  entire  

accumulated   return   of   the   stock   market   is   quickly   evaporated   over   a   duration   of  

approximately  90  days  after  which  the  equity  market  return  stabilizes  around  a  cumulative  

return   of   -­‐10%.   During   this   timeframe   CTAs   modify   their   positioning   downwards,   which  

become  negative  on  average  after  roughly  40  days  of  crisis.  This  allows  them  to  compensate  

for   the   initial   losses   suffered   at   the   very   beginning   of   the   crisis,   when   the   market   was  

plummeting  and  CTAs   still   retained   their  overall   long  positions.  Most  notable   is   the   strong  

increase  in  average  equity  sector  performance  between  the  70th  and  90th  day  after  the  onset  

of   the   crisis.   These  profits   are  matched  by   an   increase   in   the  RPM  USD  Composite   (trend-­‐

following)   index.   The   position   data   explains   the   results   from   the   HM   model   and   would  

indicate  that  CTAs’  equity  sector  performance  may  also  be  able  to  acquire  gains  during  more  

prolonged  equity  market  crises.  It  also  clarifies  the  negative  equity  sector  performance  in  the  

European   sovereign   debt   crisis   and   the   Flash   Crash,   which   were   shorter   in   duration   and  

therefore  did  not  provide  exploitable  downward  trends.  

The  same  graphs  for  fixed  income  are  encompassed  in  figure  11.  At  first  a  bonds  market  crisis  

leads   to   a   notable   fall   of   the   cumulative   return   that   stabilizes   after   125   days   and   slightly  

rebounds   after   145   days.   In   the   same   way   as   the   equity   sector,   fixed   income   positioning  

decreased   the  existing   long  holdings.   In   spite  of   this   adjustment,   positions   remain  positive  

overall.   This   is   in   line  with   the   results   from   the   HM  model   that   also   showed   a   decreased  

exposure   to   the   focus   market,   but   to   an   insufficient   extent   in   order   to   acquire   a   market  

neutral  or  negative  stance.  The  bonds  sector  performance  therefore  does  not  seem  to  profit  

from  the  crisis  and  only  acquires  gains  during  the  small  market  rebound  near  the  end  of  the  

event  window.  The  overall  managed  futures  performance  on  the  other  hand  remains  positive  

and  upward   trending.   This  may   thus  be  attributed   to   the  ability  of  other   sectors   to  obtain  

Page 48: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 38  

positive   yields   throughout   fixed   income  crises   (e.g.   table  8   indicated  positive  equity   sector  

yields).  

In   the   commodities   agriculture   sector,   figure   12   shows   the   continuing   fall   of   the   market  

throughout   the   event   window  matched   by   a   drop   in   soft   commodities’   positioning.   Once  

more,  the  position  data  does  not  take  on  persistent  negative  values,  but  fluctuate  around  0%  

between  day  50  and  160.  The  cumulative  sector  returns  suffer  an  initial  hit  at  the  start  of  the  

crisis,  but  neither  gain  nor  suffer   in   the   later  part  of   the  market   regime.  The  overall   sector  

performance  shows  a  comparable  pattern,  with  only  a  small  positive  cumulative  return  at  the  

very  end  of  the  event  window.      

In  general,  an  energy  crisis  exhibits  a  similar  pattern  to  an  agricultural  one.  Figure  13  displays  

a   consistent   fall   in   the   average   cumulative   sector   return.  However,   the   standard  deviation  

bands   are   much   wider   in   the   second   half   of   the   event   window,   indicating   more   diverse  

events.  Positioning  once  more  starts  off  with  a  long  bias  that  is  built  off  to  a  market  neutral  

exposure   around   the   50th   day   after   the   start   of   the   crisis.   As   a   consequence,   cumulative  

returns   deteriorate   at   first,   stabilizing   around   0%   for   the   remainder   of   the   event  window.  

Positive   aggregate  managed   futures   performance  may   thus   be   attributed   to   the   ability   of  

other   sectors   to   perform   at   the   same   time.   For   instance,   table   8   showed   positive   fixed  

income  sector  performance  in  energy  market  crises.  The  results  are  furthermore  consistent  

with   those   from   the   HM   model   that   depicted   a   market   neutral   orientation   during   crisis  

regimes.  

The   final   group   of   commodities,   metals,   exhibits   a   fall   in   the   market,   paralleled   by   a  

downward   adjustment   of   metal   sector   positions   that   stagnates   around   0%   after   40   days  

(figure  14).  As  CTAs  start  of  the  turbulent  times  with  long  positions,  they  quickly  lose  much  of  

the  accumulated  profits  during   this  descend.  Over   the   remainder  of   the  event  window  the  

sector  performance  quickly   recuperates  and   is   able   to  deliver  positive  yields.  These   results  

should   be   nuanced   to   some   extent,   as   the   average  metal   sector   crisis   between   2001   and  

2015  lasts  for  only  90  days.  As  a  result,  our  event  window  may  also  be  capturing  a  part  of  the  

Page 49: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  39  

rebound  within  the  market  and  is  less  adequate  to  represent  the  managed  futures  dynamics  

in  a  metals  sector  crisis.12    

In  contrast  with  all  other  sectors,   the  RPM  USD  composite  currencies   reflects  a  completely  

different  dynamic  in  a  TW  USD  crisis  (figure  15).  Leading  up  to  the  price  peak  in  the  TW  USD,  

the  RPM  composite  currencies  positions  are  short.  For  this  reason,  their  sector  performance  

does  not  see  a  substantial   fall  during  the  first  40  days  after  the  onset  of  the  crisis.   Instead,  

the  composite  currencies  performance  on  average  rises  throughout  a  foreign  exchange  rate  

crisis.  Especially  in  the  second  part  of  the  event  window  the  sector  performance  gains  seem  

to   be  matched   by   profits   in   the   aggregate  managed   futures   industry.   Past   results   already  

showed  that  this  sector  has  a  substantial  negative  exposure  to  the  TW  USD  index  in  turbulent  

times  (table  14),  as  well  as  notable  positive  sector  returns  (table  11).  Therefore  the  aggregate  

CTA   industry   yields   during   foreign   exchange   rate   crises   do   not   stem   from   other   sectors’  

profits,  but  mainly  from  their  own  sectors  ability  to  perform.    

In   conclusion,   the   performance   pattern   summarized   in   table   11   seems   to   not   only   be   the  

result  of  other  sectors  performing  well.  In  fact,  most  sectors  show  a  considerable  degree  of  

adaptability  as  they  adjust  their  positioning  downwards  following  the  onset  of  the  crisis.  For  

this  reason,  most  sectors’  performance  has  to  bear  upon  accumulated  profits  at  the  start  of  

the   crisis,   which  were   acquired   in   the   lead   up   to   the   sector   price   peak,   but   do   not   see   a  

consistent  plummet  throughout   the  remainder  of   the  event  window.  The   foreign  exchange  

rate  and  equity  sector  may  also  show  the  ability  to  perform  within  its  own  market  in  times  of  

crisis.  The  former  tends  to  already  be  positioned  in  order  to  gain  from  a  TW  USD  crash,  while  

the   latter   may   only   do   so   if   the   crisis   duration   is   sufficiently   long   for   the   adjusted   short  

positions  to  gain  from  the  downward  price  trends.  Finally,  all  presented  evidence  highlights  

the  nature  of  managed  futures  as  a  diversified  asset  class  that  follows  trends.  They  are  not  

market  timers  or  early  movers  with  an  ability  to  anticipate  the  change  in  market  regime.    

                                                                                                               12  We  would   like   to   emphasize   that   the   choice   to   not   employ   a   smaller   event  window   for   commodity  metal  crises  was  taken  in  order  to  provide  a  more  consistent  analysis.    

Page 50: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 51: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  41  

6 Robustness  Tests  

To  increase  the  power  of  our  results,  we  perform  a  number  of  robustness  checks.  Firstly,  we  

test   the   robustness   of   our   results   to   the   employed   data   by   reestimating   the   former   HM  

models  with  an  alternative  managed   futures   index,   the  Newedge  CTA   index,  and   its   trend-­‐

following   subindex.   Secondly,   we   adjust   our   crisis   market   indicator   with   three   possible  

alternatives:  the  bear  market  indicator  of  Daniel  and  Moskowitz  (2013),  Elaut,  Frömmel  and  

Mende   (2014)   and   Chen   and   Liang   (2007).   The   Daniel   and   Moskowitz   (2013)   measure  

determines  a  market  to  be  in  a  bear  regime  if  the  cumulative  return  over  the  past  24  months  

has   been   negative.   Elaut,   Frömmel   and   Mende’s   (2014)   index   is   similar   to   our   own,   but  

reflects  alternative  parameters.  Chen  and  Liang  (2007)  determine  the  market  state  to  be  in  a  

bear   regime   if   the   index   return   is   smaller   than   the   risk-­‐free   rate,   such   that   the   robustness  

check   boils   down   to   a   more   traditional   version   of   the   HM   model.   Finally,   we   perform   a  

subsample  analysis  by  restricting  the  data  to  a  subsample  between  2001  and  May  2008.  This  

excludes   the  credit   crunch  and   the  Lehman  Brothers  bankruptcy,  which  may  dominate  our  

empirical  results.  The  alternative  crisis  indicators  and  subsample  analysis  are  also  applied  to  

the  Newedge  data  as  an  additional  robustness  check.    

Table   15   reflects   the   overall   robustness   of   the   aggregate   CTA   performance   analysis   to   an  

alternative  managed  futures  index.  As  in  previous  tables,  the  numbers  between  parentheses  

are   the  p-­‐values  and  the  bold   figures  denote  significance  of   the  variable  at   the  5%   level  of  

significance.  In  addition  the  underlined  p-­‐values  reflect  inconsistency  with  former  estimation  

results.   Besides   some  minor   differences,   the   only   striking   discrepancy   with   an   alternative  

industry   benchmark   pertains   to   the   commodities   energy   sector.   When   employing   the  

Newedge  CTA   indices  we   attain   non-­‐significant   adjustments   to   the   S&P  GSCI   Commodities  

Energy  in  times  of  energy  market  crisis.  We  also  note  a  now  significant  positive  exposure  to  

the   commodity   agriculture   sector.  Nevertheless,   all   estimated   coefficients   remain   stable   in  

magnitude  and  sign.    

Our   results   seem   robust   to   the   alternative   measure   of   Daniel   and   Moskowitz   (2013).   All  

coefficients   tend   to   retain   their   significance,  magnitude  and  sign.  Some  differences   include  

an   insignificant   and   significant   exposure   reduction   to   commodities   energy   and   metals   in  

times  of  crisis,  respectively.  It  is  furthermore  worth  noting  that  the  R2  tends  to  be  higher.  This  

Page 52: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 42  

may  be   the  consequence  of  Daniel  and  Moskowitz’s   (2013)  measure   lagging  our  own,  as   it  

requires   the   cumulative   return   over   the   last   24  months   to   be   negative.   Thus   it  may  more  

adequately  capture  the  already  downwards-­‐adjusted  positioning  in  most  sectors.    

Model   results   are   also   robust   to   potential   alternative   parameters   from   the   BMA.   All  

estimates  are  robust  in  terms  of  sign  and  magnitude  and  only  minor  inconsistent  differences  

occur  with  regards  to  significance.  It  is  also  worth  noting  that  when  employing  the  CMA  the  

R2   and   R2-­‐adjusted   from   table   10   and   15   are   slightly   larger   in  magnitude   than   those   from  

table  17.  This  may  reflect  a  very  small  degree  of  superiority  of  the  CMA  over  the  BMA.    

Numerous   differences,   both   in   terms   of   significance   and   coefficient   sign,   arise   when   the  

indicator  from  Chen  and  Liang  (2007)  is  employed.  The  degree  of  variation  that  is  captured  by  

the  variation  in  explanatory  variables  is  also  much  lower  for  the  aggregate  indices.  This  may  

be  clarified  by  the  notable  difference  in  their  measure.  For  instance,  their  classification  leads  

to   numerous   very   short   periods   of   time   that   are   never   in   line  with   potentially   exploitable  

trends   for  managed   futures.   This  may   stress   the   importance  of   adapting   the  HM  model   in  

order   to  capture  the  nature  of   the  asset  class  at  hand,  consistent  with  Elaut,  Frömmel  and  

Mende  (2014).    

Restricting   the   data   sample   up   to   May   2008   does   lead   to   a   number   of   differences   with  

regards  to  the  aggregate  CTA  performance  analysis.  For  the  Newedge  CTA  data,  there  is  no  

longer   a   significant   positive   exposure   to   the   stock   market   in   normal   times.   There   are   no  

significant  results  for  fixed  income  and  commodity  energy  exposure  in  normal  times  with  the  

RPM  USD  Composite,  or  either  data  source  in  times  of  crisis.  And  for  the  TW  USD,  results  are  

significantly  negative  and  non-­‐significant  in  normal  times  and  crises,  respectively.  We  should  

therefore   be   wary   in   drawing   conclusions,   because   the   robustness   tests   indicate   our  

estimation  results  being  dominated  by  the  global  financial  crisis.    

Tables  20  to  31  encompass  all  estimation  results  to  test  the  stability  of  tables  11  to  13.  The  

Daniel   and  Moskowitz   (2013)  measure   leads   to   an  overall   consistent   conclusion,   but   some  

estimations   do   exhibit   a   more   outspoken   positive   exposure   in   normal   times   that   is  

significantly  reduced  within  a  crisis  regime  (tables  20  to  22).  The  delayed  nature  of  the  Daniel  

and  Moskowitz  (2013)  measure  also  improves  upon  the  degree  of  variation  captured  by  the  

model   for   all   commodity   and   foreign   exchange   sectors.   This   can   be   attributed   to   the  

Page 53: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  43  

aforementioned  fallen  sector  positioning,  which  is  better  captured  by  a  lagging  indicator  than  

the  CMA  measure.  Sector  estimation  results  for  the  BMA  parameters  are  provided  by  tables  

23   to  25,  which  once  more   illustrate  overall   consistency.  Most  outcomes  are  not   robust   to  

the  Chen  and   Liang   (2007)  measure   (tables  26   to  28),   but   they  do   remain  unchanged   to   a  

data  sample  restriction  (tables  29  to  31)  contrasting  the  aggregate  robustness  checks.    

 

 

Page 54: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 55: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  45  

7 Conclusion  

This  paper  has  researched  whether  managed  futures  are  able  to  acquire  higher  profitability  

in   times  of   crisis.   This  was   achieved  by   adapting   the   Lunde   and   Timmerman   (2004)   dating  

algorithm   to   detect   different   crisis   regimes,   and   incorporating   this   measure   in   the   well-­‐

established  Henriksson-­‐Merton  model.  We  furthermore  examined  each  sectors’  intra-­‐regime  

dynamics  in  detail  by  exploiting  a  unique  dataset  on  managed  futures  positioning.    

Our  results  revealed  that  managed  futures  had  on  average  acquired  positive  returns  in  all  but  

commodity  metal  crises.  This  is  the  result  of  the  alternative  investment  following  directional  

strategies   in   multiple   asset   classes,   which   leads   to   standard   diversification   benefits:   the  

lacking   performance   in   the   crisis   sector   was   counterbalanced   by   the   gains   in   others.  

Secondly,  CTAs  on  average  exhibited  a  long  bias  leading  up  to  the  market’s  price  peak,  which  

was  subsequently  decreased  owing  to  their  trend-­‐following  nature.  For  this  reason,  managed  

futures   sector   performance   stabilized   rather   quickly,   as   they   acquired   a  market   neutral   or  

negative  exposure  to  the  crisis  sector.    

The  equity,   fixed   income  and  composite   currency   sectors  exhibited   the   strongest   ability   to  

adjust   market   exposures   downwards.   In   addition,   the   composite   currencies   sector’s  

dynamics   were   different,   as   they   didn’t   retain   the   same   initial   long-­‐bias.   This   led   to  

composite   currencies   being   the   only   sector   capable   at   acquiring   positive   returns   in   its  

respective   crisis   regime.   Most   estimation   results   were   also   robust   to   alternative   crisis  

measures,  but  a  sample  restriction  indicated  a  strong  impact  of  the  global  financial  crisis.    

In  sum,  we  have  argued  that  the  stable  returns  of  CTAs  in  times  of  crisis  originate  from  the  

two   aforementioned   sources:   diversification   and   trend-­‐following.   Therefore,   their   regime  

dependent  performance  does  not  stem  from  an  ability   to  anticipate  crises  and  adjust   their  

positioning  accordingly,  but  from  the  features  that  characterize  the  asset  class  itself.    

 

Page 56: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 57: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  47  

8 References:    

Aboura,   S.,   (2015),   “Disentangling   Crashes   From   Tail   Events”,   in:   International   Journal   of  

Finance  and  Economics,  p  1-­‐14.    

Antonakakis,  N.  and  J.  Scharler,  (2012),  “Volatility,  Information  and  Stock  Market  Crashes”,  

in:  Journal  of  Advanced  Studies  in  Finance,  vol.  0(1),  p  49  –  67.  

Aragon,  G.,   (2007),  Timing  Multiple  Markets:  Theory  and  Evidence,  Working  Paper,  Arizona  

State  University.  

Arnold,   J.,   (2013),   “Performance,   Risk   and   Persistence   of   the   CTA   Industry:   Systematic   vs.  

Discretionary  CTAs”,  Centre  for  Hedge  Funds  Research,  Working  Paper  13.    

Barclay   Hedge,   (n.d.),   Barclay   CTA   Index,   Retrieved   May   15,   2015,   from   Barclay   Hedge:  

http://www.barclayhedge.com/research/indices/cta/sub/cta.html.    

Barclay  Hedge,  (n.d.),  Barclay  BTOP50  Index,  Retrieved  May  15,  2015,  from  Barclay  Hedge:  

http://www.barclayhedge.com/research/indices/btop/.    

Bhardwaj,  G.,  G.  B.  Gorton  and  K.  G.  Rouwenhorst,  (2008),  Fooling  Some  of  the  People  All  of  

the  Time:  The  Inefficient  Performance  and  Persistence  of  Commodity  Trading  Advisors,  NBER  

Working  Paper  no.  14424.    

Brorsen,  B.  W.  and  J.  P.  Townsend,  (2002),  “Performance  Persistence  for  Managed  Futures”,  

in:  Journal  of  Alternative  Investments,  vol.  4(4),  p  57  –  61.  

Bry,   G.   and   C.   Boschan,   (1971),   Cyclical   Analysis   of   Time   Series:   Selected   Procedures   and  

Computer  Programs,  NBER:  New  York.  

Busse,   J.A.,   (1999),   “Volatility   Timing   in   Mutual   Funds:   Evidence   from   Daily   Returns”,   in:  

Review  of  Financial  Studies,  vol.  12(5),  p  1009-­‐1041.  

 

 

Page 58: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 48  

Chen,   Y.,   (2007),   “Timing   Ability   in   the   Focus   Market   of   Hedge   Funds”,   in:   Journal   of  

Investment  Management,  vol.  5,  p  66  –  98.  

Chen,  Yong  and  Bing  Liang,  (2007),  “Do  Market  Timing  Hedge  Funds  Time  the  Market?”,  in:  

Journal  of  Financial  and  Quantitative  analysis,  vol.  42(4),  p  827  –  856.    

Criton,   G.   and   O.   Scaillet,   (2011),   “Time-­‐Varying   Analysis   in   Risk   and   Hedge   Fund  

Performance:  How  Forecast  Ability  Increases  Estimated  Alpha”,  Part  I  Doctoral  Thesis.    

Daniel,   K.   and   T.   Moskowitz,   (2013),   “Momentum   Crashes”,   in:   Swiss   Finance   Institute  

Research  Paper,  13  –  61,  14  –  6.    

Edwards,   F.   R.,   and   J.   Liew.   (1999).   “Managed   Commodity   Funds”,   in:   Journal   of   Futures  

Markets,  vol.  19(4),  p  377  –  411.  

Edwards,  F.  R.,  and  M.  O.  Caglayan,  (2001),  “Hedge  Fund  and  Commodity  Fund  Investments  

in  Bull  and  Bear  Markets”,  in:  Journal  of  Portfolio  Management,  vol.  27(4),  p  97  –  108.  

Elaut,  G.,  M.  Frömmel  and  A.  Mende,  (2014),  Duration  Dependence,  Behavioral  Restrictions  

and  Market  Timing  Ability  of  Commodity  Trading  Advisors,  mimeo.    

Elton,  E.  J.,  Martin  J.  G.  and  J.  C.  Rentzler,  (1987),  “Professionally  Managed  Publicly  Traded  

Commodity  Funds”,  in:  Journal  of  Business,  vol.  60(2),  p  175  –  199.  

Elton,   E.   J.,   M.   J.   Gruber   and   J.   C.   Rentzler,   (1990),   “The   Performance   of   Public   Offered  

Commodity  Funds”,  in:  Financial  Analysts  Journal,  vol.  46(4),  p  23  –  20.  

Frömmel,   M.,   (2010),   “Volatility   Regimes   in   Central   and   Eastern   European   Countries’  

Exchange  Rates”,  in:  Czech  Journal  of  Economics  and  Finance,  vol.  60(1),  p  2  –  21.    

Frömmel,  M.,  (2013),  Portfolios  and  Investments,  Norderstedt,  Books  on  Demand.  

Fung,  W.  and  D.  Hsieh,  (2000),  “Performance  Characteristics  of  Hedge  Funds  and  CTA  Funds:  

Natural  versus  Spurious  Biases”,  in:  Journal  of  Financial  and  Quantitative  Analysis,  vol.  35,  p  

291  –  307.  

Fung,  W.   and   D.   Hsieh,   (2001),   “The  Risk   in  Hedge   Fund   Strategies:   Theory   and   Evidence  

from  Trend  Followers”,  in:  The  Review  of  Financial  Studies,  vol.  14  (2),  p  313  –  341.    

Page 59: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  49  

Fung,  W.  and  D.  Hsieh,  (2002),  “Hedge-­‐Fund  Benchmarks:  Information  Content  and  Biases”,  

in:  Financial  Analysts  Journal,  58,  p  22  –  34.    

Gujarati,   D.   and   D.   Porter,   (2009),   Basic   Econometrics,   New   York,   New   York:   McGraw-­‐

Hill/Irwin.  

Gregoriou,   G.   H.,   G.   Hübner,   and   M.   Kooli,   (2010),   “Performance   and   Persistence   of  

Commodity  Trading  Advisors:  Further  Evidence”,  in:  Journal  of  Futures  Markets,  vol.  30(8),  p  

725  –  252.  

Greyserman,  A.  and  K.  Kaminski,  (2014),  Trend  Following  with  Managed  Futures,  Hoboken,  

New  Jersey:  John  Wileys  and  Sons,  Inc.    

Henriksson,  R.  and  R.  Merton,   (1981),  “On  Market  Timing  and  Investment  Performance  II.  

Statistical  Procedures  for  Evaluating  Forecasting  Skills”,  in:  Journal  of  Business,  vol.  54,  p  513  

–  533.  

Hurst,  B.,  Y.  H.  Ooi  and  L.  H.  Pedersen,  (2013),  “Demystifying  Managed  Futures”,  in:  Journal  

of  Investment  Management,  vol.  11(3),  p  42  –  58.    

Irwin,  S.  H.,  T.  R.  Krukemeyer  and  C.  R.  Zulauf,  (1993),  “Investment  Performance  of  Public  

Commodity  Pools:  1979-­‐1990”,  in:  Journal  of  Futures  Markets,  vol.  13(7),  p  799  –  820.    

Jensen,  G.  R.,  R.  R.  Johnson,  and  J.  M.  Mercer,  (2003),  “The  Time  Variation  in  the  Benefits  of  

Managed  Futures”,  in:  Journal  of  Alternative  Investments,  vol.  5(4),  p  41  –  50.    

Kat,   M.   H.,   (2002),  Managed   Futures   and   Hedge   Funds:   a  Match  Made   in   Heaven,   ISMA  

Centre  Discussion  Papers  in  Finance,  no.  25.    

Kaminski,   K.,   (2011a),   “In   Search   of   Crisis   Alpha:   A   Short   Guide   to   Investing   in  Managed  

Futures”,  in:  CME  Group  Education.    

Kaminski,  K.,  (2011b),  Offensive  or  Defensive?  Crisis  Alpha  vs.  Tail  Risk  Insurance,  RPM  Risk  

and  Portfolio  Management  Working  Paper.  

Kaminski,   K.   and   A.   Mende,   (2011),   “Crisis   Alpha   and   Risk   in   Alternative   Investment  

Strategies”,  in:  CME  Group  Education.    

Page 60: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 50  

Kazemi,  H.  and  Y.  Li,  (2009),  “Market  Timing  of  CTAs:  An  Examination  of  Systematic  CTAs  vs.  

Discretionary  CTAs”,  in:  Journal  of  Futures  Markets,  vol.  29(11),  p  1067  –  1099.    

Li,  W.   S.   and  S.   S.   Liaw,   (2014),  “Abnormal  Statistical  Properties  of  Stock   Indexes  during  a  

Financial  Crash”,  in:  Physica  A:  Statistical  Mechanics  and  its  Applications,  vol.  422,  p  73  –  88.    

Liang,   B.,   (2004),   “Alternative   Investments:   CTAs,   Hedge   Funds,   and   Funds-­‐of-­‐Funds”,   in:  

Journal  of  Investment  Management,  vol.  2(4),  p  76  –  93.    

Lintner,   J.,   (1983),   The   Potential   Role   of   Managed   Futures   Accounts   (and/or   Funds)   in  

Portfolios  of  Stocks  and  Bonds,  Presentation  to  the  Annual  conference  of  Financial  Analysts  

Federation  in  Managed  Futures,  Toronto,  Canada.    

Lo,   A.,   (2004),   “The  Adaptive  Markets  Hypothesis:  Market   Efficiency   from  an   Evolutionary  

Perspective”,  in:  The  Journal  of  Portfolio  Management,  vol.  30,  p  15  –  29.    

Lunde,  A.  and  A.  Timmerman,  (2004),  “Duration  Dependence  in  Stock  Prices”,  in:  Journal  of  

Business  and  Economic  Statistics,  vol  22(3),  p  253  –  273.    

Maheu,  J.  and  T.  McCurdy,  (2000),  “Identifying  Bull  and  Bear  Markets  in  Stock  Returns”,  in:  

Journal  of  Business  and  Economic  Statistics,  vol.  18(1),  p  100  –  112.    

Maheu,   J.,   T.  McCurdy   and   Y.   Song,   (2012),   “Components   of   Bull   and  Bear  Markets:   Bull  

Corrections   and  Bear  Rallies”,   in:   Journal   of  Business  and  Economic   Statistics,   vol.   30(3),   p  

391  –  403.    

Mishkin,   F.   and   E.   White,   (2002),   U.S.   Stock   Market   Crashes   and   Their   Aftermath:  

Implications  For  Monetary  Policy,  NBER  Working  Paper  no.  8992.  

Moskowitz,  T.  Y.  H.  Ooi  and  L.  H.  Pedersen,  (2012),  “Time  Series  Momentum”,  in:  Journal  of  

Financial  Economics,  vol.  104,  p  228  –  250.    

Oberuc,  R.  E.,  (1992),  How  to  Diversify  Portfolios  of  Euro-­‐Stocks  and  Bonds  with  Hedged  U.S.  

Managed   Futures,   Presentation   at   the   First   International   Conference   on   Futures   Money  

Management,  May,  Geneva,  Switzerland.    

Pagan,   A.   R.   and   K.   Sossounov,   (2003),   “A  Simple   Framework   for  Analysing  Bull   and  Bear  

Markets”,  in:  Journal  of  Applied  Econometrics,  vol.  18(1),  p  23  –  46.    

Page 61: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

  51  

Park,   J.,   (1995),   Managed   Futures   as   an   Investment   Asset,   PhD   Dissertation,   Columbia  

University.  

Schneeweis,   T.   and   R.   Spurgin,   (1998),   "Multifactor   Analysis   of   Hedge   Fund,   Managed  

Futures,   and  Mutual   Fund   Return   and   Risk   Characteristics",   in:   The   Journal   of   Alternative  

Investments,  vol.  1(2),  p  1  -­‐  24.    

Societe  General  Corporate  &   Investment  Banking,   (n.d.),  Newedge  Indices,  Retrieved  May  

15,  2015,  from  Newedge:  http://www.newedge.com/en/newedge-­‐indices.  

Sperandeo,  V.,  (1990),  Principles  of  Professional  Speculation,  New  York:  Wiley.    

Tee,   K.,   (2012),   “Performance   and   the   Potential   of  Managed   Futures   in   the  Market   Crisis  

Period”,   H.   Baker   and   Filbec,   G.,   ed.   Alternative   Investments:   Instruments,   Performance,  

Benchmarkes,  and  Strategies,  John  wiley  &  Sons,  p.  437.  

Treynor,   J.   and   K.  Mazuy,   (1966),   “Can  Mutual   Funds  Outguess   the  Market?”   in:  Harvard  

Business  Review,  44,  p  131  –  136.    

Waksman,   S.,   (2000),   “Commodity   Trading  Advisor   Survey:   Adding   Equities   to   a  Managed  

Futures  Portfolio”,  in:  Journal  of  Alternative  Investments,  Vol  3,  No.  2,  p  43  –  44.    

 

Page 62: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman
Page 63: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  53  

9 Appendix  

9.1 Tables  

Table  1:  Data  Crisis  Identification  Methodology  

Sector   Index   Start  Sample  

Stocks   MSCI  World   01/05/75  Bonds   Barclays  U.S.  Aggregate   30/01/76  Comm.  Agr.   S&P  GSCI  Commodities  Agriculture   01/05/75  Comm.  Energy   S&P  GSCI  Commodities  Energy   31/12/82  Comm.  Metals   S&P  GSCI  Commodities  Metals   16/01/95  TW  USD   Trade-­‐Weighted  USD   01/05/75  

Source:  DataStream  and  Federal  Reserve  Bank  of  St.  Louis  

Table  2:  Summary  Statistics  

 

RPM  

Aggr.  

Newedge  

Aggr.  

RPM  

TF  

Newedge  

TF  

Barclays  

Aggr.  

Barclays    

BTOP50  

Mean   0,42%   0,48%   0,71%   0,59%   0,38%   0,43%  Standard  Deviation   2,30%   2,46%   3,07%   4,16%   1,89%   2,36%  Min   -­‐4,34%   -­‐7,95%   -­‐5,90%   -­‐14,61%   -­‐4,73%   -­‐7,22%      Date   30/04/04   30/11/01   30/11/01   30/11/01   31/03/03   30/11/01  Max   6,58%   8,48%   7,99%   13,46%   6,25%   9,37%      Date   31/10/00   31/12/00   29/02/08   31/12/00   30/06/02   31/12/00  Correlation  Matrix  

           RPM  Aggr.   1,00   0,87   0,92   0,85   0,82   0,84  Newedge  Aggr.   0,87   1,00   0,88   0,97   0,92   0,97  RPM  TF   0,92   0,88   1,00   0,88   0,86   0,86  Newedge  TF   0,85   0,97   0,88   1,00   0,92   0,97  Barclays  Aggr.   0,82   0,92   0,86   0,92   1,00   0,93  Barclays  BTOP   0,84   0,97   0,86   0,97   0,93   1,00  

Source:  RPM  Risk  and  Portfolio  Management  AB  and  own  calculations  

   

Page 64: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 54  

Table  3:  Employed  Parameters  

   𝝀𝟏   𝝀𝟐    Data  Sample  Start    

   Equity   BMA   10,00%   20,00%   01/05/1975  

CMA   13,00%   5,00%  

Fixed  Income   BMA   4,63%   2,56%   30/01/1976  CMA   7,00%   3,00%  

 Comm.  Agr.   BMA   19,58%   13,85%   01/05/1975  CMA   22,00%   11,00%  

 Comm.  Energy     BMA   19,71%   23,90%   31/12/1982  CMA   21,00%   13,00%  

 Comm.  Metals     BMA   16,01%   10,61%   16/01/1995  CMA   12,00%   1,00%  

 TW  USD     BMA   4,59%   4,07%   01/05/1975  CMA   10,00%   4,00%  

Source:  DataStream,  Lunde  and  Timmerman  (2004),  Elaut,  Frömmel  and  Mende  (2014)  and  own  calculations.  

Table  4:  Summary  Statistics  

   

Crises   𝑹! 𝑰𝒕, 𝑰𝑻   𝑻− 𝒕   𝑰𝑭   𝑰𝑭𝒂𝒅𝒋

 Equity     BMA   14   -­‐24,81%   211   -­‐0,65   -­‐1,86  

CMA   12   -­‐26,31%   183   -­‐0,74   -­‐2,09  

Fixed  Income   BMA   18   -­‐9,56%   328   -­‐0,15   -­‐1,73  

CMA   10   -­‐13,29%   532   -­‐0,10   -­‐2,84  

 Comm.  Agr.     BMA   16   -­‐40,13%   373   -­‐0,71   -­‐1,42  

CMA   16   -­‐40,24%   345   -­‐0,59   -­‐2,07  

 Comm.  Energy     BMA   18   -­‐48,86%   260   -­‐1,09   -­‐1,35  

CMA   20   -­‐48,06%   214   -­‐1,18   -­‐1,61  

 Comm.  Metals     BMA   12   -­‐28,47%   267   -­‐0,90   -­‐1,12  

CMA   18   -­‐21,07%   145   -­‐1,06   -­‐0,77  

 TW  USD     BMA   27   -­‐12,69%   235   -­‐0,30   -­‐1,73  

CMA   13   -­‐18,22%   378   -­‐0,23   -­‐2,09  

Description:  Crises  =  Number  of  identified  crises  or  bear  markets,  𝑅! 𝐼! , 𝐼!  =  The  average  fall  in  the  market  over  the  crisis  (bear)  market  regime,  𝑇 − 𝑡  =  The  average  duration  of  the  identified  period  and  𝐼𝐹  =  the  average  intensity  factor  Source:  DataStream,  Lunde  and  Timmerman  (2004),  Elaut,  Frömmel  and  Mende  (2014)  and  own  calculations  

   

Page 65: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  55  

Table  5:  Matching  Contextual  and  CMA  Stock  Market  Crises  

    Contextual   CMA  

Name   Begin   End   Dur.   Fall   Begin   End   Dur.   Fall  

Japanese  asset  price  bubble   Jan-­‐90   Apr-­‐90   90   -­‐15,44%   Dec-­‐89   Apr-­‐90   122   -­‐16,78%  1st  Gulf  War   Aug-­‐90   Sep-­‐90   31   -­‐18,89%   Jul-­‐90   Sep-­‐90   59   -­‐20,93%  New   Industrial   Policy   of  India   /   India   Trying   to  liberalize  

Jun-­‐91    

30   -­‐6,16%   Not  Identified        

EMS/ERM  Crisis   Jan-­‐92   Mar-­‐92   60   -­‐8,04%   Not  Identified        Military  Coup  in  Nigeria   Nov-­‐93  

 30   -­‐5,64%   Not  Identified  

     Currency  Crisis  in  Turkey   Feb-­‐94   Mar-­‐94   28   -­‐5,52%   Not  Identified        Mexican  Peso  Crisis   Nov-­‐94  

 30   -­‐4,32%   Not  Identified  

     Asian  Financial  Crisis   Aug-­‐97     30   -­‐6,68%   Not  Identified        October  27th  Mini  Crash   Oct-­‐97  

 30   -­‐5,25%   Not  Identified  

     Russian   Financial   Crisis   and  LTCM  

Aug-­‐98    

30   -­‐13,32%   Jun-­‐98   Aug-­‐98   62   -­‐14,44%  

Greenspan   warns   of   stock  market  bubble  

Jan-­‐00    

30   -­‐5,72%   Not  Identified        

Dot  Com  Bubble  Burst   Apr-­‐00   Mar-­‐01   334   -­‐24,87%   Mar-­‐00   Mar-­‐01   356   -­‐33,17%  Enron   Aug-­‐01     30   -­‐4,78%  

May-­‐01   Sep-­‐01   123   -­‐30,55%  09/11   Sep-­‐01  

 30   -­‐8,80%  

Accounting  Scandal   Jun-­‐02   Sep-­‐02   92   -­‐23,24%  Mar-­‐02   Mar-­‐03   359   -­‐31,54%  

Anticipation  of  2nd  Gulf  War   Dec-­‐02   Feb-­‐03   62   -­‐9,28%  

Sub-­‐prime  Mortgage  Crisis   Nov-­‐07   Mar-­‐08   121   -­‐13,73%   Oct-­‐07   Jan-­‐08   83   -­‐18,59%  Credit   Crunch   and   Lehman  Bankruptcy   Jun-­‐08   Feb-­‐09   245   -­‐49,82%   May-­‐08   Mar-­‐09   295   -­‐74,44%  

Obama's  Bank  Speech   Jan-­‐10     30   -­‐4,11%   Not  Identified        Flash  Crash   May-­‐10     30   -­‐9,48%   Apr-­‐10   Jun-­‐10   53   -­‐16,91%  European   Sovereign   Debt  Crisis   Jul-­‐11   Sep-­‐11   62   -­‐16,52%   May-­‐11   Aug-­‐11   100   -­‐19,94%  

European   Sovereign   Debt  Crisis  Part  II  

May-­‐12    

30   -­‐8,54%   Not  Identified        

Source:  RPM  Risk  and  Portfolio  Management  AB,  DataStream  and  Own  Calculations  

   

Page 66: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 56  

Table  6:  Overlapping  Crises  

Markets  in  Crisis   Start   End   Stock   Bond  

Comm.  Agr.  

Comm.  Energy  

Comm.  Metals   FX  

4   31/08/87   29/09/87   x   x    

x    

x  4   03/01/90   27/04/90   x     x   x     x  4   30/06/98   28/08/98   x  

 x   x   x  

 4   12/11/98   01/12/98   x     x   x   x    4   31/03/00   07/04/00   x   x  

 x   x  

 4   26/10/04   03/11/04     x   x   x     x  5   14/07/08   30/10/08   x   x   x   x   x  

 4   31/10/08   05/12/08   x     x   x   x    4   26/07/11   09/08/11   x  

 x   x   x  

 Source:  DataStream  and  own  calculations  

Table  7:  Granger  Causality  Test  P-­‐Values  

 

Frequency   Equity   FI  Comm.  Agr.  

Comm.  Energy  

Comm.  Metals   TW  USD  

Equity  Weekly  

 0,71   0,92   0,89   0,09   0,33  

Monthly    

0,76   0,82   0,66   0,15   0,38  

Fixed  Income   Weekly   0,24    

0,76   0,28   0,58   0,39  Monthly   0,28  

 0,39   0,32   0,20   0,18  

Comm.  Agr.   Weekly   0,04   0,64    

0,18   0,23   0,03  Monthly   0,04   0,53  

 0,48   0,55   0,02  

Comm.  Metals  Weekly   0,19   0,60   0,12  

 0,58   0,60  

Monthly   0,17   0,50   0,08    

0,82   0,47  

Comm.  Energy   Weekly   0,69   0,89   0,74   0,18    

0,11  Monthly   0,50   0,89   0,79   0,44  

 0,06  

TW  USD   Weekly   0,32   0,76   0,84   0,47   0,21    Monthly   0,24   0,82   0,89   0,51   0,22    Source:  DataStream  and  own  estimations.  Figures  in  bold  reflect  significance  at  the  5%  level.  

   

Page 67: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  57  

Table  8:  Aggregate  CTA  Regime  Dependent  Returns  

Crisis  Definition   Aggregate   Trend-­‐Following  

Unconditional   3,40%   5,62%  Equity   1,68%   5,25%  Fixed  Income   3,30%   4,48%  Comm.  Agr.   1,31%   1,89%  Comm.  Energy   1,76%   3,35%  Comm.  Metals   -­‐7,76%   -­‐9,09%  TW  USD   7,60%   11,38%  Source:  RPM  Risk  and  Portfolio  Management  AB  and  own  calculations.  Annualized  returns  are  determined  under  the  assumption  of  260  trading  days.  

Table  9:  Regime  Dependent  Correlations  

    RPM  Aggregate   RPM  Trend-­‐Following  

    Full  Sample   Crisis   Full  Sample   Crisis  

Equity   0,00   -­‐0,28   -­‐0,02   -­‐0,32  Fixed  Income   0,15   0,00   0,18   0,07  Comm.  Agr.   0,08   0,05   0,07   0,06  Comm.  Energy   0,09   0,01   0,10   0,00  Comm.  Metals   0,19   0,09   0,17   0,10  TW  USD   -­‐0,19   -­‐0,38   -­‐0,16   -­‐0,35  

Source:  RPM  Risk  and  Portfolio  Management  AB  and  own  calculations  

   

Page 68: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 58  

Table  10:  Aggregate  CTA  HM  Model  

 

Aggregate   Trend-­‐Following   Aggregate   Trend-­‐Following  

Constant  -­‐0,00   0,00   -­‐0,00   0,00  (0,06)   (0,45)   (0,05)   (0,42)  

Equity  0,06   0,09   0,08   0,12  (0,02)   (0,01)   (0,00)   (0,00)  

Equity  *  D  -­‐0,17   -­‐0,27   -­‐0,07   -­‐0,14  (0,00)   (0,00)   (0,11)   (0,02)  

Fixed  Income  0,39   0,63   0,41   0,66  (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D  -­‐0,25   -­‐0,32   -­‐0,24   -­‐0,30  (0,02)   (0,03)   (0,03)   (0,05)  

Comm.  Agr.  0,01   0,02   0,01   0,02  (0,29)   (0,18)   (0,26)   (0,16)  

Comm.  Agr.  *  D  -­‐0,01   -­‐0,01   0,00   -­‐0,00  (0,73)   (0,62)   (0,92)   (0,99)  

Comm.  Energy  0,03   0,05   0,03   0,05  (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D  -­‐0,04   -­‐0,06   -­‐0,04   -­‐0,05  (0,01)   (0,01)   (0,02)   (0,04)  

Comm.  Metals  0,05   0,07   0,05   0,06  (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D  -­‐0,01   0,00   0,00   0,01  (0,84)   (0,94)   (1,00)   (0,78)  

TW  USD  -­‐0,01   0,03   -­‐0,01   0,02  (0,88)   (0,65)   (0,74)   (0,77)  

TW  USD  *  D  -­‐0,25   -­‐0,31   -­‐0,25   -­‐0,32  (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  VIX      -­‐0,48   -­‐0,66  

   (0,00)   (0,00)  

𝑅!     0,15   0,15   0,17   0,17  𝑅!"#!     0,15   0,15   0,16   0,17  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own   estimations.   Values   in   parenthesis   are   p-­‐values   and   significant   estimates   at   the   5%   level   of  significance   are   highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  

   

Page 69: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  59  

Table  11:  Sector  Regime  Dependent  Performance  

Crisis  Definition   Equity   Fixed  Income   Soft  Comm.  

  Aggr.   TF   Aggr.   TF   Aggr.   TF  Equity   -­‐2,39%   -­‐3,87%   7,05%   10,63%   0,65%   1,52%  Fixed  Income   2,48%   3,81%   -­‐0,49%   -­‐1,22%   0,37%   0,32%  Comm.  Agr.   0,21%   0,45%   2,51%   3,36%   0,05%   0,09%  Comm.  Energy   0,60%   1,46%   2,21%   2,50%   -­‐0,23%   -­‐0,16%  Comm.  Metals   -­‐3,55%   -­‐6,50%   3,66%   3,92%   -­‐1,03%   -­‐1,46%  TW  USD   0,79%   1,77%   1,80%   2,85%   0,16%   0,11%  

Crisis  Definition   Comm.  Energy   Comm.  Metals   TW  USD  

 Aggr.   TF   Aggr.   TF   Aggr.   TF  

Equity   -­‐7,99%   -­‐4,78%   -­‐0,01%   0,48%   -­‐1,49%   -­‐1,24%  Fixed  Income   0,80%   1,34%   0,91%   1,17%   1,00%   1,23%  Comm.  Agr.   -­‐1,01%   -­‐1,55%   -­‐0,13%   -­‐0,13%   0,55%   0,35%  Comm.  Energy   -­‐2,17%   -­‐3,52%   0,02%   0,25%   0,95%   1,61%  Comm.  Metals   -­‐0,66%   -­‐0,59%   -­‐2,91%   -­‐3,54%   -­‐2,90%   -­‐2,28%  TW  USD   -­‐0,88%   -­‐1,18%   0,99%   1,16%   4,85%   6,26%  Source:  RPM  Risk  and  Portfolio  Management  AB  and  own  calculations.  Annualized  returns  are  determined  under  the  assumption  of  260  trading  days.  Figures  in  bold  reflect  positive  returns  during  the  crisis  regime.  

   

Page 70: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 60  

Table  12:  Equity  and  Fixed  Income  Sector  HM  Model  

 

Equity   Fixed  Income  

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  (0,00)   (0,03)   (0,00)   (0,02)   (0,89)   (0,09)   (0,86)   (0,08)  

Equity   0,10   0,15   0,11   0,17   -­‐0,04   -­‐0,06   -­‐0,05   -­‐0,07  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  D   -­‐0,12   -­‐0,21   -­‐0,06   -­‐0,11   0,01   0,00   -­‐0,02   -­‐0,03  (0,00)   (0,00)   (0,01)   (0,00)   (0,47)   (0,74)   (0,06)   (0,01)  

Fixed  Income   -­‐0,01   -­‐0,02   0,00   0,00   0,26   0,49   0,25   0,48  (0,46)   (0,41)   (0,94)   (0,89)   (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D   0,01   0,04   0,02   0,05   -­‐0,27   -­‐0,20   -­‐0,27   -­‐0,20  (0,72)   (0,37)   (0,64)   (0,31)   (0,00)   (0,01)   (0,00)   (0,01)  

Comm.  Agr.   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,01   0,01   0,01   0,01  (0,32)   (0,29)   (0,35)   (0,32)   (0,00)   (0,01)   (0,00)   (0,01)  

Comm.  Agr.  *  D   -­‐0,00   -­‐0,01   0,00   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,01  (0,58)   (0,23)   (0,74)   (0,91)   (0,22)   (0,50)   (0,07)   (0,21)  

Comm.  Energy   0,01   0,00   0,01   0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,04)   (0,25)   (0,02)   (0,19)   (0,13)   (0,34)   (0,12)   (0,33)  

Comm.  Energy  *  D   -­‐0,00   0,00   0,00   0,01   -­‐0,00   0,00   -­‐0,00   -­‐0,00  (0,50)   (1,00)   (0,85)   (0,26)   (0,92)   (0,71)   (0,50)   (0,86)  

Comm.  Metals   0,01   0,01   0,00   0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,10)   (0,18)   (0,37)   (0,68)   (0,55)   (0,23)   (0,89)   (0,47)  

Comm.  Metals  *  D   0,01   0,02   0,01   0,03   -­‐0,00   -­‐0,00   -­‐0,01   -­‐0,01  (0,30)   (0,07)   (0,13)   (0,02)   (0,52)   (0,53)   (0,37)   (0,37)  

TW  USD   0,02   0,05   0,02   0,04   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02  (0,11)   (0,01)   (0,18)   (0,03)   (0,37)   (0,10)   (0,47)   (0,14)  

TW  USD  *  D   0,01   -­‐0,01   0,01   -­‐0,01   -­‐0,00   -­‐0,02   -­‐0,00   -­‐0,02  (0,56)   (0,84)   (0,61)   (0,70)   (0,75)   (0,40)   (0,80)   (0,44)  

Equity  *  VIX      

-­‐0,29   -­‐0,47      

0,13   0,18  

   (0,00)   (0,00)  

   (0,00)   (0,00)  

𝑅!     0,20   0,22   0,25   0,28   0,19   0,27   0,20   0,28  𝑅!"#!     0,19   0,22   0,25   0,28   0,18   0,27   0,20   0,28  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  

   

Page 71: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  61  

Table  13:  Soft  and  Energy  Commodities  Sector  HM  Model  

 

Soft  Commodities   Energy  Commodities  

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,01)   (0,00)   (0,01)  

Equity   0,00   0,00   0,00   0,00   -­‐0,00   -­‐0,00   0,00   0,00  (0,59)   (0,64)   (0,16)   (0,18)   (0,57)   (0,45)   (0,66)   (0,74)  

Equity  *  D   -­‐0,01   -­‐0,02   -­‐0,00   -­‐0,00   -­‐0,01   -­‐0,01   0,01   0,02  (0,00)   (0,00)   (0,58)   (0,63)   (0,15)   (0,30)   (0,23)   (0,10)  

Fixed  Income   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,01   0,03   0,03   0,03   0,04  (0,22)   (0,18)   (0,37)   (0,30)   (0,09)   (0,22)   (0,04)   (0,11)  

Fixed  Income  *  D   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,02   -­‐0,02   -­‐0,02   -­‐0,02  (0,67)   (0,73)   (0,72)   (0,78)   (0,46)   (0,60)   (0,52)   (0,67)  

Comm.  Agr.   0,01   0,01   0,01   0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  (0,06)   (0,02)   (0,06)   (0,02)   (0,08)   (0,03)   (0,08)   (0,03)  

Comm.  Agr.  *  D   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,00   0,01   0,02   0,02   0,02  (0,77)   (0,53)   (0,89)   (0,64)   (0,03)   (0,02)   (0,01)   (0,01)  

Comm.  Energy   0,00   0,00   0,00   0,00   0,03   0,04   0,03   0,04  (0,73)   (0,43)   (0,73)   (0,43)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,03   -­‐0,04   -­‐0,02   -­‐0,04  (0,03)   (0,01)   (0,06)   (0,02)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals   0,00   0,00   0,00   0,00   0,01   0,01   0,01   0,01  (0,15)   (0,24)   (0,26)   (0,39)   (0,03)   (0,01)   (0,06)   (0,03)  

Comm.  Metals  *  D   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,00   0,00   0,01  (0,35)   (0,54)   (0,43)   (0,63)   (0,83)   (0,69)   (0,71)   (0,57)  

TW  USD   0,01   0,01   0,01   0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  (0,03)   (0,03)   (0,04)   (0,04)   (0,45)   (0,50)   (0,35)   (0,39)  

TW  USD  *  D   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,02   0,03   0,02   0,03  (0,96)   (0,92)   (0,92)   (0,88)   (0,13)   (0,08)   (0,13)   (0,08)  

Equity  *  VIX      

-­‐0,05   -­‐0,07      

-­‐0,11   -­‐0,17  

   (0,00)   (0,00)  

   (0,00)   (0,00)  

𝑅!     0,03   0,03   0,04   0,04   0,08   0,09   0,09   0,10  𝑅!"#!     0,03   0,03   0,03   0,04   0,08   0,09   0,09   0,10  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  

   

Page 72: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 62  

Table  14:  Commodity  Metals  and  Currencies  Sector  HM  Model  

 

Metal  Commodities   Composite  Currencies  

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  (0,00)   (0,00)   (0,00)   (0,00)   (0,02)   (0,11)   (0,02)   (0,10)  

Equity   -­‐0,00   -­‐0,00   0,00   0,00   0,02   0,03   0,03   0,04  (0,41)   (0,75)   (0,99)   (0,69)   (0,03)   (0,01)   (0,00)   (0,00)  

Equity  *  D   -­‐0,01   -­‐0,01   0,00   0,00   -­‐0,03   -­‐0,05   0,00   -­‐0,01  (0,04)   (0,03)   (0,48)   (0,83)   (0,01)   (0,00)   (0,82)   (0,72)  

Fixed  Income   0,01   0,01   0,01   0,02   0,00   -­‐0,04   0,01   -­‐0,04  (0,27)   (0,29)   (0,14)   (0,18)   (0,98)   (0,14)   (0,71)   (0,24)  

Fixed  Income  *  D   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02   0,10   0,06   0,11   0,06  (0,46)   (0,24)   (0,51)   (0,27)   (0,02)   (0,31)   (0,02)   (0,28)  

Comm.  Agr.   0,00   0,00   0,00   0,00   -­‐0,00   0,00   -­‐0,00   0,00  (0,05)   (0,08)   (0,04)   (0,08)   (0,88)   (0,62)   (0,91)   (0,59)  

Comm.  Agr.  *  D   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,00  (0,20)   (0,17)   (0,34)   (0,28)   (0,50)   (0,32)   (0,84)   (0,58)  

Comm.  Energy   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  (0,01)   (0,01)   (0,01)   (0,01)   (0,72)   (0,43)   (0,72)   (0,42)  

Comm.  Energy  *  D   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,00   -­‐0,00   0,00  (0,00)   (0,00)   (0,00)   (0,00)   (0,40)   (0,72)   (0,71)   (0,96)  

Comm.  Metals   0,02   0,03   0,02   0,03   0,02   0,02   0,02   0,02  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02   0,00   0,01   0,01   0,01  (0,12)   (0,14)   (0,14)   (0,16)   (0,69)   (0,62)   (0,54)   (0,49)  

TW  USD   0,02   0,04   0,01   0,03   -­‐0,00   0,02   -­‐0,00   0,02  (0,02)   (0,00)   (0,03)   (0,00)   (0,92)   (0,45)   (0,85)   (0,50)  

TW  USD  *  D   -­‐0,05   -­‐0,07   -­‐0,05   -­‐0,07   -­‐0,22   -­‐0,25   -­‐0,22   -­‐0,25  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  VIX      

-­‐0,06   -­‐0,07      

-­‐0,17   -­‐0,20  

   (0,00)   (0,01)  

   (0,00)   (0,00)  

𝑅!     0,13   0,10   0,14   0,11   0,10   0,08   0,11   0,08  𝑅!"#!     0,13   0,10   0,13   0,11   0,10   0,07   0,11   0,08  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  

   

Page 73: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  63  

Table  15:  HM  Model  Aggregate  Robustness  to  Alternative  CTA  Index  

 

Newedge  CTA  Index  

 

Aggregate   Trend-­‐Following   Aggregate   Trend-­‐Following  

Constant   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,19)   (0,16)   (0,18)   (0,14)  

Equity   0,03   0,08   0,05   0,10  (0,22)   (0,05)   (0,02)   (0,00)  

Equity  *  D   -­‐0,15   -­‐0,30   -­‐0,06   -­‐0,17  (0,00)   (0,00)   (0,09)   (0,02)  

Fixed  Income   0,45   0,77   0,47   0,80  (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D   -­‐0,36   -­‐0,51   -­‐0,35   -­‐0,50  (0,00)   (0,02)   (0,00)   (0,02)  

Comm.  Agr.   0,02   0,03   0,02   0,03  (0,04)   (0,05)   (0,03)   (0,05)  

Comm.  Agr.  *  D   -­‐0,01   -­‐0,02   -­‐0,00   -­‐0,00  (0,48)   (0,57)   (0,83)   (0,89)  

Comm.  Energy   0,03   0,06   0,03   0,06  (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D   -­‐0,03   -­‐0,04   -­‐0,02   -­‐0,03  (0,07)   (0,11)   (0,16)   (0,22)  

Comm.  Metals   0,05   0,08   0,05   0,08  (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D   -­‐0,01   -­‐0,00   -­‐0,01   0,00  (0,50)   (0,91)   (0,63)   (0,94)  

TW  USD   0,04   0,04   0,04   0,03  (0,33)   (0,54)   (0,40)   (0,63)  

TW  USD  *  D   -­‐0,31   -­‐0,42   -­‐0,31   -­‐0,42  (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  VIX      

-­‐0,44   -­‐0,65  

   (0,00)   (0,00)  

𝑅!     0,15   0,15   0,16   0,16  𝑅!"#!     0,14   0,15   0,16   0,16  Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  10.  

   

Page 74: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 64  

Table  16:  HM  Model  Aggregate  Robustness  to  Daniel  and  Moskowitz  (2013)  Bear  Market  Identification  

 

 Newedge  CTA  Index      RPM  CTA  Index    

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  0,00   0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   -­‐0,00   0,00  

(0,44)   (0,67)   (0,97)   (0,76)   (1,00)   (0,23)   (0,36)   (0,79)  

Equity  0,05   0,12   0,06   0,14   0,06   0,11   0,08   0,13  

(0,05)   (0,00)   (0,01)   (0,00)   (0,02)   (0,00)   (0,00)   (0,00)  

Equity  *  D   -­‐0,15   -­‐0,30   -­‐0,06   -­‐0,16   -­‐0,17   -­‐0,24   -­‐0,03   -­‐0,09  

(0.00)   (0.00)   (0,10)   (0,01)   (0,00)   (0.00)   (0,48)   (0,10)  

Fixed  Income   0,56   0,97   0,59   1,02   0,39   0,78   0,55   0,84  

(0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)  

Fixed  Income  *  D  -­‐0,64   -­‐1,06   -­‐0,68   -­‐1,12   -­‐0,25   -­‐0,74   -­‐0,63   -­‐0,81  

(0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)  

Comm.  Agr.  0,02   0,04   0,02   0,04   0,01   0,02   0,02   0,03  

(0,05)   (0,03)   (0,01)   (0,01)   (0,22)   (0,09)   (0,08)   (0,02)  

Comm.  Agr.  *  D   -­‐0,01   -­‐0,04   -­‐0,02   -­‐0,05   -­‐0,01   -­‐0,03   -­‐0,02   -­‐0,04  

(0,46)   (0,23)   (0,19)   (0,08)   (0,47)   (0,25)   (0,19)   (0,08)  

Comm.  Energy   0,03   0,06   0,04   0,07   0,03   0,03   0,03   0,04  

(0,00)   (0,00)   (0,00)   (0.00)   (0,04)   (0,01)   (0,01)   (0,00)  

Comm.  Energy  *  D  -­‐0,02   -­‐0,03   -­‐0,03   -­‐0,04   -­‐0,04   -­‐0,02   -­‐0,02   -­‐0,03  

(0,20)   (0,18)   (0,06)   (0,06)   (0,46)   (0,43)   (0,19)   (0,15)  

Comm.  Metals  0,07   0,11   0,06   0,10   0,05   0,12   0,08   0,11  

(0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)  

Comm.  Metals  *  D   -­‐0,06   -­‐0,09   -­‐0,06   -­‐0,08   -­‐0,01   -­‐0,13   -­‐0,09   -­‐0,12  

(0,01)   (0,02)   (0,01)   (0,03)   (0,00)   (0,00)   (0,00)   (0,00)  

TW  USD   0,06   0,01   0,04   -­‐0,02   -­‐0,01   0,03   0,05   -­‐0,00  

(0,30)   (0,89)   (0,48)   (0,87)   (0,10)   (0,68)   (0,25)   (0,98)  

TW  USD  *  D  -­‐0,24   -­‐0,25   -­‐0,21   -­‐0,21   -­‐0,25   -­‐0,23   -­‐0,27   -­‐0,19  

(0,00)   (0,04)   (0,00)   (0,08)   (0.00)   (0,01)   (0.00)   (0,03)  

Equity  *  VIX      -­‐0,47   -­‐0,74  

   -­‐0,54   -­‐0,76  

   (0,00)   (0,00)  

   (0,00)   (0.00)  

𝑅!     0,16   0,15   0,18   0,19   0,18   0,17   0,20   0,20  𝑅!"#!     0,16   0,15   0,18   0,18   0,18   0,17   0,20   0,20  Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  10.  

   

Page 75: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  65  

Table  17:  HM  Model  Aggregate  Robustness  to  BMA  Indicator  

    Newedge  CTA  Index   RPM  CTA  Index  

    Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,07)   (0,08)   (0,05)   (0,06)   (0,02)   (0,28)   (0,01)   (0,21)  

Equity  0,02   0,04   0,04   0,08   0,04   0,06   0,07   0,10  (0,37)   (0,37)   (0,04)   (0,04)   (0,08)   (0,08)   (0,00)   (0,00)  

Equity  *  D  -­‐0,13   -­‐0,22   -­‐0,04   -­‐0,06   -­‐0,14   -­‐0,20   -­‐0,04   -­‐0,05  (0.00)   (0.00)   (0,22)   (0,34)   (0.00)   (0.00)   (0,35)   (0,38)  

Fixed  Income  0,43   0,74   0,46   0,78   0,37   0,63   0,40   0,67  (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)  

Fixed  Income  *  D  -­‐0,35   -­‐0,50   -­‐0,33   -­‐0,46   -­‐0,26   -­‐0,38   -­‐0,23   -­‐0,34  (0,00)   (0,02)   (0,01)   (0,04)   (0,02)   (0,01)   (0,05)   (0,03)  

Comm.  Agr.  0,03   0,04   0,03   0,05   0,02   0,03   0,02   0,03  (0,02)   (0,02)   (0,01)   (0,01)   (0,10)   (0,05)   (0,08)   (0,04)  

Comm.  Agr.  *  D  -­‐0,02   -­‐0,04   -­‐0,02   -­‐0,03   -­‐0,02   -­‐0,04   -­‐0,01   -­‐0,02  (0,15)   (0,15)   (0,34)   (0,33)   (0,24)   (0,15)   (0,48)   (0,35)  

Comm.  Energy  0,04   0,07   0,04   0,07   0,03   0,05   0,03   0,05  (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)  

Comm.  Energy  *  D  -­‐0,04   -­‐0,07   -­‐0,03   -­‐0,05   -­‐0,05   -­‐0,07   -­‐0,04   -­‐0,06  (0,02)   (0,02)   (0,05)   (0,05)   (0,00)   (0,00)   (0,01)   (0,01)  

Comm.  Metals  0,07   0,11   0,06   0,10   0,07   0,10   0,06   0,08  (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)   (0.00)  

Comm.  Metals  *  D  -­‐0,04   -­‐0,06   -­‐0,04   -­‐0,05   -­‐0,05   -­‐0,05   -­‐0,04   -­‐0,04  (0,06)   (0,15)   (0,08)   (0,21)   (0,05)   (0,15)   (0,07)   (0,21)  

TW  USD  0,04   0,01   0,05   0,03   -­‐0,02   -­‐0,01   -­‐0,01   0,01  (0,45)   (0,93)   (0,32)   (0,74)   (0,69)   (0,86)   (0,91)   (0,91)  

TW  USD  *  D  -­‐0,24   -­‐0,28   -­‐0,27   -­‐0,33   -­‐0,18   -­‐0,19   -­‐0,21   -­‐0,24  (0,00)   (0,02)   (0,00)   (0,01)   (0,01)   (0,04)   (0,00)   (0,01)  

Equity  *  VIX      -­‐0,49   -­‐0,84  

   -­‐0,54   -­‐0,81  

   (0,00)   (0,00)  

   (0,00)   (0,00)  

𝑅!     0,14   0,14   0,16   0,16   0,14   0,14   0,17   0,17  𝑅!"#!     0,14   0,13   0,16   0,15   0,14   0,13   0,16   0,17  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  10.  

   

Page 76: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 66  

Table  18:  HM  Model  Aggregate  Robustness  to  Chen  and  Liang  (2007)  Indicator  

   Newedge  CTA  Index      RPM  CTA  Index    

   Aggr.      TF      Aggr.      TF      Aggr.      TF      Aggr.      TF    

Constant  0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  (0,00)   (0,00)   (0,00)   (0,00)   (0,03)   (0,01)   (0,00)   (0,00)  

Equity  -­‐0,08   -­‐0,12   -­‐0,01   -­‐0,00   -­‐0,44   -­‐0,07   0,03   0,03  (0,00)   (0,00)   (0,74)   (0,93)   (0,04)   (0,01)   (0,27)   (0,31)  

Equity  *  D  0,02   0,03   0,08   0,13   0,00   0,02   0,06   0,11  (0,56)   (0,61)   (0,03)   (0,05)   (0,94)   (0,76)   (0,12)   (0,04)  

Fixed  Income  0,26   0,42   0,32   0,52   0,24   0,43   0,30   0,52  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D  0,07   0,24   0,06   0,21   0,06   0,09   0,04   0,06  (0,57)   (0,29)   (0,65)   (0,34)   (0,62)   (0,59)   (0,72)   (0,69)  

Comm.  Agr.  0,01   0,02   0,01   0,03   0,04   0,01   0,01   0,02  (0,50)   (0,40)   (0,28)   (0,22)   (0,75)   (0,54)   (0,47)   (0,29)  

Comm.  Agr.  *  D  0,01   0,01   0,01   0,01   0,00   -­‐0,00   0,01   0,00  (0,78)   (0,89)   (0,64)   (0,75)   (0,94)   (0,93)   (0,80)   (0,93)  

Comm.  Energy  0,02   0,03   0,02   0,04   0,01   0,02   0,02   0,03  (0,11)   (0,07)   (0,05)   (0,03)   (0,25)   (0,11)   (0,12)   (0,04)  

Comm.  Energy  *  D  -­‐0,00   0,01   0,00   0,01   -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,00  (0,98)   (0,81)   (0,83)   (0,63)   (0,71)   (0,66)   (0,92)   (0,88)  

Comm.  Metals  0,02   0,05   0,01   0,03   0,03   0,04   0,02   0,02  (0,06)   (0,04)   (0,30)   (0,20)   (0,01)   (0,05)   (0,07)   (0,29)  

Comm.  Metals  *  D  0,06   0,10   0,06   0,10   0,05   0,09   0,05   0,09  (0,01)   (0,01)   (0,01)   (0,01)   (0,02)   (0,00)   (0,01)   (0,00)  

TW  USD  -­‐0,10   -­‐0,21   -­‐0,09   -­‐0,19   -­‐0,17   -­‐0,20   -­‐0,16   -­‐0,18  (0,07)   (0,02)   (0,11)   (0,04)   (0,00)   (0,01)   (0,00)   (0,02)  

TW  USD  *  D  -­‐0,00   0,08   -­‐0,02   0,07   0,08   0,11   0,07   0,09  (0,95)   (0,52)   (0,84)   (0,62)   (0,23)   (0,28)   (0,31)   (0,36)  

Equity  *  VIX      -­‐0,65   -­‐1,10  

   -­‐0,70   -­‐1,04  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,08   0,09   0,14   0,15   0,08   0,09   0,15   0,16  𝑅!"#!     0,08   0,09   0,13   0,14   0,08   0,08   0,14   0,15  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  10.  

   

Page 77: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  67  

Table  19:  HM  Model  Aggregate  Robustness  to  the  Exclusion  of  the  Credit  Crunch  

 

 Newedge  CTA  Index      RPM  CTA  Index    

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,24)   (0,16)   (0,14)   (0,08)   (0,27)   (0,91)   (0,18)   (0,70)  

Equity   0,02   0,06   0,03   0,07   0,07   0,11   0,07   0,11  (0,45)   (0,28)   (0,35)   (0,20)   (0,03)   (0,03)   (0,02)   (0,02)  

Equity  *  D   -­‐0,20   -­‐0,42   -­‐0,13   -­‐0,27   -­‐0,18   -­‐0,32   -­‐0,13   -­‐0,23  (0,00)   (0,00)   (0,02)   (0,01)   (0,00)   (0,00)   (0,01)   (0,00)  

Fixed  Income   0,32   0,66   0,32   0,66   0,17   0,51   0,17   0,51  (0,01)   (0,01)   (0,01)   (0,01)   (0,09)   (0,00)   (0,09)   (0,00)  

Fixed  Income  *  D   -­‐0,30   -­‐0,50   -­‐0,32   -­‐0,53   -­‐0,18   -­‐0,30   -­‐0,19   -­‐0,32  (0,09)   (0,14)   (0,08)   (0,12)   (0,16)   (0,15)   (0,14)   (0,13)  

Comm.  Agr.   0,02   0,04   0,02   0,04   0,02   0,03   0,02   0,03  (0,05)   (0,04)   (0,05)   (0,04)   (0,14)   (0,05)   (0,15)   (0,06)  

Comm.  Agr.  *  D   0,01   0,02   0,02   0,03   0,00   0,01   0,01   0,02  (0,67)   (0,67)   (0,49)   (0,47)   (0,93)   (0,76)   (0,75)   (0,58)  

Comm.  Energy   0,05   0,09   0,05   0,09   0,04   0,06   0,04   0,06  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D   -­‐0,01   -­‐0,02   -­‐0,02   -­‐0,03   -­‐0,02   -­‐0,02   -­‐0,02   -­‐0,03  (0,56)   (0,56)   (0,41)   (0,39)   (0,20)   (0,36)   (0,12)   (0,23)  

Comm.  Metals   0,07   0,12   0,07   0,11   0,07   0,10   0,06   0,09  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D   0,01   0,02   0,01   0,02   0,04   0,06   0,04   0,06  (0,72)   (0,62)   (0,75)   (0,64)   (0,08)   (0,11)   (0,09)   (0,12)  

TW  USD   -­‐0,18   -­‐0,29   -­‐0,18   -­‐0,28   -­‐0,27   -­‐0,28   -­‐0,27   -­‐0,28  (0,02)   (0,03)   (0,02)   (0,04)   (0,00)   (0,00)   (0,00)   (0,01)  

TW  USD  *  D   -­‐0,19   -­‐0,25   -­‐0,18   -­‐0,23   -­‐0,09   -­‐0,10   -­‐0,08   -­‐0,09  (0,07)   (0,17)   (0,08)   (0,21)   (0,27)   (0,42)   (0,32)   (0,49)  

Equity  *  VIX      

-­‐0,71   -­‐1,48      

-­‐0,58   -­‐1,01  

   (0,04)   (0,01)  

   (0,02)   (0,02)  

𝑅!     0,22   0,22   0,23   0,23   0,26   0,23   0,26   0,24  𝑅!"#!     0,22   0,22   0,22   0,22   0,25   0,23   0,26   0,23  Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  10.  

   

Page 78: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 68  

Table  20:  HM  Model  Sectorial  Robustness  of  Equity  and  Fixed  Income  Sectors  to  Daniel  and  Moskowitz  (2013)  Bear  Market  Identification  

 

 Equity      Fixed  Income    

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,00   0,00   0,00  (0,28)   (0,91)   (0,01)   (0,09)   (0,42)   (0,03)   (0,23)   (0,01)  

Equity  0,11   0,18   0,12   0,20   -­‐0,05   -­‐0,07   -­‐0,05   -­‐0,08  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  D  -­‐0,11   -­‐0,22   -­‐0,05   -­‐0,13   0,01   0,02   -­‐0,01   0,00  (0,00)   (0,00)   (0,03)   (0,00)   (0,21)   (0,03)   (0,54)   (0,87)  

Fixed  Income  0,01   0,05   0,04   0,09   0,26   0,48   0,26   0,47  (0,51)   (0,06)   (0,04)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D  -­‐0,04   -­‐0,11   -­‐0,07   -­‐0,15   -­‐0,30   -­‐0,19   -­‐0,29   -­‐0,18  (0,26)   (0,02)   (0,08)   (0,00)   (0,00)   (0,01)   (0,00)   (0,02)  

Comm.  Agr.  -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,00   0,01   0,01   0,01   0,01  (0,10)   (0,06)   (0,46)   (0,34)   (0,00)   (0,00)   (0,01)   (0,01)  

Comm.  Agr.  *  D  0,01   0,02   0,01   0,01   -­‐0,01   -­‐0,00   -­‐0,00   -­‐0,00  (0,03)   (0,04)   (0,26)   (0,34)   (0,27)   (0,58)   (0,44)   (0,81)  

Comm.  Energy  -­‐0,00   -­‐0,01   0,00   0,00   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  (0,72)   (0,12)   (0,20)   (0,82)   (0,02)   (0,05)   (0,00)   (0,02)  

Comm.  Energy  *  D  0,01   0,02   0,01   0,01   0,00   0,01   0,00   0,01  (0,03)   (0,00)   (0,28)   (0,02)   (0,35)   (0,09)   (0,19)   (0,04)  

Comm.  Metals  0,01   0,01   0,00   0,00   0,00   -­‐0,00   0,00   -­‐0,00  (0,11)   (0,11)   (0,44)   (0,47)   (0,90)   (0,70)   (0,66)   (0,92)  

Comm.  Metals  *  D  0,01   0,02   0,01   0,02   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  (0,18)   (0,11)   (0,06)   (0,03)   (0,18)   (0,21)   (0,13)   (0,16)  

TW  USD  0,02   0,01   0,00   -­‐0,01   -­‐0,03   -­‐0,04   -­‐0,03   -­‐0,03  (0,30)   (0,68)   (0,81)   (0,70)   (0,03)   (0,09)   (0,05)   (0,14)  

TW  USD  *  D  0,00   0,04   0,02   0,06   0,02   -­‐0,00   0,02   -­‐0,01  (0,99)   (0,18)   (0,35)   (0,02)   (0,18)   (0,99)   (0,29)   (0,80)  

Equity  *  VIX      -­‐0,33   -­‐0,48  

   0,09   0,11  

   (0,00)   (0,00)  

   (0,00)   (0,00)  

𝑅!     0,17   0,22   0,24   0,30   0,20   0,28   0,20   0,28  𝑅!"#!     0,16   0,22   0,24   0,29   0,19   0,27   0,20   0,28  Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  12.  

   

Page 79: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  69  

Table  21:  HM  Model  Sectorial  Robustness  of  Soft  Commodities  and  Commodities  Energy  Sectors  to  Daniel  and  Moskowitz  (2013)  Bear  Market  Identification  

 

Soft  Commodities   Energy  Commodities  

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,04)   (0,00)   (0,01)  

Equity  -­‐0,00   -­‐0,00   0,00   0,00   -­‐0,00   -­‐0,01   0,00   -­‐0,00  (0,67)   (0,77)   (0,92)   (0,79)   (0,74)   (0,43)   (0,80)   (0,89)  

Equity  *  D  -­‐0,01   -­‐0,01   0,01   0,01   -­‐0,01   -­‐0,00   0,02   0,03  (0,10)   (0,06)   (0,18)   (0,23)   (0,40)   (0,83)   (0,06)   (0,01)  

Fixed  Income  -­‐0,02   -­‐0,03   -­‐0,02   -­‐0,03   -­‐0,01   -­‐0,03   -­‐0,00   -­‐0,02  (0,01)   (0,01)   (0,03)   (0,05)   (0,46)   (0,15)   (0,93)   (0,40)  

Fixed  Income  *  D  0,03   0,04   0,03   0,03   0,04   0,07   0,03   0,06  (0,01)   (0,03)   (0,04)   (0,09)   (0,12)   (0,05)   (0,25)   (0,12)  

Comm.  Agr.  0,02   0,03   0,02   0,03   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,00  (0,00)   (0,00)   (0,00)   (0,00)   (0,41)   (0,21)   (0,66)   (0,40)  

Comm.  Agr.  *  D  -­‐0,04   -­‐0,06   -­‐0,04   -­‐0,07   0,01   0,01   0,00   0,01  (0,00)   (0,00)   (0,00)   (0,00)   (0,28)   (0,17)   (0,44)   (0,30)  

Comm.  Energy  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,03   0,05   0,03   0,05  (0,30)   (0,27)   (0,73)   (0,64)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D  -­‐0,00   0,00   -­‐0,00   -­‐0,00   -­‐0,04   -­‐0,07   -­‐0,05   -­‐0,07  (0,83)   (0,97)   (0,51)   (0,69)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  0,01   0,01   0,01   0,01   0,01   0,02   0,01   0,02  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D  -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02  (0,00)   (0,00)   (0,00)   (0,00)   (0,04)   (0,04)   (0,05)   (0,05)  

TW  USD  0,01   0,01   0,01   0,01   0,01   0,02   0,01   0,01  (0,06)   (0,19)   (0,09)   (0,30)   (0,36)   (0,38)   (0,60)   (0,64)  

TW  USD  *  D  -­‐0,01   -­‐0,00   -­‐0,00   0,00   -­‐0,02   -­‐0,02   -­‐0,01   -­‐0,01  (0,35)   (0,70)   (0,55)   (1,00)   (0,23)   (0,31)   (0,43)   (0,57)  

Equity  *  VIX      -­‐0,06   -­‐0,09  

   -­‐0,12   -­‐0,18  

   (0,00)   (0,00)  

   (0,00)   (0,00)  

𝑅!     0,13   0,14   0,14   0,16   0,15   0,16   0,16   0,17  𝑅!"#!     0,13   0,14   0,14   0,15   0,15   0,15   0,16   0,17  Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  13.      

Page 80: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 70  

Table  22:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  Sectors  to  Daniel  and  Moskowitz  (2013)  Bear  Market  Identification  

 

Metal  Commodities   Composite  Currencies  

 

Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,00)   (0,01)   (0,00)   (0,00)   (0,11)   (0,44)   (0,05)   (0,29)  

Equity  -­‐0,02   -­‐0,02   -­‐0,02   -­‐0,02   0,04   0,06   0,04   0,06  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  D  0,02   0,03   0,04   0,05   -­‐0,05   -­‐0,08   -­‐0,03   -­‐0,06  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,01)   (0,00)  

Fixed  Income  0,01   0,02   0,02   0,03   0,10   0,08   0,10   0,09  (0,11)   (0,13)   (0,01)   (0,02)   (0,00)   (0,01)   (0,00)   (0,00)  

Fixed  Income  *  D  -­‐0,03   -­‐0,05   -­‐0,03   -­‐0,06   -­‐0,12   -­‐0,23   -­‐0,12   -­‐0,24  (0,03)   (0,01)   (0,01)   (0,00)   (0,01)   (0,00)   (0,01)   (0,00)  

Comm.  Agr.  0,00   0,00   0,00   0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00  (0,36)   (0,38)   (0,13)   (0,15)   (0,41)   (0,89)   (0,54)   (0,93)  

Comm.  Agr.  *  D  0,00   0,00   0,00   0,00   0,00   0,00   0,00   -­‐0,00  (0,44)   (0,61)   (0,75)   (0,94)   (0,52)   (0,97)   (0,68)   (0,85)  

Comm.  Energy  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,01   0,00   0,01  (0,15)   (0,03)   (0,61)   (0,18)   (0,67)   (0,23)   (0,47)   (0,14)  

Comm.  Energy  *  D  0,01   0,01   0,01   0,01   0,00   -­‐0,00   -­‐0,00   -­‐0,00  (0,00)   (0,00)   (0,01)   (0,00)   (0,98)   (0,73)   (0,81)   (0,55)  

Comm.  Metals  0,04   0,06   0,04   0,06   0,02   0,02   0,02   0,02  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D  -­‐0,06   -­‐0,09   -­‐0,06   -­‐0,09   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  (0,00)   (0,00)   (0,00)   (0,00)   (0,12)   (0,50)   (0,14)   (0,55)  

TW  USD  0,02   0,03   0,02   0,03   0,09   0,08   0,09   0,07  (0,00)   (0,01)   (0,02)   (0,02)   (0,00)   (0,03)   (0,00)   (0,05)  

TW  USD  *  D  -­‐0,05   -­‐0,05   -­‐0,04   -­‐0,05   -­‐0,27   -­‐0,23   -­‐0,26   -­‐0,22  (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  VIX      -­‐0,09   -­‐0,12  

   -­‐0,09   -­‐0,11  

   (0,00)   (0,00)  

   (0,01)   (0,01)  

𝑅!     0,25   0,22   0,27   0,23   0,14   0,09   0,14   0,09  𝑅!"#!     0,24   0,21   0,27   0,23   0,14   0,09   0,14   0,09  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values   in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%   level   of   significance   are   highlighted   in   bold.   All   models   employ   Newey-­‐West  heteroskedasticity   and   autocorrelation   consistent   standard   errors   that   are   valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  14.  

   

Page 81: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  71  

Table  23:  HM  Model  Sectorial  Robustness  of  Equity  and  Fixed  Income  Sectors  to  BMA  Indicator  

   Equity      Fixed  Income    

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,00   0,00   0,00   0,00  

(0,00)   (0,02)   (0,00)   (0,01)   (0,92)   (0,09)   (0,85)   (0,08)  

Equity  0,12   0,16   0,13   0,18   -­‐0,05   -­‐0,06   -­‐0,05   -­‐0,07  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  D  -­‐0,14   -­‐0,21   -­‐0,09   -­‐0,12   0,01   0,00   -­‐0,01   -­‐0,03  

(0,00)   (0,00)   (0,00)   (0,00)   (0,21)   (0,86)   (0,24)   (0,01)  

Fixed  Income  -­‐0,02   -­‐0,03   -­‐0,00   0,00   0,22   0,47   0,22   0,46  

(0,30)   (0,25)   (0,80)   (0,85)   (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D  0,00   0,02   0,01   0,05   -­‐0,17   -­‐0,14   -­‐0,18   -­‐0,15  

(0,99)   (0,57)   (0,70)   (0,30)   (0,00)   (0,06)   (0,00)   (0,05)  

Comm.  Agr.  -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,01   0,01   0,01   0,01  

(0,12)   (0,27)   (0,15)   (0,33)   (0,00)   (0,01)   (0,00)   (0,01)  

Comm.  Agr.  *  D  -­‐0,00   -­‐0,01   0,00   0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,01  

(0,94)   (0,16)   (0,44)   (0,81)   (0,21)   (0,49)   (0,09)   (0,24)  

Comm.  Energy  0,00   0,00   0,00   0,00   0,00   -­‐0,00   -­‐0,00   0,00  

(0,07)   (0,32)   (0,04)   (0,28)   (0,17)   (0,48)   (0,18)   (0,50)  

Comm.  Energy  *  D  0,00   0,00   0,00   0,01   0,00   0,00   -­‐0,00   0,00  

(0,80)   (0,81)   (0,46)   (0,12)   (0,74)   (0,90)   (0,35)   (0,62)  

Comm.  Metals  0,00   0,01   -­‐0,00   0,00   0,00   -­‐0,00   0,00   0,00  

(0,26)   (0,13)   (1,00)   (0,90)   (0,96)   (0,44)   (0,56)   (0,84)  

Comm.  Metals  *  D  0,02   0,03   0,02   0,03   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  

(0,01)   (0,01)   (0,00)   (0,00)   (0,17)   (0,26)   (0,11)   (0,17)  

TW  USD  0,02   0,04   0,03   0,05   0,00   -­‐0,02   -­‐0,00   -­‐0,03  

(0,15)   (0,08)   (0,06)   (0,02)   (0,99)   (0,14)   (0,81)   (0,08)  

TW  USD  *  D  -­‐0,00   -­‐0,01   -­‐0,02   -­‐0,03   -­‐0,02   -­‐0,01   -­‐0,01   0,00  

(0,94)   (0,82)   (0,34)   (0,19)   (0,20)   (0,64)   (0,40)   (0,98)  

Equity  *  VIX      -­‐0,26   -­‐0,49  

   0,12   0,17  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,23   0,21   0,28   0,29   0,17   0,27   0,18   0,28  

𝑅!"#!     0,23   0,21   0,28   0,29   0,17   0,27   0,18   0,28  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of   significance   are   highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and  autocorrelation   consistent   standard   errors   that   are   valid   asymptotically.   Underlined   p-­‐values  reflect  inconsistency  with  the  results  from  table  12.  

   

Page 82: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 72  

Table  24:  HM  Model  Sectorial  Robustness  of  Soft  Commodities  and  Commodities  Energy  Sectors  to  BMA  Indicator  

  Soft  Commodities   Energy  Commodities  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,01)   (0,00)   (0,01)  

Equity  -­‐0,00   -­‐0,00   0,00   0,00   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,01  

(0,82)   (0,47)   (0,46)   (0,73)   (0,04)   (0,01)   (0,33)   (0,13)  

Equity  *  D  -­‐0,01   -­‐0,01   0,00   0,01   0,00   0,01   0,03   0,05  

(0,04)   (0,13)   (0,57)   (0,24)   (0,62)   (0,21)   (0,00)   (0,00)  

Fixed  Income  -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   0,03   0,03   0,04   0,04  

(0,27)   (0,20)   (0,46)   (0,37)   (0,04)   (0,10)   (0,01)   (0,03)  

Fixed  Income  *  D  -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,01   -­‐0,03   -­‐0,04   -­‐0,02   -­‐0,03  

(0,44)   (0,52)   (0,54)   (0,63)   (0,23)   (0,31)   (0,34)   (0,44)  

Comm.  Agr.  0,01   0,02   0,01   0,02   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01  

(0,01)   (0,00)   (0,01)   (0,00)   (0,28)   (0,16)   (0,29)   (0,17)  

Comm.  Agr.  *  D  -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   0,01   0,01   0,01   0,02  

(0,19)   (0,12)   (0,25)   (0,16)   (0,19)   (0,13)   (0,10)   (0,06)  

Comm.  Energy  0,00   0,00   0,00   0,00   0,03   0,04   0,03   0,04  

(0,72)   (0,42)   (0,73)   (0,42)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D  -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,03   -­‐0,05   -­‐0,03   -­‐0,05  

(0,04)   (0,01)   (0,09)   (0,02)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  0,00   0,01   0,00   0,00   0,01   0,01   0,01   0,01  

(0,03)   (0,04)   (0,08)   (0,12)   (0,01)   (0,00)   (0,02)   (0,01)  

Comm.  Metals  *  D  -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,00   0,00   -­‐0,00   0,00  

(0,10)   (0,14)   (0,14)   (0,19)   (0,74)   (0,97)   (0,88)   (0,82)  

TW  USD  0,01   0,02   0,01   0,02   -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,01  

(0,03)   (0,04)   (0,02)   (0,02)   (0,27)   (0,22)   (0,40)   (0,34)  

TW  USD  *  D  -­‐0,00   -­‐0,01   -­‐0,01   -­‐0,01   0,02   0,04   0,02   0,03  

(0,61)   (0,59)   (0,35)   (0,33)   (0,12)   (0,05)   (0,24)   (0,11)  

Equity  *  VIX      -­‐0,05   -­‐0,09  

   -­‐0,12   -­‐0,18  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,03   0,04   0,04   0,05   0,09   0,10   0,10   0,12  

𝑅!"#!     0,03   0,03   0,04   0,05   0,09   0,10   0,10   0,11  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  13.  

Page 83: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  73  

Table  25:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  Sectors  to  BMA  Indicator  

  Metal  Commodities   Composite  Currencies  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,05)   (0,00)   (0,04)  

Equity  -­‐0,00   -­‐0,00   0,00   0,00   0,01   0,01   0,02   0,02  

(0,46)   (0,77)   (1,00)   (0,72)   (0,35)   (0,51)   (0,03)   (0,07)  

Equity  *  D  -­‐0,01   -­‐0,01   0,00   -­‐0,00   -­‐0,01   -­‐0,01   0,03   0,04  

(0,05)   (0,04)   (0,87)   (0,87)   (0,31)   (0,59)   (0,03)   (0,02)  

Fixed  Income  0,01   0,01   0,01   0,02   0,03   -­‐0,01   0,05   0,00  

(0,17)   (0,29)   (0,08)   (0,18)   (0,21)   (0,75)   (0,09)   (0,92)  

Fixed  Income  *  D  -­‐0,02   -­‐0,03   -­‐0,02   -­‐0,02   0,00   -­‐0,05   0,01   -­‐0,03  

(0,24)   (0,22)   (0,32)   (0,28)   (0,96)   (0,39)   (0,78)   (0,55)  

Comm.  Agr.  0,01   0,01   0,01   0,01   0,00   0,01   0,00   0,01  

(0,00)   (0,01)   (0,00)   (0,01)   (0,68)   (0,39)   (0,61)   (0,33)  

Comm.  Agr.  *  D  -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  

(0,02)   (0,02)   (0,04)   (0,03)   (0,13)   (0,11)   (0,30)   (0,27)  

Comm.  Energy  0,00   0,00   0,00   0,00   0,00   0,01   0,00   0,01  

(0,03)   (0,02)   (0,02)   (0,02)   (0,45)   (0,22)   (0,46)   (0,21)  

Comm.  Energy  *  D  -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,00  

(0,01)   (0,00)   (0,02)   (0,00)   (0,26)   (0,37)   (0,59)   (0,76)  

Comm.  Metals  0,03   0,04   0,03   0,04   0,03   0,03   0,02   0,03  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Metals  *  D  -­‐0,03   -­‐0,04   -­‐0,03   -­‐0,04   -­‐0,02   -­‐0,02   -­‐0,02   -­‐0,02  

(0,00)   (0,00)   (0,00)   (0,00)   (0,02)   (0,07)   (0,03)   (0,11)  

TW  USD  0,01   0,03   0,01   0,03   -­‐0,01   0,02   -­‐0,00   0,03  

(0,30)   (0,01)   (0,22)   (0,01)   (0,85)   (0,56)   (0,99)   (0,44)  

TW  USD  *  D  -­‐0,02   -­‐0,04   -­‐0,03   -­‐0,05   -­‐0,16   -­‐0,19   -­‐0,17   -­‐0,21  

(0,03)   (0,01)   (0,01)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  VIX      -­‐0,06   -­‐0,07  

   -­‐0,22   -­‐0,29  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,15   0,12   0,16   0,13   0,09   0,06   0,11   0,08  

𝑅!!"!     0,15   0,12   0,15   0,12   0,09   0,06   0,10   0,08  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  14.  

Page 84: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 74  

Table  26:  HM  Model  Sectorial  Robustness  of  Equity  and  Fixed  Income  Sectors  to  Chen  and  Liang  (2007)  Indicator  

   Equity     Fixed  Income  

   Aggr.      TF      Aggr.      TF      Aggr.      TF      Aggr.      TF    

 Constant  -­‐0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  

(0,56)   (0,78)   (0,78)   (0,13)   (0,05)   (0,00)   (0,09)   (0,00)  

Equity  0,05   0,04   0,09   0,11   -­‐0,05   -­‐0,06   -­‐0,06   -­‐0,07  

(0,00)   (0,03)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  D  -­‐0,02   0,01   0,01   0,07   0,00   -­‐0,01   -­‐0,00   -­‐0,02  

(0,14)   (0,78)   (0,44)   (0,00)   (0,66)   (0,52)   (0,66)   (0,15)  

Fixed  Income  -­‐0,04   -­‐0,06   -­‐0,01   0,00   0,14   0,38   0,13   0,37  

(0,09)   (0,14)   (0,72)   (0,97)   (0,00)   (0,00)   (0,00)   (0,00)  

Fixed  Income  *  D  0,05   0,07   0,04   0,05   0,03   0,06   0,04   0,06  

(0,27)   (0,27)   (0,37)   (0,34)   (0,45)   (0,39)   (0,41)   (0,36)  

Comm.  Agr.  -­‐0,00   -­‐0,00   0,00   0,00   0,01   0,00   0,00   0,00  

(0,86)   (0,96)   (0,59)   (0,42)   (0,16)   (0,41)   (0,21)   (0,51)  

Comm.  Agr.  *  D  -­‐0,01   -­‐0,02   -­‐0,01   0,01   0,00   0,01   0,00   0,01  

(0,34)   (0,19)   (0,43)   (0,23)   (0,59)   (0,20)   (0,65)   (0,23)  

Comm.  Energy  0,00   0,00   0,00   0,00   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01  

(0,51)   (0,88)   (0,09)   (0,20)   (0,13)   (0,19)   (0,09)   (0,14)  

Comm.  Energy  *  D  -­‐0,00   -­‐0,00   0,00   0,00   0,00   0,01   -­‐0,00   0,01  

(0,92)   (0,87)   (0,68)   (0,68)   (0,93)   (0,48)   (0,99)   (0,54)  

Comm.  Metals  0,01   0,02   0,01   0,01   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01  

(0,00)   (0,00)   (0,13)   (0,08)   (0,34)   (0,05)   (0,53)   (0,10)  

Comm.  Metals  *  D  0,00   0,00   0,00   0,00   0,00   0,01   0,00   0,01  

(0,63)   (0,80)   (0,66)   (0,88)   (0,70)   (0,23)   (0,67)   (0,22)  

TW  USD  -­‐0,00   0,02   0,01   0,03   -­‐0,01   -­‐0,03   -­‐0,01   -­‐0,04  

(0,97)   (0,45)   (0,71)   (0,22)   (0,67)   (0,12)   (0,59)   (0,10)  

TW  USD  *  D  0,02   0,00   0,01   -­‐0,01   -­‐0,01   0,01   -­‐0,01   0,01  

(0,36)   (0,99)   (0,53)   (0,73)   (0,73   0,87   0,77   0,82  

Equity  *  VIX      -­‐0,40   -­‐0,67  

   0,09   0,11  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,07   0,06   0,23   0,26   0,16   0,27   0,16   0,27  

𝑅!"#!     0,07   0,05   0,23   0,26   0,15   0,27   0,16   0,27  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and   autocorrelation   consistent  standard   errors   that   are   valid   asymptotically.   Underlined   p-­‐values   reflect   inconsistency   with   the   results  from  table  12.  

Page 85: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  75  

Table  27:  HM  Model  Sectorial  Robustness  of  Soft  Commodities  and  Commodities  Energy  Sectors  to  Chen  and  Liang  (2007)  Indicator  

 Soft  Commodities   Energy  Commodities  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,00  

(0,09)   (0,31)   (0,12)   (0,41)   (0,79)   (0,79)   (0,96)   (0,99)  

Equity  -­‐0,00   -­‐0,00   0,00   0,01   -­‐0,01   -­‐0,01   0,01   0,01  

(0,41)   (0,36)   (0,15)   (0,17)   (0,17)   (0,18)   (0,28)   (0,32)  

Equity  *  D  -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,00   -­‐0,01   -­‐0,01   0,00   0,01  

(0,14)   (0,18)   (0,76)   (0,85)   (0,39)   (0,58)   (0,77)   (0,59)  

Fixed  Income  0,01   0,01   0,01   0,02   0,04   0,05   0,05   0,07  

(0,52)   (0,55)   (0,27)   (0,28)   (0,08)   (0,11)   (0,02)   (0,03)  

Fixed  Income  *  D  -­‐0,04   -­‐0,06   -­‐0,04   -­‐0,07   -­‐0,05   -­‐0,07   -­‐0,05   -­‐0,08  

(0,04)   (0,04)   (0,03)   (0,03)   (0,16)   (0,13)   (0,12)   (0,10)  

Comm.  Agr.  0,00   0,00   0,00   0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  

(0,52)   (0,47)   (0,45)   (0,40)   (0,44)   (0,47)   (0,57)   (0,61)  

Comm.  Agr.  *  D  0,01   0,01   0,01   0,01   0,00   0,00   0,01   0,01  

(0,27)   (0,21)   (0,24)   (0,18)   (0,52)   (0,70)   (0,44)   (0,62)  

Comm.  Energy  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,02   0,03   0,02   0,03  

(0,08)   (0,18)   (0,13)   (0,28)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D  0,00   0,00   0,00   0,00   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01  

(0,47)   (0,84)   (0,36)   (0,69)   (0,77)   (0,52)   (0,86)   (0,59)  

Comm.  Metals  0,00   0,00   0,00   0,00   -­‐0,00   0,00   -­‐0,00   0,00  

(0,52)   (0,43)   (0,85)   (0,73)   (0,91)   (0,66)   (0,56)   (0,99)  

Comm.  Metals  *  D  0,00   -­‐0,00   0,00   -­‐0,00   0,02   0,02   0,02   0,02  

(0,79)   (0,95)   (0,82)   (0,92)   (0,01)   (0,02)   (0,01)   (0,02)  

TW  USD  0,00   0,00   0,01   0,00   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  

(0,50)   (0,75)   (0,40)   (0,63)   (0,51)   (0,49)   (0,62)   (0,60)  

TW  USD  *  D  0,01   0,01   0,00   0,01   0,01   0,02   0,01   0,02  

(0,58)   (0,38)   (0,63)   (0,43)   (0,54)   (0,39)   (0,60)   (0,44)  

Stocks  *  VIX      -­‐0,06   -­‐0,09  

   -­‐0,12   -­‐0,16  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,02   0,02   0,04   0,04   0,05   0,06   0,07   0,08  

𝑅!"#!     0,02   0,02   0,03   0,04   0,05   0,05   0,07   0,07  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of   significance   are   highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and  autocorrelation   consistent   standard   errors   that   are   valid   asymptotically.   Underlined   p-­‐values  reflect  inconsistency  with  the  results  from  table  13.  

Page 86: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 76  

Table  28:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  Sectors  to  Chen  and  Liang  (2007)  Indicator  

 Metal  Commodities   Composite  Currencies  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00  

(0,77)   (0,90)   (0,99)   (0,64)   (0,08)   (0,02)   (0,02)   (0,00)  

Equity  -­‐0,01   -­‐0,01   0,00   0,00   -­‐0,01   -­‐0,02   0,01   0,01  

(0,03)   (0,06)   (0,67)   (0,61)   (0,12)   (0,08)   (0,52)   (0,54)  

Equity  *  D  -­‐0,01   -­‐0,01   0,00   0,00   0,02   0,03   0,04   0,06  

(0,30)   (0,40)   (0,79)   (0,72)   (0,16)   (0,09)   (0,02)   (0,01)  

Fixed  Income  0,01   -­‐0,00   0,01   0,01   0,05   -­‐0,02   0,07   0,01  

(0,68)   (0,81)   (0,29)   (0,77)   (0,15)   (0,74)   (0,04)   (0,86)  

Fixed  Income  *  D  -­‐0,01   0,01   -­‐0,01   0,00   -­‐0,03   -­‐0,02   -­‐0,03   -­‐0,02  

(0,75)   (0,84)   (0,67)   (0,91)   (0,61)   (0,81)   (0,53)   (0,73)  

Comm.  Agr.  0,00   0,00   0,00   0,01   -­‐0,00   0,00   -­‐0,00   0,00  

(0,14)   (0,19)   (0,08)   (0,12)   (0,47)   (0,93)   (0,64)   (0,73)  

Comm.  Agr.  *  D  -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,00   -­‐0,01   0,00   -­‐0,00  

(0,19)   (0,21)   (0,20)   (0,22)   (0,99)   (0,62)   (0,91)   (0,69)  

Comm.  Energy  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   0,00   0,00  

(0,64)   (0,61)   (0,88)   (0,83)   (0,87)   (0,58)   (0,90)   (0,41)  

Comm.  Energy  *  D  0,00   -­‐0,00   0,00   0,00   -­‐0,00   -­‐0,00   0,00   -­‐0,00  

(0,81)   (1,00)   (0,67)   (0,87)   (0,92)   (0,73)   (0,93)   (0,86)  

Comm.  Metals  0,01   0,02   0,01   0,01   0,01   0,00   0,00   -­‐0,00  

(0,00)   (0,01)   (0,00)   (0,02)   (0,20)   (0,58)   (0,49)   (0,99)  

Comm.  Metals  *  D  0,02   0,02   0,02   0,02   0,02   0,04   0,02   0,04  

(0,02)   (0,02)   (0,02)   (0,02)   (0,02)   (0,00)   (0,02)   (0,00)  

TW  USD  -­‐0,01   0,00   -­‐0,01   0,00   -­‐0,10   -­‐0,08   -­‐0,09   -­‐0,08  

(0,33)   (0,86)   (0,42)   (0,76)   (0,00)   (0,03)   (0,00)   (0,04)  

TW  USD  *  D  0,01   0,00   0,00   0,00   0,00   -­‐0,00   0,00   -­‐0,01  

(0,73)   (0,93)   (0,80)   (1,00)   (0,92)   (0,96)   (0,99)   (0,89)  

Equity  *  VIX       -­‐0,08   -­‐0,11       -­‐0,21   -­‐0,26  

    (0,00)   (0,00)       (0,00)   (0,00)  

𝑅!     0,08   0,06   0,11   0,08   0,06   0,04   0,08   0,06  

𝑅!"#!     0,08   0,05   0,10   0,07   0,06   0,04   0,08   0,06  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of   significance   are   highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and  autocorrelation   consistent   standard   errors   that   are   valid   asymptotically.   Underlined   p-­‐values  reflect  inconsistency  with  the  results  from  table  14.  

Page 87: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  77  

Table  29:  HM  Model  Sectorial  Robustness  of  Equity  and  Fixed  Income  Sectors  to  the  Exclusion  of  the  Credit  Crunch  

   Equity     Fixed  Income  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00   -­‐0,00   0,00  

(0,00)   (0,09)   (0,00)   (0,00)   (0,13)   (0,84)   (0,16)   (0,73)  

Equity  0,07   0,13   0,07   0,14   -­‐0,03   -­‐0,04   -­‐0,03   -­‐0,04  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,00)  

Equity  *  D  -­‐0,10   -­‐0,20   -­‐0,03   -­‐0,07   -­‐0,03   -­‐0,03   -­‐0,04   -­‐0,05  

(0,00)   (0,00)   (0,11)   (0,03)   (0,02)   (0,06)   (0,01)   (0,01)  

Fixed  Income  -­‐0,01   -­‐0,00   -­‐0,01   0,00   0,13   0,47   0,13   0,47  

(0,40)   (0,89)   (0,47)   (0,99)   (0,02)   (0,00)   (0,02)   (0,00)  

Fixed  Income  *  D  0,04   0,05   0,02   0,02   -­‐0,26   -­‐0,24   -­‐0,26   -­‐0,23  

(0,16)   (0,25)   (0,31)   (0,53)   (0,00)   (0,03)   (0,00)   (0,03)  

Comm.  Agr.  -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   0,00   0,01   0,00   0,01  

(0,27)   (0,36)   (0,16)   (0,23)   (0,36)   (0,35)   (0,36)   (0,35)  

Comm.  Agr.  *  D  -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,01   -­‐0,01   0,00   -­‐0,01   0,00  

(0,25)   (0,22)   (0,47)   (0,51)   (0,43)   (0,86)   (0,39)   (0,97)  

Comm.  Energy  0,00   0,00   0,00   0,00   0,00   -­‐0,00   0,00   -­‐0,00  

(0,46)   (0,79)   (0,23)   (0,45)   (0,97)   (0,92)   (0,99)   (0,88)  

Comm.  Energy  *  D  0,01   0,01   0,00   0,00   0,00   0,00   0,00   0,01  

(0,08)   (0,09)   (0,36)   (0,37)   (0,73)   (0,57)   (0,66)   (0,48)  

Comm.  Metals  0,00   0,01   0,00   0,01   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01  

(0,47)   (0,12)   (0,93)   (0,30)   (0,28)   (0,20)   (0,30)   (0,24)  

Comm.  Metals  *  D  0,01   0,02   0,01   0,02   0,01   0,00   0,01   0,00  

(0,40)   (0,11)   (0,40)   (0,09)   (0,35)   (0,78)   (0,35)   (0,76)  

TW  USD  0,04   0,07   0,04   0,08   -­‐0,05   -­‐0,08   -­‐0,05   -­‐0,08  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,01)   (0,00)   (0,01)  

TW  USD  *  D  -­‐0,03   -­‐0,06   -­‐0,02   -­‐0,04   0,03   0,04   0,03   0,04  

(0,03)   (0,03)   (0,11)   (0,12)   (0,15)   (0,23)   (0,16)   (0,26)  

Equity  *  VIX      -­‐0,75   -­‐  1,41  

   0,09   0,19  

    (0,00)   (0,00)       (0,29)   (0,11)  

𝑅!     0,16   0,19   0,29   0,32   0,11   0,22   0,11   0,22  

𝑅!"#!     0,16   0,18   0,29   0,32   0,10   0,21   0,10   0,22  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of   significance   are   highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and  autocorrelation   consistent   standard   errors   that   are   valid   asymptotically.   Underlined   p-­‐values  reflect  inconsistency  with  the  results  from  table  12.  

Page 88: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 78  

Table  30:  HM  Model  Sectorial  Robustness  of  Soft  Commodities  and  Commodities  Energy  Sectors  to  the  Exclusion  of  the  Credit  Crunch  

  Soft  Commodities   Energy  Commodities  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,11)   (0,00)   (0,17)  

Equity  -­‐  0,00   0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00  

(0,98)   (0,94)   (0,91)   (1,00)   (0,72)   (0,95)   (0,61)   (0,82)  

Equity  *  D  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,01   0,00   0,01   -­‐0,01   -­‐0,01  

(0,95)   (0,89)   (0,52)   (0,54)   (0,52)   (0,42)   (0,47)   (0,48)  

Fixed  Income  -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02   0,01   0,00   0,01   0,00  

(0,20)   (0,22)   (0,19)   (0,22)   (0,73)   (0,89)   (0,74)   (0,91)  

Fixed  Income  *  D  -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,02   -­‐0,03   -­‐0,02   -­‐0,03  

(0,53)   (0,64)   (0,55)   (0,66)   (0,36)   (0,49)   (0,40)   (0,54)  

Comm.  Agr.  0,01   0,02   0,01   0,02   -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01  

(0,00)   (0,00)   (0,00)   (0,00)   (0,10)   (0,20)   (0,11)   (0,21)  

Comm.  Agr.  *  D  0,01   0,01   0,01   0,01   0,02   0,03   0,02   0,03  

(0,19)   (0,48)   (0,19)   (0,49)   (0,00)   (0,01)   (0,00)   (0,01)  

Comm.  Energy  0,00   0,00   0,00   0,00   0,04   0,05   0,04   0,05  

(0,23)   (0,19)   (0,24)   (0,20)   (0,00)   (0,00)   (0,00)   (0,00)  

Comm.  Energy  *  D  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,03   -­‐0,04   -­‐0,03   -­‐0,04  

(0,12)   (0,09)   (0,16)   (0,12)   (0,00)   (0,01)   (0,00)   (0,02)  

Comm.  Metals  0,00   0,00   0,00   0,00   0,00   0,01   0,00   0,01  

(0,21)   (0,32)   (0,19)   (0,30)   (0,20)   (0,18)   (0,17)   (0,15)  

Comm.  Metals  *  D  0,01   0,01   0,01   0,01   0,01   0,03   0,01   0,03  

(0,09)   (0,05)   (0,09)   (0,05)   (0,03)   (0,02)   (0,02)   (0,02)  

TW  USD  -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,02   -­‐0,02   -­‐0,04   -­‐0,02   -­‐0,04  

(0,07)   (0,20)   (0,07)   (0,19)   (0,01)   (0,02)   (0,01)   (0,02)  

TW  USD  *  D  0,01   0,02   0,01   0,02   0,03   0,05   0,03   0,05  

(0,13)   (0,26)   (0,14)   (0,28)   (0,02)   (0,02)   (0,03)   (0,02)  

Equity  *  VIX      0,04   0,06  

   0,10   0,19  

    (0,26)   (0,33)       (0,04)   (0,03)  

𝑅!     0,11   0,10   0,11   0,10   0,27   0,22   0,27   0,22  

𝑅!"#!     0,10   0,09   0,10   0,09   0,26   0,21   0,26   0,21  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted   in   bold.   All   models   employ   Newey-­‐West   heteroskedasticity   and   autocorrelation   consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  13.  

Page 89: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  79  

Table  31:  HM  Model  Sectorial  Robustness  of  Commodities  Metals  and  Composite  Currencies  Sectors  to  the  Exclusion  of  the  Credit  Crunch  

  Metal  Commodities   Composite  Currencies  

  Aggr.   TF   Aggr.   TF   Aggr.   TF   Aggr.   TF  

Constant  -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   -­‐0,00   0,00  

(0,00)   (0,00)   (0,00)   (0,00)   (0,01)   (0,14)   (0,01)   (0,14)  

Equity  0,00   0,00   0,00   0,00   0,04   0,04   0,04   0,04  

(0,76)   (0,94)   (0,67)   (0,86)   (0,02)   (0,11)   (0,02)   (0,11)  

Equity  *  D  -­‐0,01   -­‐0,02   -­‐0,01   -­‐0,01   -­‐0,04   -­‐0,06   -­‐0,04   -­‐0,06  

(0,00)   (0,00)   (0,12)   (0,07)   (0,07)   (0,04)   (0,14)   (0,14)  

Fixed  Income  -­‐0,00   0,00   -­‐0,00   0,00   -­‐0,03   -­‐0,11   -­‐0,03   -­‐0,11  

(0,86)   (0,92)   (0,87)   (0,91)   (0,47)   (0,05)   (0,47)   (0,05)  

Fixed  Income  *  D  -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,02   0,14   0,12   0,14   0,12  

(0,78)   (0,42)   (0,72)   (0,38)   (0,03)   (0,19)   (0,03)   (0,19)  

Comm.  Agr.  0,00   0,00   0,00   0,00   0,01   0,01   0,01   0,01  

(0,03)   (0,12)   (0,03)   (0,12)   (0,18)   (0,10)   (0,18)   (0,10)  

Comm.  Agr.  *  D  0,00   -­‐0,00   0,00   -­‐0,00   -­‐0,01   -­‐0,01   -­‐0,01   -­‐0,01  

(0,84)   (0,68)   (0,75)   (0,76)   (0,31)   (0,40)   (0,31)   (0,42)  

Comm.  Energy  0,00   0,00   0,00   0,00   0,01   0,01   0,01   0,01  

(0,00)   (0,01)   (0,00)   (0,01)   (0,22)   (0,13)   (0,22)   (0,13)  

Comm.  Energy  *  D  -­‐0,00   -­‐0,01   -­‐0,00   -­‐0,01   -­‐0,00   0,01   -­‐0,00   0,01  

(0,10)   (0,08)   (0,08)   (0,06)   (0,90)   (0,62)   (0,90)   (0,63)  

Comm.  Metals  0,04   0,05   0,04   0,05   0,03   0,03   0,03   0,03  

(0,00)   (0,00)   (0,00)   (0,00)   (0,00)   (0,01)   (0,00)   (0,01)  

Comm.  Metals  *  D  0,00   0,00   0,00   0,00   0,01   0,01   0,01   0,01  

(0,92)   (0,91)   (0,93)   (0,91)   (0,66)   (0,49)   (0,66)   (0,49)  

TW  USD  -­‐0,02   0,01   -­‐0,02   0,01   -­‐0,17   -­‐0,12   -­‐0,17   -­‐0,12  

(0,00)   (0,56)   (0,00)   (0,54)   (0,00)   (0,08)   (0,00)   (0,08)  

TW  USD  *  D  -­‐0,01   -­‐0,03   -­‐0,01   -­‐0,03   -­‐0,15   -­‐0,18   -­‐0,15   -­‐0,18  

(0,05)   (0,00)   (0,06)   (0,00)   (0,02)   (0,04)   (0,03)   (0,04)  

Equity  *  VIX      -­‐0,05   -­‐0,06  

   -­‐0,01   -­‐0,04  

    (0,07)   (0,15)       (0,91)   (0,86)  

𝑅!     0,48   0,34   0,48   0,34   0,19   0,11   0,19   0,11  

𝑅!"#!     0,48   0,34   0,48   0,34   0,18   0,10   0,18   0,10  

Sources:  DataStream,  Federal  Reserve  Bank  of  St.  Louis,  RPM  Risk  and  Portfolio  Management  AB  and  own  estimations.  Values  in  parenthesis  are  p-­‐values  and  significant  estimates  at  the  5%  level  of  significance  are  highlighted  in  bold.  All  models  employ  Newey-­‐West  heteroskedasticity  and  autocorrelation  consistent  standard  errors  that  are  valid  asymptotically.  Underlined  p-­‐values  reflect  inconsistency  with  the  results  from  table  14.  

Page 90: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 80  

 

Page 91: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  81  

9.2 Figures  

Figure  1:  Average  Monthly  Return  of  CTAs  in  Five  Equity  Market  Regimes  

 Description:  Figures  depict  the  average  monthly  CTA  return  in  five  MSCI  World  monthly  return  quintiles.  

Figure  2:  Equity  Market  Crisis  and  Bear  Market  Identification  

                                                         Crisis  Market  Identification                                                                                                                            Bear  Market  Identification  

     Description:   Figures  depict   the  evolution   in   the  MSCI  World  and   shaded  areas   reflect   the   identified   crisis   (left)   or  

bear  market  (right)  regimes.  

Figure  3:  Fixed  Income  Market  Crisis  and  Bear  Market  Identification  

                                                         Crisis  Market  Identification                                                                                                                            Bear  Market  Identification  

     Description:  Figures  depict  the  evolution  in  the  Barclays  U.S.  Aggregate  and  shaded  areas  reflect  the  identified  crisis  

(left)  or  bear  market  (right)  regimes.  

Page 92: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 82  

Figure  4:  Commodities  Agriculture  Market  Crisis  and  Bear  Market  Identification  

                                                         Crisis  Market  Identification                                                                                                                            Bear  Market  Identification  

     Description:   Figures   depict   the   evolution   in   the   S&P   GSCI   Commodities   Agriculture   and   shaded   areas   reflect   the  

identified  crisis  (left)  or  bear  market  (right)  regimes.  

Figure  5:  Commodities  Energy  Market  Crisis  and  Bear  Market  Identification  

                                                         Crisis  Market  Identification                                                                                                                            Bear  Market  Identification  

     Description:   Figures   depict   the   evolution   in   the   S&P   GSCI   Commodities   Energy   and   shaded   areas   reflect   the  

identified  crisis  (left)  or  bear  market  (right)  regimes.  

Figure  6:  Commodities  Metals  Market  Crisis  and  Bear  Market  Identification  

                                                         Crisis  Market  Identification                                                                                                                            Bear  Market  Identification  

     Description:   Figures   depict   the   evolution   in   the   S&P   GSCI   Commodities   Metals   and   shaded   areas   reflect   the  

identified  crisis  (left)  or  bear  market  (right)  regimes.  

   

Page 93: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  83  

Figure  7:  Trade-­‐Weighted  USD  Market  Crisis  and  Bear  Market  Identification  

                                                         Crisis  Market  Identification                                                                                                                            Bear  Market  Identification  

     Description:  Figures  depict   the  evolution   in   the  Trade-­‐Weighted  USD  Exchange  Rate  and  shaded  areas   reflect   the  

identified  crisis  (left)  or  bear  market  (right)  regimes.  

Figure  8:  Overlapping  Crisis  Periods  

 Figure  9:  CTA’s  Time-­‐Varying  Equity  Market  Risk  Factor  Exposures  

 

 

Page 94: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 84  

Figure  10:  Managed  Futures  Dynamics  in  an  Equity  Market  Crisis  

Equity  Market  Cumulative  Returns  

                                                     RPM  USD  Equity  Sector  Position                                                                                              RPM  USD  Equity  Sector  TF  Position  

                                         RPM  USD  Equity  Sector  Cumulative  Return                                                            RPM  USD  Equity  Sector  TF  Cumulative  Return  

                                           RPM  USD  Composite  Cumulative  Return                                                                    RPM  USD  Composite  TF  Cumulative  Return  

   Description:  Figures  represent  the  equally  weighted  average  evolution  of  a  specific  variable  (blue  line)  throughout  a  

crisis   event  window   spanning   from   40   days   before   the   start   of   a   crisis   to   160   days   after.   The   start   of   a   crisis   is  

indicated  by  the  vertical  line  and  the  dark  blue  lines  represent  1  standard  deviation  bands.    

Page 95: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  85  

Figure  11:  Managed  Futures  Dynamics  in  a  Fixed  Income  Market  Crisis  

Fixed  Income  Market  Cumulative  Returns  

                                   RPM  USD  Fixed  Income  Sector  Position                                                                          RPM  USD  Fixed  Income  Sector  TF  Position  

                   RPM  USD  Fixed  Income  Sector  Cumulative  Return                                    RPM  USD  Fixed  Income  Sector  TF  Cumulative  Return  

                                           RPM  USD  Composite  Cumulative  Return                                                                  RPM  USD  Composite  TF  Cumulative  Return  

     Description:  Figures  represent  the  equally  weighted  average  evolution  of  a  specific  variable  (blue  line)  throughout  a  

crisis   event  window   spanning   from   40   days   before   the   start   of   a   crisis   to   160   days   after.   The   start   of   a   crisis   is  

indicated  by  the  vertical  line  and  the  dark  blue  lines  represent  1  standard  deviation  bands.    

Page 96: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 86  

Figure  12:  Managed  Futures  Dynamics  in  a  Commodity  Agriculture  Market  Crisis  

Comm.  Agr.  Market  Cumulative  Returns  

                                         RPM  USD  Soft  Comm.  Sector  Position                                                                            RPM  USD  Soft  Comm.  Sector  TF  Position  

                     RPM  USD  Soft  Comm.  Sector  Cumulative  Return                                            RPM  USD  Soft  Comm.  Sector  TF  Cumulative  Return  

                                           RPM  USD  Composite  Cumulative  Return                                                                  RPM  USD  Composite  TF  Cumulative  Return  

     Description:  Figures  represent  the  equally  weighted  average  evolution  of  a  specific  variable  (blue  line)  throughout  a  

crisis   event  window   spanning   from   40   days   before   the   start   of   a   crisis   to   160   days   after.   The   start   of   a   crisis   is  

indicated  by  the  vertical  line  and  the  dark  blue  lines  represent  1  standard  deviation  bands.    

Page 97: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  87  

Figure  13:  Managed  Futures  Dynamics  in  a  Commodity  Energy  Market  Crisis  

Comm.  Ener.  Market  Cumulative  Returns  

                                         RPM  USD  Comm.  Ener.  Sector  Position                                                                            RPM  USD  Comm.  Ener.  Sector  TF  Position  

                     RPM  USD  Comm.  Ener.  Sector  Cumulative  Return                                        RPM  USD  Comm.  Ener.  Sector  TF  Cumulative  Return  

                                           RPM  USD  Composite  Cumulative  Return                                                                  RPM  USD  Composite  TF  Cumulative  Return  

     Description:  Figures  represent  the  equally  weighted  average  evolution  of  a  specific  variable  (blue  line)  throughout  a  

crisis   event  window   spanning   from   40   days   before   the   start   of   a   crisis   to   160   days   after.   The   start   of   a   crisis   is  

indicated  by  the  vertical  line  and  the  dark  blue  lines  represent  1  standard  deviation  bands.    

Page 98: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 88  

Figure  14:  Managed  Futures  Dynamics  in  a  Commodity  Metals  Market  Crisis  

Comm.  Met.  Market  Cumulative  Returns  

                                         RPM  USD  Comm.  Met.  Sector  Position                                                                            RPM  USD  Comm.  Met.  Sector  TF  Position  

                   RPM  USD  Comm.  Met.  Sector  Cumulative  Return                                          RPM  USD  Comm.  Met.  Sector  TF  Cumulative  Return  

                                         RPM  USD  Composite  Cumulative  Return                                                                  RPM  USD  Composite  TF  Cumulative  Return  

   Description:  Figures  represent  the  equally  weighted  average  evolution  of  a  specific  variable  (blue  line)  throughout  a  

crisis   event  window   spanning   from   40   days   before   the   start   of   a   crisis   to   160   days   after.   The   start   of   a   crisis   is  

indicated  by  the  vertical  line  and  the  dark  blue  lines  represent  1  standard  deviation  bands.    

Page 99: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  89  

Figure  15:  Managed  Futures  Dynamics  in  a  Trade-­‐Weighted  USD  Market  Crisis  

TW  USD  Market  Cumulative  Returns  

                                         RPM  USD  Comp.  Curr.  Sector  Position                                                                            RPM  USD  Comp.  Curr.  Sector  TF  Position  

                   RPM  USD  Comp.  Curr.  Sector  Cumulative  Return                                          RPM  USD  Comp.  Curr.  Sector  TF  Cumulative  Return  

                                         RPM  USD  Composite  Cumulative  Return                                                                  RPM  USD  Composite  TF  Cumulative  Return  

   Description:  Figures  represent  the  equally  weighted  average  evolution  of  a  specific  variable  (blue  line)  throughout  a  

crisis   event  window   spanning   from   40   days   before   the   start   of   a   crisis   to   160   days   after.   The   start   of   a   crisis   is  

indicated  by  the  vertical  line  and  the  dark  blue  lines  represent  1  standard  deviation  bands.    

Page 100: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 90  

9.3 MATLAB  Code  Crisis  Identification  Methodology  

 

% Specify the selected data that you would like to run. % 1) Date % 2) S&P GSCI Agriculture % 3) S&P GSCI Energy (Note: start from row 2002 to end) % 4) S&P GSCI Metals (Note: start from row 5143 to end) % 5) MSCI World % 6) Barclays U.S. Aggregate Bond Index (Note: start from row 197 to end) % 7) Trade Weighted USD clear clc data=xlsread('Final Data Crisis identification clean'); data(:,1)=data(:,1)+datenum('30DEC1899'); data=data(197:end,[1 6]); u=60 b=0.41 %% Preliminary Coding: % IT: Market state indicator with the first column indicating the date and % the second been given a value of 1 if in a bull / non-crisis period state % Xmax & Xmin: refer to local minimum and maximum from which the actual % time series must deviate by a specified threshold. % tau: specifies the last date since the local minimum or maximum. % n: refers to how many different values the lambda 1 and 2 parameters are % allowed to take. E.g. If lambda 1 and 2 are allowed to vary between 0.01 % and 0.40 with steps of 0.01, then n=40. This logically leads to 1600 % different possible combinations of lambda 1 and lambda 2 that can be tested % in the loop below. % bear: bear is a variable that specifies the beginning and end of a % crisis / bear market respectively by the values 1 and 2. IT=data(:,1); IT(1,2)=1; xmax=data(:,1); xmin=data(:,2); xmax(1,2)=data(1,2); xmin(1,2)=data(1,2); tau=data(:,1); tau(1,2)=data(1,1); tau(1,3)=data(1,1); n=40 x=linspace(0.01,0.40,n)'; y=linspace(0.01,0.40,n)'; returns(:,1)=data(2:end,1); returns(:,2)=price2ret(data(:,2)); bear(:,1)=IT(:,1); bear(:,2)=0; % Create a n^2x2 vector of all possible combinations of lambda 1 and lambda 2 % given n.

Page 101: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  91  

for i=1:n for j=1:n z(i,:,j)=[x(i,1) y(j,1)]; end end h=z(:,:,1); for i=2:n h=vertcat(h(:,:,1),z(:,:,i)); end %% Optimization of the lambda parameters % J-loop: loop over all different possible combinations of parameters lambda % 1 and lambda 2 % i-loop: Loop over all values of the time series to determine the market % state. c=waitbar(0,'Please wait') for j=1:size(h,1) c=waitbar(j/size(h,1)); landa1=h(j,1); landa2=h(j,2); for i=2:size(IT,1) if IT(i-1,2)==1 if data(i,2)>xmax(i-1,2) IT(i,2)=1; xmax(i,2)=data(i,2); xmin(i,2)=xmin(i-1,2); tau(i,2)=data(i,1); tau(i,3)=tau(i-1,3); elseif data(i,2)<(1-landa1)*xmax(i-1,2) IT(find(data(:,1)==tau(i-1,2)):i,2)=0; xmax(i,2)=data(i,2); xmin(i,2)=data(i,2); tau(i,2)=data(i,1); tau(i,3)=data(i,1); elseif data(i,2)>(1-landa1)*xmax(i-1,2) IT(i,2)=1; xmax(i,2)=xmax(i-1,2); xmin(i,2)=xmin(i-1,2); tau(i,2)=tau(i-1,2); tau(i,3)=tau(i-1,3); end elseif IT(i-1,2)==0 if data(i,2)<xmin(i-1,2) IT(i,2)=0; xmax(i,2)=xmax(i-1,2); xmin(i,2)=data(i,2); tau(i,2)=tau(i-1,2); tau(i,3)=data(i,1); elseif data(i,2)>(1+landa2)*xmin(i-1,2) IT(find(data(:,1)==tau(i-1,3)):i,2)=1; xmax(i,2)=data(i,2); xmin(i,2)=data(i,2); tau(i,2)=data(i,1); tau(i,3)=data(i,1);

Page 102: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 92  

elseif data(i,2)<(1+landa2)*xmin(i-1,2) IT(i,2)=0; xmin(i,2)=xmin(i-1,2); xmax(i,2)=xmax(i-1,2); tau(i,2)=tau(i-1,2); tau(i,3)=tau(i-1,3); end end end % Determine the beginning and end of the bear/crisis state bear(:,2)=0; for i=2:size(bear,1) if (IT(i,2)==0) && (IT(i-1,2)==1) bear(i,2)=1; elseif (IT(i,2)==1) && (IT(i-1,2)==0) bear(i,2)=2; end end % Enforce the proper alteration between beginning and end % of a crisis period. In other words, if you end in a crisis state, % then there is a 1, but not a 2 leading to a dimension mismatch in the % summary matrix below. Thus, the bear state must be concluded, as well % as the fact that a start in a bear state must have a beginning. if IT(end,2)==0 bear(end,2)=2; end if IT(1,2)==0 bear(1,2)=1; end summary=zeros(size(find(bear(:,2)==1),1),2); summary(:,1)=bear(find(bear(:,2)==1),1); summary(:,2)=bear(find(bear(:,2)==2),1); for i=2:size(summary,1) summary(i,3)=summary(i,1)-summary(i-1,2); end for i=2:size(summary,1) if summary(i,3)<u IT(find(summary(i-1,1)==IT(:,1)):find(summary(i,2)==IT(:,1)),2)=0; end end % redetermine the beginning and end of the bear/crisis state bear(:,2)=0; for i=2:size(bear,1) if (IT(i,2)==0) && (IT(i-1,2)==1) bear(i,2)=1; elseif (IT(i,2)==1) && (IT(i-1,2)==0) bear(i,2)=2; end

Page 103: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  93  

end if IT(end,2)==0 bear(end,2)=2; end if IT(1,2)==0 bear(1,2)=1; end % Summary matrix that shows the start of a crisis, the end, the fall in % the market over a specific duration of the crisis period, the % intensity factor of the crisis and the standard deviation of the % return over the crisis period. summary=zeros(size(find(bear(:,2)==1),1),2); summary(:,1)=bear(find(bear(:,2)==1),1); summary(:,2)=bear(find(bear(:,2)==2),1); if size(summary,1)==0 IF(j,1)=0; IF(j,2)=0; IF(j,3)=0; IF(j,4)=0; else for i=1:size(summary,1) summary(i,3)=log(data(find(data(:,1)==summary(i,2)),2)/data(find(data(:,1)==summary(i,1)),2)); summary(i,5)=summary(i,2)-summary(i,1); summary(i,4)=std(returns(find(returns(:,1)==summary(i,1)):find(returns(:,1)==summary(i,2)),2))*sqrt(summary(i,5)); summary(i,6)=summary(i,3)/(summary(i,5)/365); end % Save the respective mean intensity factor over the crisis period % for a given lambda 1 and 2 parameter combination, the standard % deviation of these intensity factors, their intensity factor % adjusted for IF-volatility and the amount of crises identified by % the algorithm. IF(j,1)=mean(summary(:,6)); IF(j,2)=std(summary(:,6)); IF(j,3)=IF(j,1)/IF(j,2); IF(j,4)=size(summary,1); end end % Remove lambda parameters that lead to only a single crisis being % identified. This would lead to an infinite IF-adj. for i=1:size(IF,1) if IF(i,4)==1 IF(i,5)=0; else IF(i,5)=1;

Page 104: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 94  

end end % Enforce a severe enough intensity factor upon the series. In other words, % restrict the lambda parameters combinations only to those that provide an % intensity factor that is more severe than the overall average intensity % factor (in absolute value). IFadj=IF(find(IF(:,5)==1),:); z=mean(IFadj(:,1)) e=std(IFadj(:,1)) z=z for i=1:size(IF,1) if IF(i,1)<z IF(i,6)=1; else IF(i,6)=0; end end % Enforce a the rebound to be smaller than the fall in the market. for i=1:size(IF,1) if h(i,1)>h(i,2) IF(i,8)=1; else IF(i,8)=0; end end % Additional restriction only applying to equity markets. for i=1:size(IF,1) if h(i,1)<b IF(i,9)=1; else IF(i,9)=0; end end close(c) IFadj=IF(find(IF(:,5)==1&IF(:,6)==1&IF(:,8)==1&IF(:,9)==1),:); a=min(IFadj(:,3)) optimumparameters=h(find(IF(:,3)==a),:) %% Employ the identified parameters to detect crisis periods. landa1=optimumparameters(1,1); landa2=optimumparameters(1,2); c=waitbar(0,'Please Wait') % Preliminary Coding IT=data(:,1); IT(1,2)=1; xmax=data(:,1); xmin=data(:,2);

Page 105: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  95  

xmax(1,2)=data(1,2); xmin(1,2)=data(1,2); tau=data(:,1); tau(1,2)=data(1,1); tau(1,3)=data(1,1); for i=2:size(IT,1) c=waitbar(i/size(IT,1)); if IT(i-1,2)==1 if data(i,2)>xmax(i-1,2) IT(i,2)=1; xmax(i,2)=data(i,2); xmin(i,2)=xmin(i-1,2); tau(i,2)=data(i,1); tau(i,3)=tau(i-1,3); elseif data(i,2)<(1-landa1)*xmax(i-1,2) IT(find(data(:,1)==tau(i-1,2)):i,2)=0; xmax(i,2)=data(i,2); xmin(i,2)=data(i,2); tau(i,2)=data(i,1); tau(i,3)=data(i,1); elseif data(i,2)>(1-landa1)*xmax(i-1,2) IT(i,2)=1; xmax(i,2)=xmax(i-1,2); xmin(i,2)=xmin(i-1,2); tau(i,2)=tau(i-1,2); tau(i,3)=tau(i-1,3); end elseif IT(i-1,2)==0 if data(i,2)<xmin(i-1,2) IT(i,2)=0; xmax(i,2)=xmax(i-1,2); xmin(i,2)=data(i,2); tau(i,2)=tau(i-1,2); tau(i,3)=data(i,1); elseif data(i,2)>(1+landa2)*xmin(i-1,2) IT(find(data(:,1)==tau(i-1,3)):i,2)=1; xmax(i,2)=data(i,2); xmin(i,2)=data(i,2); tau(i,2)=data(i,1); tau(i,3)=data(i,1); elseif data(i,2)<(1+landa2)*xmin(i-1,2) IT(i,2)=0; xmin(i,2)=xmin(i-1,2); xmax(i,2)=xmax(i-1,2); tau(i,2)=tau(i-1,2); tau(i,3)=tau(i-1,3); end end end %% Analysis of features of a crisis state % Define beginning and end of bear-crisis period bear(:,1)=IT(:,1); bear(:,2)=0;

Page 106: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

 96  

for i=2:size(bear,1) for j=2:size(IT,2) if IT(i,j)==0&IT(i-1,j)==1 bear(i,j)=1; elseif IT(i,j)==1&IT(i-1,j)==0 bear(i,j)=2; else 0; end end end % Additional restriction to make sure dimensions match for the next summary % matrix (specifically, if you find yourself in a bear-crisis period at the % end of the sample period than this needs to be ended, or the matrix % dimensions shall not match in the subsequent functions if IT(end,2)==0 bear(end,2)=2; end returns(:,1)=data(2:end,1); returns(:,2)=price2ret(data(:,2)); summary=zeros(size(find(bear(:,2)==1),1),2); summary(:,1)=bear(find(bear(:,2)==1),1); summary(:,2)=bear(find(bear(:,2)==2),1); % Defining the return over the entire crisis (bear) period, the duration, % the standard deviation of the returns over the period and the intensity % factor. for i=1:size(summary,1) summary(i,3)=log(data(find(data(:,1)==summary(i,2)),2)/data(find(data(:,1)==summary(i,1)),2)); summary(i,5)=summary(i,2)-summary(i,1); summary(i,4)=std(returns(find(returns(:,1)==summary(i,1)):find(returns(:,1)==summary(i,2)),2))*sqrt(summary(i,5)); summary(i,6)=summary(i,3)/(summary(i,5)/365); end %% add an additional restriction % Define how long each crisis (bear) period has been since the last one for i=2:size(summary,1) summary(i,7)=summary(i,1)-summary(i-1,2); end % Identify when this is smaller than 60 days for i=2:size(summary,1) if summary(i,7)<u IT(find(summary(i-1,1)==IT(:,1)):find(summary(i,2)==IT(:,1)),2)=0; end end %% Rerun code and make the period one, if it is less than 30 days since the

Page 107: Masterproef_Master_Banking_and_Finance_Nicolas_Dierick_Pieterjan_Tilleman

 

  97  

former one bear2(:,1)=IT(:,1); bear2(1,2)=0; for i=2:size(bear2,1) for j=2:size(IT,2) if IT(i,j)==0&IT(i-1,j)==1 bear2(i,j)=1; elseif IT(i,j)==1&IT(i-1,j)==0 bear2(i,j)=2; else 0; end end end if IT(end,2)==0 bear2(end,2)=2; end summary2=zeros(size(find(bear2(:,2)==1),1),2); summary2(:,1)=bear2(find(bear2(:,2)==1),1); summary2(:,2)=bear2(find(bear2(:,2)==2),1); for i=1:size(summary2,1) summary2(i,3)=log(data(find(data(:,1)==summary2(i,2)),2)/data(find(data(:,1)==summary2(i,1)),2)); summary2(i,5)=summary2(i,2)-summary2(i,1); summary2(i,4)=std(returns(find(returns(:,1)==summary2(i,1)):find(returns(:,1)==summary2(i,2)),2))*sqrt(summary2(i,5)); summary2(i,6)=summary2(i,3)/(summary2(i,5)/365); end for i=2:size(summary2,1) summary2(i,7)=summary2(i,1)-summary2(i-1,2); end close(c) IT(find(IT(:,2)==0),2)=max(data(:,2)); IT(find(IT(:,2)==1),2)=0; t=datetime(datevec(data(:,1))); plot(t,data(:,2)) hold on area(IT(:,1),IT(:,2),'FaceColor',[0.7 0.7 0.7],'EdgeColor',[0.7 0.7 0.7]) plot(t,data(:,2),'k') hold off landa1 landa2 meanIF=mean(summary2(:,6)) stdIF=std(summary2(:,6)) Ncrisis=size(summary2,1)