mat 2401 linear algebra

31
MAT 2401 Linear Algebra 3.1 The Determinant of a Matrix http://myhome.spu.edu/lauw

Upload: trinh

Post on 06-Jan-2016

35 views

Category:

Documents


0 download

DESCRIPTION

MAT 2401 Linear Algebra. 3.1 The Determinant of a Matrix. http://myhome.spu.edu/lauw. HW. WebAssign 3.1 Written Homework. Preview. How do I know a matrix is invertible ? We will look at determinant that tells us the answer. Recall. If D=ad-bc ≠ 0 the inverse of - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MAT 2401 Linear Algebra

MAT 2401Linear Algebra

3.1 The Determinant of a Matrix

http://myhome.spu.edu/lauw

Page 2: MAT 2401 Linear Algebra

HW

Written Homework

Page 3: MAT 2401 Linear Algebra

Preview

How do I know a matrix is invertible?

We will look at determinant that tells us the answer.

Page 4: MAT 2401 Linear Algebra

If D=ad-bc ≠ 0 the inverse of

is given by

Recall

1 1 d bA

c aD

Therefore, if D≠0,

D is called the _________ of A

a bA

c d

Page 5: MAT 2401 Linear Algebra

If D=ad-bc = 0 the inverse of

DNE.

Fact

a bA

c d

If D=0, A is singular. To see this, for a ≠ 0, we can do the following:

1 0

0 1

11 0

0 1

a bA I

c d

b

a aad bc c

a a

R B

Page 6: MAT 2401 Linear Algebra

The Task

Given a square matrix A, we wish to associate with A a scalar det(A) that will tell us whether or not A is invertible

11 12 1

21 22 2

1 2

det( )

n

n

n n nn

a a a

a a aA

a a

A

a

Page 7: MAT 2401 Linear Algebra

Fact (3.3)

A square matrix A is invertible if and only if det(A)≠0

Page 8: MAT 2401 Linear Algebra

Interesting Comments

Interesting comments from a text: The concept of determinant is

subtle and not intuitive, and researchers had to accumulate a large body of experience before they were able to formulate a “correct” definition for this number.

Page 9: MAT 2401 Linear Algebra

n=2

11 12

21 22

11 1211 22 21 12

21 22

det( )

a aA

a a

aA

aa a a a

a a

1. Notations:

2. Mental picture for memorizing

Page 10: MAT 2401 Linear Algebra

n=3

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 11 32 23

21 12 33 21 32 13

31 12 23 31 22 13

det( )

a a a

A a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a

A

a

Page 11: MAT 2401 Linear Algebra

n=3Q1: What? Do I need to remember this?

Q2: What if A is 4x4 or bigger?

Q3: Is there a formula for 1x1 matrix?

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 11 32 23

21 12 33 21 32 13

31 12 23 31 22 13

det( )

a a a

A a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a

A

a

Page 12: MAT 2401 Linear Algebra

Observations

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 11 32 23

21 12 33 21 32 13

31 12 23 31 22 13

det( )

a a a

A a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a

A

a

Page 13: MAT 2401 Linear Algebra

Observations

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 11 32 23

21 12 33 21 32 13

31 12 23 31 22 13

det( )

a a a

A a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a

A

a

Page 14: MAT 2401 Linear Algebra

Observations

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 11 32 23

21 12 33 21 32 13

31 12 23 31 22 13

det( )

a a a

A a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a

A

a

Page 15: MAT 2401 Linear Algebra

Observations

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

11 22 33 11 32 23

21 12 33 21 32 13

31 12 23 31 22 13

det( )

a a a

A a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a

A

a

We need:

1. a notion of “one size smaller” but related determinants.

2. a way to assign the correct signs to these smaller determinants.

3. a way to extend the computations to nxn matrices.

Page 16: MAT 2401 Linear Algebra

Minors and Cofactors

A=[aij], a nxn Matrix.

Let Mij be the determinant of the

(n-1)x(n-1) matrix obtained from A by deleting the row and column containing aij.

Mij is called the minor of aij.

Example:

11 11

23 23

1 2 3

4 5 6

7 8 9

A

M A

M A

Page 17: MAT 2401 Linear Algebra

Minors and Cofactors

A=[aij], a nxn Matrix.

Let Cij =(-1)i+j Mij

Cij is called the cofactor of aij.

Example:

11 11

23 23

1 2 3

4 5 6

7 8 9

A

M C

M C

Page 18: MAT 2401 Linear Algebra

n=3

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

det( )

a a a

A a a a

a a a

a a a

A a a a

a a a

Page 19: MAT 2401 Linear Algebra

Determinants

Formally defined Inductively by using cofactors (minors) for all nxn matrices in a similar fashion.

The process is sometimes referred as Cofactors Expansion.

Page 20: MAT 2401 Linear Algebra

Cofactors Expansion (across the first column)

The determinant of a nxn matrix A=[aij] is a scalar defined by

11

11 11 21 21 1 1 1 11

11 1

if 1

detif 1

where

( 1)

n

n n k kk

kk k

a n

Aa C a C a C a C n

C M

Page 21: MAT 2401 Linear Algebra

Example 11 4 1 0

1 1 2 3

0 0 1 0

0 0 0 5

Page 22: MAT 2401 Linear Algebra

Remark

The cofactor expansion can be done across any column or any row.

1 4 1 0

1 1 2 3

0 0 1 0

0 0 0 5

Page 23: MAT 2401 Linear Algebra

Cofactors Expansion

1 1 2 21

1 1 2 21

Along the j column:

det

Along the i row:

det

where

( 1)

th

n

j j j j nj nj kj kjk

th

n

i i i i in in ik ikk

i jij ij

A a C a C a C a C

A a C a C a C a C

C M

Page 24: MAT 2401 Linear Algebra

Special Matrices and Their Determinants

(Square) Zero Matrix det(O)=?

Identity Matrixdet(I)=?

We will come back to this later….

Page 25: MAT 2401 Linear Algebra

Upper Triangular Matrix

0 for all ija i j

Upper Triangular Lower Triangular Diagonal

Page 26: MAT 2401 Linear Algebra

Lower Triangular Matrix

Upper Triangular Lower Triangular Diagonal

0 for all ija i j

Page 27: MAT 2401 Linear Algebra

Diagonal Matrix

Upper Triangular Lower Triangular Diagonal

0 for all ija i j

Page 28: MAT 2401 Linear Algebra

Diagonal Matrix

Upper Triangular Lower Triangular Diagonal

0 for all ija i j Q: T or F: A diagonal matrix is upper triangular?

Page 29: MAT 2401 Linear Algebra

Example 2

1 999 666

0 2 777

0 0 3

Page 30: MAT 2401 Linear Algebra

Determinant of a Triangular Matrix

Let A=[aij], be a nxn Triangular Matrix,

det(A)=

11

22

* * *

* * *

* *

* * nn

a

aA

a

Page 31: MAT 2401 Linear Algebra

Special Matrices and Their Determinants

(Square) Zero Matrix det(O)=

Identity Matrixdet(I)=