materials challenges for next-generation high- density ...cpp-gmr and fm heusler alloys co 2fez or...

22
K. Hono Magnetic Materials Unit National Institute for Materials Science Collaborators T. Furubayashi, Y. Sakuraba, Y. K. Takahashi S. T. Li, J. Chen, Du Ye, T. T. Sasaki Materials challenges for next-generation high- density magnetic recording: media and read heads 2016 IEEE Magnetic Society Distinguished Lecture March 7, 2016 National Institute for Materials Science (NIMS) http://www.nims.go.jp/apfim/ National Research Institute for Metals 1955 1960 1965 1970 1980 1985 1990 1995 2000 2005 2010 National Institute for Research in Inorganic Materials NIMS 1956~ 1966~ 2001~ Advanced Key Technologies Division Energy & Environment Materials Division Nanoscale Materials Division (MANA) 450 staff scientists ~$200 million

Upload: others

Post on 11-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

K. Hono Magnetic Materials Unit

National Institute for Materials Science

Collaborators T. Furubayashi, Y. Sakuraba, Y. K. Takahashi

S. T. Li, J. Chen, Du Ye, T. T. Sasaki�

Materials challenges for next-generation high-density magnetic recording: media and read heads��

2016 IEEE Magnetic Society Distinguished Lecture March 7, 2016�

National Institute for Materials Science (NIMS) http://www.nims.go.jp/apfim/��

National Research Institute for Metals

1955$$$$$$1960$$$$$$1965$$$$$$1970$$$$$$1980$$$$$$1985$$$$$$1990$$$$$$1995$$$$$$2000$$$$$2005$$$$$2010�

National Institute for Research in

Inorganic Materials

NIMS��1956~�

1966~�

2001~�

Advanced$Key$Technologies$

Division$

Energy$&$$Environment$Materials$

Division$

Nanoscale$Materials$Division$(MANA)$

450 staff scientists ~$200 million

Page 2: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Magnetic and spintronics materials for data storage and energy saving by nanostructure control

magnetic recording

spintronics devices

permanent magnets

hybrid vehicles electric vehicles

nanostructure analysis

Magnetic Materials Unit - NIMS��

STT-MRAM

STEMHRTEM

Magnetic domainElementsNd,Ga��

3DAP

Magnetic Domain Wall Memory and Logic

TEM

Atom probe tomography

Magnetic Materials Unit - NIMS

soft underlayer

Magnetric Materials Group!

Spintronics Group!

Nanoanalysis Group!

Development of magnetic materials for magnetic recording and spintronics$

Structure-property correlations of magnetic and spintronic devices$

High spin-polarization materials$

Low RA, high MR p-MTJ using new materials

K. Hono T. Furubayashi Y. K. Takahashi Y. Sakuraba$

S. Mitani S. Kasai M. Hayashi H. Sukegawa$

T. Ohkubo T. T. Sasaki H. Sepehri-Amin$

Laser assisted 3DAP

Cs-corrected STEM

ΔRA vs AMR ratio

CPP-GMR high Ku films

Page 3: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Ku=0.3 MJ/m3

Dp~11 nm�

High density magnetic recording > 2 Tbit/in2

2nm

CoFeB

CoFeB

MgO

TMR Head��(CoCrPt)-SiO2��

CPP-GMR�� Media FePt+X)

Ku=7 MJ/m3 Dp~2.5 nm�

FePtAg-C prototype MAMR media

-40 -20 0 20 40-800

-600

-400

-200

0

200

400

600

800

M (e

mu/

cc)

H (kOe)

perp inp

Ku = 4.3 MJ/m3

ΔHC = 6 kOe

2 4 6 8 10 120

20

40

60

80

100

120

Cou

nt

D (nm)

Track width 92nm Min. bit length 15nm Areal density ~ 550Gbits/in2

(TAR static test HGST)

L. Zhang, Y. K. Takahashi, K. Hono, B. C. Stipe, J.-Y. Juang, and M. Grobis, IEEE Trans. Magn. 47, 4062 (2011).�

HC= 35 kOe

Si�

MgO�FePt-C�

t=6.4 nm�

D=6.2±1.4 nm PD=9.6 nm�

Page 4: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

L10-FePt HAMR media for 2 Tbps��

D ~ 6 nm PD ~ 7 nm σ<10-15% h/D ~ 1.3 ��> 9 nm EA distribution < 2° Ra<0.04 nm

D. Weller et al. IEEE Trans. Magn. 50, 3100108 (2014).�

Areal Density (Tbit/in2) 2 4 Grain size, D (nm) 6 4.3 Pitch distance, Dp (nm) 7 5.1 Size distribution, s (%) 10 – 15 10 – 15 µ0Ms of FM layer (T) 0.88 1 µ0Ms of FM grain (T) 1.1 1.26 Ku (MJ/m3) 3.5 5 µ0Hk (T) 8 10 sHk/Hk 5 – 10 5 -10 Tc (°C) 480 430 sTc/Tc (%) 2 2 EA distribution, sq (°) 2 0.8 Media thickness, t (nm) 9 8.2 Grain aspect ratio (h/D) 1.29 1.6 Number of grains/bit 6.7 6.2 FePt-X granular media for >2 Tbit/in2�

How to grow columnar grains in the FePt-C system? Dompositionally graded sputtering process

MgO FePt C axis

���D�������������

�%����

2����T����� Cosputter of Fe, Pt and C

UU�� ���� ����FePt-20%C� ��� �%� ���FePt-25%C� �%� ��� (%�FePt-30%C� ��� (%� (��Ar : 0.48 Pa Deposition temperature: 600oC Deposition rate: 0.15 nm/sec Substrate : MgO(001)

2 nm�

B.S.D.Ch.S. Varaprasad et al. IEEE Trans. Magn. (2015) DOI: 10.1109/TMAG.2015.2435027.�

Page 5: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

FePt-30%C, t=10 nm��D���T����� 2���������������H��������T�����

�D����%��8��

Mr///Mr⊥=0.19 Mr///Mr⊥=0.06

h/D~1.5�

����(��������������

�������������������

�������������������

��������� �����%���� ����������

7�D�����TD�T���

7�XX�7�⊥������

7�XX�7�⊥������ 7�XX�7�⊥��(����7�XX�7�⊥������

�������

Page 6: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

[001]

tFePt layer : 12nm

- The FePt grains with proper surface contact with MgO shows a

good out of plate texture.

CPP-GMR

Read head for >2 Tbit/in2��

RA>1 Ωµm2�

MgO

Current TMR head� CoFeB�

CoFeB�

FM

FM NM

Hiroki Maehara et al, Applied Physics Express 4 (2011)

>1 Gbit

CoFeB/MgO CoFeB

Page 7: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

MR at low RA��

Takagishi et al. IEEE Trans. Magn. 46, 2086 (2010).�

200

150

100

50

0

MR

ratio

(%)

2015201020052000Year

CPP-GMR��LT

RT

$$$$CFGG/Ag/CFGG$$$$$$$Li$et$al.,$APL$(2013)$$$$$$$$$$�

CFMS/Ag/CFMS$$$Sato$et$al.$APEX$Sakuraba$et$al.$APL$

Limit of 3d-metal MR <20%�

CFGG/AgZn/CFGG$Du$et$al.$(2015)$

Magnetoresistive devices Tunneling Magnetoresistance

FM

P1 N

Metal

P2

FM

Insulator 21

21

12

PPPPTMR

−=

para*

NNF*FP

*P

2*P

*PP

2)(4

RARtttARtRA

++++

+=Δ

ρρργρβ

Giant Magnetoresistance

R

Magnetic Field

I�

electron�

I�

electron�

Low R

High R

NM��

Page 8: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

!Coherent tunneling��

A V Khvalkovskiy et al. J. Phys. D, 46 074001 (2013)

S. Yuasa et al. Nature Materials, 3, 868 (2004)

epitaxial Fe (001)/MgO(001)/Fe(001) structure�

Energy band dispersion of Fe [001] up-spin down spin

ΓΓ ΔΔ ΗΗ! ΓΓ ΔΔ ΗΗ!

ΔΔ1!

EF! EF!

ΔΔ1!

Δ2$

Δ2’$

Δ5$

k$z$([001])�

S.$Yuasa$et$al.$JJAP,$43,$L588$(2004)�

Half-metallic FM Para FM

P = 1 P = 0 0 < P < 1

valence band

conduction band

E

Ef$

E E

Ef$

)()()()(

ff

ff

EDEDEDED

P↓+↑

↓−↑= P : spin polarization

Ef$D D

D D D

Spin polarization of conductive electron

Page 9: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

CPP-GMR and FM Heusler alloys��

Co2FeZ or Co2MnZ Heusler alloys�

bulk�� interface��

ΔRA ≈ 2ρFβ 2

1−β 2tF + 4ARF /N

γ 2

1−γ 2

For 1 Tb/in2

MR ~ 10-20% ΔΔV =ΔΔRA x J= MR% x VBIAS>12 mV

12% MR & J ~ 2x108 A/cm2

after Jeff Childress, HGST�

FM

FM

NM

β

β

γ

γ

L21

X�

Y�

X2YZ�

Z�

B2 X2(Y,Z)�

X

Y/Z�

A2 (X2,Y,Z)�

X/Y/Z�

-100

-50

0

50

100

Inte

nsity

(arb

. uni

ts)

-0.3 -0.2 -0.1 0.0 0.1Photon Energry (eV)E-EF (Ry)�

DO

S (s

tate

s/eV

)�

L21-CMS�-100

-50

0

50

100

DO

S (s

tate

s/R

y)

-0.3 -0.2 -0.1 0.0 0.1E -EF (Ry)

E-EF (Ry)�

DO

S (s

tate

s/eV

)�

B2-CMS�-40

-20

0

20

40

DO

S (s

tate

s/R

y)

-0.3 -0.2 -0.1 0.0 0.1E -EF (Ry)

E-EF (Ry)�

DO

S (s

tate

s/eV

)�

A2-CMS�

courtesy of Y. Kota

Search for highly spinpolarized FM alloys

arc melting or induction meting

XRD & Thermal analysis Spin polarizationPoint Contact Andreev Reflection (PCAR)

Conductance–bias

DOS calculation

DOS calculations: VASP

+ annealing

Tc, order-disorder temperature, melting point

Alloy preparation

Nb

Sample

-6 -4 -2 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 �P = 1.0 �P = 0.0

ΔΔ �= 1.5meV

��

����

V(mVolt)

G(V

)/Gn

GNS/GNN=2(1-|P|)

GNS/GNN=1

Page 10: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Ternary alloys P Ref.

Co2MnSi 56 21

Co2MnGe 58 1

Co2MnSn 60 12

Co2MnAl 60 12

Co2MnGa 60 1

Co2CrAl 62 17

Co2FeAl 59 17

Co2FeSi 60 10

Co2FeGa 58 22

Co2CrGa 61 23

Co2TiSn 57 24

Co2VAl 48 25

Fe2VAl 56 25

Quaternary alloys P(%) Ref.

Co2Mn(Ge0.75Ga0.25) 74 1

Co2Mn(Ga0.5Sn0.5) 72 2

Co2Fe(Si0.75Ge0.25) 70 3

Co2Fe(Ga0.5Ge0.5) 68 4

Co2(Cr0.02Fe0.98)Ga 67 5

Co2Mn(GeSn) 67 6

Co2(Mn0.95Fe0.05)Sn 65 7

(Co, Fe)2MnGe 65 8

Co2(Mn0.5Fe0.5)Ga 65 9

Co2(Cr0.02Fe0.98)Si 65 10

Co2Mn(Ti,Sn) 64 11

Co2Mn(Al0.5Sn0.5) 63 12

Co2Mn(GaxSi1-x) 63 13

Co2Fe(Al.Ga) 63 14

Co2Mn(SiGe) 63 15

Co2(Mn0.5Fe0.5)Si 61 16

Co2(Cr,Fe)Al 60 17

Co2Mn(Al0.5Si0.5) 60 18

Co2Fe(Ga0.5Si0.5) 60 19

Co2Fe(Al0.5Si0.5) 60 20

Metals and binary

P Ref.

Fe 46

Co 45

FeCo 50

Co75Fe25 58

B2-FeCo 60

[Co/Pd]n 60

Fe4N 59 26

Co/Pt 56 27

1. B. Varaprasad et al., APEX3 023002 (2010). 2. B. Varaprasad et al., Acta Matel.57 2702 (2009). 7. A. Rajanikanth et al., JAP103 103904 (2008). 10. S.V. Karthik et al., JAP102 043903 (2007). 12. A. Rajanikanth et al., JAP101 09J508 (2007). 17. S.V. Karthik et al., APL89 052505 (2006). 20.�T.M. Nakatani et al., JAP102 033916 (2007). 21. A. Rajanikanth etal., JAP105 063916 (2009). 23. T.M. Nakatani et al., JPD41 225002 (2008). 25. S.V. Karthik et al., Acta Matel.55 3867 (2007). 26. A. Narahara et al., APL94 202502 (2009). 27. A. Rajanikanth et al., APL97 022505 (2010). 3-6, 8,9,11,13-17,18-20,22,24. To be submitted

Spin polarization measured by PCAR

V. Varaprasad et al. Acta Mater (2012).�

E

D↑

D↓

EF

X2YZ�X2Y(Z1-xZ' x)�

ΔΔRA increase by annealing��

B2 X(Y or Z) L21 X2YZ A2 X or Y or Z Co2Fe(Ga0.5Ge0.5)��

Ru(8)

Co2Fe(Ga0.5Ge0.5)(10)

(001) MgO

anneal Ta

Ag(5)

CFGG(10) Ag(5)

Ag(100)

Cr(10)

L21�B2�

as-depo� Ta<400°C� Ta>400°C�

S. Li, Y.K. Takahashi, T. Furubayashi, and K. Hono, APL 103, 042405 (2013).

Ta allowed for head manufacturing�

B.S.D.Ch.S. Varaprasad et a. Acta Mater. 60, 6257 (2012).$�

Page 11: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

-1500 -1000 -500 0 500 1000 150018

24

30

36

42

48

54

60RA

(mΩµ

m2 )

MR=57% ΔRA=12.0 mΩµm2

H (Oe)

300 K

-1500 -1000 -500 0 500 1000 150018

24

30

36

42

48

54

60

RA

(mΩµ

m2)

H (Oe)

10 K

MR=183% ΔRA=33 mΩµm2

Large temperature dependence of MR��

?�

ΔR/R=183%�

ΔR/R=57%�

ΔRA= 12 mΩµm2, ΔR/R=57%� ΔRA= 33 mΩµm2, ΔR/R=183%�

RT� 10 K�

0 50 100 150 200 250 3000

5

10

15

20

25

30

35

T (K)

ΔRA

(mΩµm

2 )

Ta=600 oC

Ta=500 oC

Ta=300 oC as-depo.

S. Li, Y.K. Takahashi, T. Furubayashi, and K. Hono, APL 103, 042405 (2013).

Origin of T dependence of ΔΔRA

bulk�

interface�

ΔRA ≈ 2ρFβ 2

1−β 2tF + 4ARF /N

γ 2

1−γ 2

Which contributes to T-dependence of ΔRA, β or γ?�

γγ∼∼0.6±0.22

γγ∼∼0.84±0.14

Page 12: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Anisotropy magnetoresistance (AMR) ��

Δρρ

=ρ// − ρ⊥ρ//

×100(%)

I#

M M

ρ//

ρ⊥

Ferromagnet��

ρ// > ρ⊥ :

ρ// < ρ⊥ :Positive�Negative�

I#

Δρρ∝γ (D↑

(d ) −D↓(d ) ) σ↓ −σ↑( )

Kokado et al. (J. Phys. Soc. Jpn. 81, 024705 (2012)) �

no D�(EF) �

D↓(E) D↑(E)

E

half-metal

EF +� -�no D�(EF) � +�-�

AMR is always negative in half-metal �Half-metal:��

Theory of AMR and spin asymmetry by Kokado�

D↓

D↑

∝1+ Δρ / ρc ■Δρ/ρ < 0, |Δρ/ρ|! D↓/D↑" P!.

Eveluation of ββ using AMR measurements��

12

10

8

6

4

2

07006005004003002001000

-0.20

-0.15

-0.10

-0.05

0.00

8

6

4

2

0

-0.20

-0.15

-0.10

-0.05

0.00

Annealing temperature, Tann (°C)

AM

R ra

tio (%

)A

MR

ratio

(%)

∆RA

(mΩ

∙µm

2 )∆R

A (m

Ω∙µ

m2 )

Co2FeGa0.5Ge0.5 (NV = 29.5)

Co2FeGa0.5Ge0.5

Co2MnGa0.25Ge0.75 (NV = 28.75)

Co2MnGa0.25Ge0.75 (b)

(c)

Summary �

Excellent correlation between AMR and ΔRA�

ΔΔRA and AMR��

ΔRA vs AMR ratio

Facile way to estimate β�Y. Sakuraba et a. APL104, 172407 (2014).�

AMR�

ΔRA�

CMGG/Ag/CMGG�AMR�

ΔRA�

CFGG/Ag/CFGG�

Page 13: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

E D↓

CB-edge

VB-edgeCo

2 FeSi (NV = 30.3)Co

2 MnAl0.8 Si0.2 (NV = 28.3)

Co2 FeGa

0.25 Ge0.75 (NV = 28.9)

Co2 MnGa

0.5 Ge0.5 (NV = 29.3)

Δρ(T)= AMR(T) x ρ(T) �

Temperature dependence of ΔΔρρ��

Δρ/Δρ(

10 K

)�

β of CFGG does not degrade at RT!�

Y. Sakuraba et a. APL104, 172407 (2014).�

E

D↑

D↓

EF

X2YZ�X2Y(Z1-xZ' x)�

Band matching at FM/NM interface�

Co2MnGe� Rh2CuSn�

K. Nikolaev et al., Appl. Phys. Lett. 94, 222501(2009)�

maj.� min.�

!  Rh2CuSn (L21)�

spacer layer�

FM layer�thickness dependence�

F N F�

small RF/N for up spin large RF/N for down spin�

ΔRA$∝"ARF/N·!2/(1–!2)�

# small total RF/N �

Page 14: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

All B2 CPP-GMR��

Ru(8 nm)

Co2FeGa0.5Ge0.5(10 nm)

MgO(100) single crystal

Ag(100 nm)

Cr(10 nm)

CuZn or AgZn (5 nm)

Ag(5 nm)

Co2FeGa0.5Ge0.5(10 nm)

Cu or Ag�

Zn�

ΔΔRA and Ta of Heusler/NM/Heusler PSV!

200 300 400 500 600 70002468

10121416182022

Ta (°C)

ΔRA

(mΩ·µ

m2 )

poly-<100> CFGG/Ag poly-<110> CFGG/Ag poly Carey et al., 2011 Diao et al., 2013 $$

epi-(001) CFGG/Ag CFGG/CuZn CFGG/XY CFGG/AgZn$

CFGG/CuZn$

CFGG/Ag$350°C$

p-Carey et al., 2011

p-Diao et al., 2013

Y. Du et al. APL, 2015.$

Page 15: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Interlayer diffusion during annealing��

AgZn�

Ag�

AgZn�

CFGG�

CFGG�

CFGG�

CFGG�Ag�

Tan=350oC�� Tan=630oC��

(200)�B2�

B2�

Z.A.$<110>�

<100>Ag�

Z.A.$<100>�

fcc�

(111)�(200)�

L21�

L21�

Z.A.$<100>�

<100>Ag�

Z.A.$<110>�

fcc�

As1dep.��

(200)�B2�

B2�

B2�

<100>Ag�

Spacer:$B2�� Spacer:$fcc� Spacer:$fcc�

CFGG:$B2� CFGG:$B2� CFGG:$L21��

Structure change of AgZn spacer layer

B2eAgZn� fcceAg�

CFGG�

CFGG�

CFGG�

CFGG�

Page 16: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

0 0.5 1 1.5 2 2.5 3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5

0 0.5 1 1.5 2 2.5 3

Improvement of γγ by band matching��

▪ B2 structure, a = 0.288 nm Good structural and band

structure matching

Why NiAl insertion ? Disadvantage of NiAl Short spin diffusion length of NiAl ~ 8 nm

T.'Naka+ni')doctoral'thesis)'

CFAS/NiAl$(tN)/CFAS�

CFGG�Ag�B2-NiAl

(tNiAl = 0.2-0.6 nm)�

CFGG�

Improve band matching by inserting thin NiAl to Ag spacer interface ?

←�

This study Tann = 550��

Ni

Al

CFGG/Ag(fcc)/CFGG�CFGG/NiAl(B2)/CFGG�

kx� kx�

ky� ky�

RA = 2.9 mΩµm2� RA = 4.5 mΩµm2�

Calculated transmittance based first-principles calculation �

→�Better band matching between CFGG and NiAl.�

Calculated'by'Y.'Miura

cf. Ag > 200 nm

Small ΔRA using thick NiAl spacer because of spin relaxation�

Ta=550!!

Large MR in CPP-GMR with NiAl insertion

ΔΔRRAA$$~~""3311mmΩΩ))mm22

MMRRiinntt""~~""8822%% tNiAl#=#0.21#nm ΔΔRRAA""~~""7788mmΩΩ))mm22

MMRRiinntt""~~""228855%% tNiAl#=#0.21#nm

Page 17: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

MR-RA updated benchmark��

HGST,2015�

NIMS, 2015�

NIMS,2015

MgO-MTJ, AIST�

285%��

82%��

NIMS,2016

Summary��

2���%�

�H��%%����

247���%�����H������

7H8�%%����T���

247���%�����H������

� Co-poor CFMS electrode �:T������

2���%�

�H��%%����

2455��%����AgZn 5 nm�

7H8�%%����T���

2455��%�����H������:T������

� NiAl/AgZn/NiAl spacer�

NiAl�

NiAl�

Tann#:#550℃

2���%�

�H��%%����

2455��%������8��(����

7H8�%%����T���

2455��%�����H������

� XYO spacer�

:T������

Ag(1)�

Ag(1)�

2���%�

�H��%%����

2455��%����a���H������

7H8�%%����T���

2455��%�����H������:T������

NiAl/Ag/NiAl spacer�

NiAl�

NiAl�

J. W. Jung., APL (in press) �

MgO-MTJ, AIST�

Page 18: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

CFGG�

Ag�

CFGG�

�����8��

Epi. VS Poly.

MR ratio=41.7% at RT RA=9.5

(110)-oriented Polycrystalline Film structure

MR ratio=~10% at RT RA=~4

VS

:T�%%%���

2455�%%���

7H8�%%���

�H�%%���2��%%���

�H��%%���

�H�%%���

2455�%%���

(100)-oriented Epitaxial Film structure

�����������

2455���%��

2455���%���H������

5$nm�

:T�%%%���

CFGG stands for Co2FeGa0.5Ge0.5

�H������

(001)CFGG/(001)Ag interface >> (011)CFGG/(111)Ag interface��0.7% 0.7%

0.7% 18.9% <<

Ta$(3$nm)�

Ru$(10$nm)�Ag$(3$nm)�

Co2Fe(Al,Si)(5!nm)��

Ag!(7!nm)��

Ag$(5$nm)�

Ru(6$nm)/Ta(2$nm)/Ru(2$nm)�

Co2Fe(Al,Si)(5!nm)��

Si/SiO2�

Ta$(5$nm)�

Cu$(250$nm)�

Ta�

SiO2�

Cu�

Polycrystalline CFAS PSV on Si substrate��

Cu�

Ta�

Ru�

Ag�Co2Fe(Al,Si)�Ag�Co2Fe(Al,Si)�Ag�

Chemical$Mechanical$Processing�

Page 19: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

SiO2//Ta/Ru/Ag/CFAS(20$nm)/Ag(10$nm)�CFAS$400$C� CFAS$450$C�

CFGG$350$C�

In-plane TEM observations of CFAS layer

OR:$[111](220)Ag$//[011](002)Heusler$

220�

400�

e200�

400�

220�

220�

400�CFAS[011]$

Ag[111]$

T.M.$Nakatani,$Ye$Du,$Y.K.$Takahashia,$T.$Furubayashi,$K.$Hono,$Acta$Mater.$61,$3695$(2013).$$

2 Tbit/in2 read head$

10 nm node STT-MRAM$

TMR approach!

MR>300%, RA<0.8Ωµm2

for 10X STT-MRAM and spin-logic

reduction of barrier Eg$

Two approaches toward low RA & high MR devices$

Page 20: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Prospect of CPP-GMR sensors��

HDD read sensor MR for STT-RAM��Magnetic Sensor

��earth magnet, automotive, bio����

$RA ~ 30-60 mΩµm2, MR = 40-60%@RT�

RA ~ 50 – 100 mΩµm2 Polycrystalline device on pearmalloy Tann < 350�, high damping α�

RA~100-500 mٵm2, MR ~ 300% high Ku, low Ms, low �PMA

MR > 100%, linear response

RT half-metal [001]-textured polycrystal New spacer (band matchin, large RF/N), ΔRA > 15mΩµm2�

New Heusler alloy New spacer material Understanding transport properties (VF, AMR, XMCD,theoretical), Growth on pearmalloy �

Oxide spacer�

Multilayer�dual-spin valve Interlayer exchange coupling

high MR using interface control Single crystalline device on Si

Required�

Our approach�

Research subjects�

MgO-MTJ��

Takagishi et al., IEEE Trans. Magn. (2010).

Ferrimagnetic Heusler alloy low Eg, coherent tunneling�

Interlayer exchange coupling

Acknowledgement��

S. T. Li

Y. Sakuraba� Y. K. Takahashi� T. Furubayashi�

�. Bosu T. T. Sasaki

Ye Du J. Chen

T. Nakatani

J. W. Jung

Page 21: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

Magnetic Materials Unit��

•  IEEE Magnetics Society Home Page: www.ieeemagnetics.org –  3000 full members–  300 student members !

•  The Society–  Conference organization (INTERMAG, MMM, TMRC, etc.)–  Student support for conferences–  Graduate Student Summer Schools–  Local chapter activities–  Distinguished lectures

•  Journals (Free Electronic Access for Mambers)–  IEEE Transactions on Magnetics–  IEEE Magnetics Letters

•  Online applications for IEEE membership: www.ieee.org/join–  360,000 members –  IEEE student membership IEEE full membership

Page 22: Materials challenges for next-generation high- density ...CPP-GMR and FM Heusler alloys Co 2FeZ or Co 2MnZ Heusler alloys bulk interface ΔRA ≈2ρ F β2 1−β2 t F +4AR F/N γ2

T dependence of µµCo at CMS & CFS/Ag interfaces��H. Yako et al. MMM2014. �

Ag(40) / Co2MnSi (10) / Ag (1)�

Ms : Co2FeSiMs : Co2MnSi

μCo : Co2FeSi

Co2MnSI/Co2FeSi (10 nm)

Ag (1.0 nm)

Bulk region (VSM)

Ag interface region (XMCD)

μCo : Co2MnSi

1.0

0.8

0.6

0.4

0.2

0.010008006004002000

Temperature (K)μ

Co/μ

Co (3

00 K

)M

S/M

S(1

0K),

Co2MnSi�

Ag�

MgO (001)-subs.�

Cr (001) 20 nm�

Ag (001) 40 nm�

Co2FeSi or Co2MnSi 10 nm�

Ag 1nm�Al-cap 3nm�

Co2MnSi$

Ag$

Ag(40) / Co2FeSi (10) / Ag (1)�

Ag�

Fe$Si� Co2FeSi�

Ag�

Co2FeSi$

Ag$

How to surpress the reduction of spin moment at Hesuer/Ag interface?��

N. Hase et al. JAP 109, 07E112 (2011).�

Insersion of thin FM layer for increasing exchange stiffness�

1 1

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

ΔRA

(mΩµm

2 )

CoFe 450 oC 250 oC 500 oC 400 oC 550 oC

(a)