math-integration-homework help

9
Sample Math Homework | Sample Assignment | www.expertsmind.com Solution: (a) f(x)= Cos (ln(x)) I= ò dx Cos(ln(x)) Put ln(x) = t X= e t Differentiating dx = e t dt Then I= ò dt coste t Integrating by parts we get ò ò - = vdu uv udv dv= e t dt u= cost V= e t du = -sint dt I= e t cost - ò -sint)dt ( e t I= e t cost + ò (sint)dt e t Further integrating by parts we get dv= e t dt u= sint V= e t du = Cost dt I= e t cost + e t sint - ò (cost)dt e t I= e t cost + e t sint – I 2I= e t cost + e t sint I= 2 1 [ e t cost + e t sint] I= 2 1 [ e ln(x) cos(ln(x)) + e ln(x) sin(ln(x))]

Upload: expertsmind-edu

Post on 20-Feb-2016

213 views

Category:

Documents


1 download

DESCRIPTION

Math: - The study of math is concerned with space, structure, relation, change and many other area and pattern. At present, math is used all around the world as an essential or very important tool in most of the fields and areas, including social science, engineering, medicine, natural science and others.

TRANSCRIPT

Sample Math Homework | Sample Assignment | www.expertsmind.com

Solution: (a) f(x)= Cos (ln(x))

I= ò dxCos(ln(x))

Put ln(x) = t X= et Differentiating dx = et dt Then

I= ò dtcostet

Integrating by parts we get

ò ò-= vduuvudv dv= et dt u= cost

V= et du = -sint dt

I= et cost - ò -sint)dt(et

I= et cost + ò (sint)dtet

Further integrating by parts we get dv= et dt u= sint V= et du = Cost dt

I= et cost + et sint - ò (cost)dtet

I= et cost + et sint – I 2I= et cost + et sint

I= 21

[ et cost + et sint]

I= 21

[ eln(x) cos(ln(x)) + eln(x) sin(ln(x))]

I= 21

[x cos(ln(x)) +xsin(ln(x))]

I=2x

[cos(ln(x))+sin(ln(x))]+C

(b) 5cos(x)3

1dxdy

+=

ò +=

5cos(x)3dx

y

ò

úúúú

û

ù

êêêê

ë

é

++

=

2x

tan1

2x

tan-153

dxy

2

2

ò-++

úû

ùêë

é +=

2x

5tan52x

3tan3

dx2x

tan1y

22

2

ò-

=

2x

2tan8

dx2x

Secy

2

2

òúû

ùêë

é -=

2x

tan42

dx2x

Secy

2

2

Put tan2x

= t; differentiating we get

dx2x

Sec21 2 = dt

ò -=

2t4

dty

dtt)t)(2(2t2t-2

41

y ò +-++

= = úû

ùêë

é+

+-ò ò t2

dtt2

dt41

=t2t2

ln41

-+

= c

2x

tan2

2x

tan2ln

41

+-

+

(c) 98xxdxdy 2 --=

916-168xxdxdy 2 -+-=

254)-(xdxdy 2 -=

ò -= dx 254)-(xy 2 Put x-4= 5 coshu

Differentiating dx= 5 sinhu du

5sinhudu 25u25coshy 2ò -= = ò udu25sinh2

du2ee

25y2uu

ò úúû

ù

êêë

é -=

-

= ò -+ - 2]due[e425 2u2u = [ ]4uee

825 2u2u -- -

( )( )[ ]4ueeee825

y uuuu -+-= --

[ ]4uu4sinhucosh825

y -= = c5

4xcosh

598xx

54x

225 1

2

+úú

û

ù

êê

ë

é --

--- -

Solution: (a)

I= òucoshudu dv= coshudu t= u

V= sinhu dt= du

ccoshuusinhu

sinhuduusinhu

vdttvtdv

+-=

-=

-=

òò ò

(b) 4)4)Cosh(x(x2x

ydxdy 22 ++=

++

This is a linear differential equation.

4)4)Cosh(x(x Q and 2x

1P 22 ++=

+=

Integrating factor is

2)(xeee 2)ln(x2xdx

pdx+=== ++òò

Multiplying the given ODE by the integrating factor we get

4)4)Cosh(x2)(x(xydxdy

2)(x 22 +++=++

4)4)Cosh(x2)(x(xdx

2)yd(x 22 +++=+

Integrating on both sides

Y(x+2)= ò +++ 4)dx4)Cosh(x2)(x(x 22 =

òò +++++ 4)dx4)Cosh(x(x24)dx4)Cosh(x(xx 2222 = I1+I2

In the first integral Put (x2+4) = t differentiating we get 2x dx= dt then it gets transformed to

I1= ò tcoshtdt21

= 21

{tsinht -cosht}+C= 21

{( x2+4)Sinh (x2+4)-cosh(x2+4)}+C

I2 is not a standard integral. This has to be done by series method.

We know that Coshu= 2ee uu --

= ...4u

2u

142

*+

*+ , where * stands for factorial of a

number.

In our case u= x2+4, replacing we get =Cosh (x2+4) ...4

4)(x2

4)(x1

4222

*+

+*+

+

I2= ò *+

+*+

+ dx ...4

4)(x2

4)(x1

5232

expanding and integrating we get

I2=x+21

[ 64x24x5

12x7x 2

57

+++ ]…..

(c)

Area under region

òò =pp

p 0-

dx coshx xdx coshx x 2 due to its symmetry about y- axis.

= [ ]p0coshxxsinhx2 - = 2[psinhp-coshp +1] If the area density of the sheet is r, then the mass of the blade is 2r[psinhp-coshp +1]. Center of mass Consider a thin strip of thickness dx at a distance of x from the origin as shown in the figure

Mass of the strip is rxcosh(x)dx

Then the center of mass= M

dx coshx xπ

π-

2ò=[ ]

M2sinhx2xcoshxSinhxx2 p

p--- (On

integrating by Parts successively) Center of mass = 0 as the numerator vanishes. The center of mass lies at the origin which is true from its symmetry.

Solution: (a) 04dxdy

4dx

yd2

2

=+-

Auxiliary equation: 044mm2 =+- ; (m-2)2=0; m=2 the roots are real and equal. Hence y=(Ax+B)e 2x

Eigen vectors: Eigen values:

(b) 4xe4dxdy

4dx

yd x2

2

+=+-

Auxiliary equation: 044mm2 =+- ; (m-2)2=0; m=2 the roots are real and equal. Hence General solution: y=(Ax +B)e 2x

Particular Integral:

PI= 44DD

4xe2

x

+-

+=

44DD

e2

x

+-+

44DD

4x2 +-

= 44(1)(1)

e2

x

+-+

)/DD-4(1

4x2 4+

=ex + (1-D+D2/4)-1(x)= ex + (x+1) Hence Y= GS+PI= y=(Ax +B)e 2x + ex + (x+1)

Y(0) = 3; hence 3=B+2; B= 1 Y’= (Ax+B) 2 e2x +A e2x +ex +1 At x= 0 Y’=6 6= 2B +A +2; A= 2 Substituting the values of A and B in Y= (Ax +B)e 2x + ex + (x+1); we get Y= (2x +1)e 2x + ex + (x+1)

Solution:

(a) I= [ ] dxxcos21ò - Put x= Cost; differentiating we get dx= sint dt

ò= (sint)dtt I 2 dv= -sint dt u= t2

V= cost du=2tdt

òò ò

-=

-=

2tcostdtcosttI

vduuvudv

2

12 I-costtI = where

I1= ò2tcostdt dv= cost dt u=2t

V= sint du= 2dt

2cost2tsintI

2sintdt2tsintI

1

1

+=

-= ò

I= t2cost-2tsint-2cost+c { x= Cost; sintx-1 2 = ; t= xcos 1- }

I= x [ ]21xcos- -2 xcos 1- 2x-1 -2x+C (b) Trace of the given curve

Curve is symmetric about the Y axis

Hence òò =

-

2

0

2

2

cosxdx2cosxdx

pp

p

= [ ]20sinx2p

=2[1-0]=2

(b) Consider a small strip of thickness dx at a distance of x from the origin as shown in the figure To find the position on the Y axis,

Consider a thin horizontal strip of thickness dy at a distance of y from the origin; the area of the strip is 2cos -1ydy. Hence the mass of the strip is r2cos -1ydy.

Center of mass=M

ydyρ2ycos 1-ò1

0 =2ρ

ydyρ2ycos1

0

1-ò= ò

1

0

1- ydyycos =. Integrating by

parts we get After substituting y = cost we get

ò1

0

1- ydyycos = ò2

0

tdt sint cost

p

= ò2

0

tsin2tdt21

p

= [ ]20sin2t2tcos2t81

p

+- =8p

Hence the center of mass of the strip is (0, 8p

)

Microsoft Equation 3.0