math of optimization

Upload: qrazykat

Post on 02-Jun-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/9/2019 Math of Optimization

    1/112

    1

    THE MATHEMATICS OFOPTIMIZATION

    From Nicholson and Snyder, Microeconomic Theory BasicPrinciples and Extensions, 10 th Edition, Chapter 2

  • 8/9/2019 Math of Optimization

    2/112

    2

    The Mathematics of Optimization

    Many economic theories be in !ith theass"mption that an economic a ent is see#into fin$ the optima% &a%"e of some f"nction ' cons"mers see# to ma(imize "ti%ity ' firms see# to ma(imize profit

  • 8/9/2019 Math of Optimization

    3/112

    Ma(imization of a F"nction of One )ariab%e

    ! Example" Pro#it maximi$ation

    )(qf =

    = f(q)

    %&antity

    *

    q*

    Maxim&m pro#its o# * occ&r at ' *

  • 8/9/2019 Math of Optimization

    4/112

    (

    Ma(imization of a F"nction of One )ariab%e

    ! The mana)er *ill li+ely try to ary q to see *herethe maxim&m pro#it occ&rs

    an increase #rom q 1 to q 2 leads to a rise in

    = f(q)

    %&antity

    *

    q*

    1

    q1

    2

    q2

    *>

    q

  • 8/9/2019 Math of Optimization

    5/112

    -

    Ma(imization of a F"nction of One )ariab%e! .# o&tp&t is increased /eyond ' , pro#it *ill decline

    an increase #rom q to q leads to a drop in

    = f(q)

    %&antity

    *

    q*

    *

    2

    *q q

    d dq

    = < an$ * for 3

    d q q

    dq

    < >

    Therefore1 at q31d -dq m"st be $ecreasin

  • 8/9/2019 Math of Optimization

    11/112

  • 8/9/2019 Math of Optimization

    12/112

    12

    Secon$ Or$er Con$ition

    The secon$ or$er con$ition to represent a/%oca%0 ma(im"m is

    6

    6 33

    7/ 0 *q q

    q q

    d f q

    dq

    =

    == 9 %n

    for any constant

    x xd x da a a

    dx x dx

    a

    = =

    ' a specia% case of this r"%e is de x-dx , e x

  • 8/9/2019 Math of Optimization

    15/112

    1-

    8"%es for Fin$in +eri&ati&es

    : / 0 / 0;?9

  • 8/9/2019 Math of Optimization

    16/112

    1

    8"%es for Fin$in +eri&ati&es

    6

    / 0/ 0

  • 8/9/2019 Math of Optimization

    17/112

  • 8/9/2019 Math of Optimization

    18/112

    13

    8"%es for Fin$in +eri&ati&es

    / 0.*9

    / 0

    ax axax axde de d ax e a ae

    dx d ax dx= = =

    Some e(amp%es of the chain r"%e inc%"$e

    :%n/ 0; :%n/ 0; / 0 . ...9

    / 0d ax d ax d ax

    adx d ax dx ax x

    = = =

    6 6 6

    6 6

    :%n/ 0; :%n/ 0; / 0 . 6.69 6

    / 0d x d x d x

    xdx d x dx x x

    = = =

  • 8/9/2019 Math of Optimization

    19/112

    14

    E(amp%e of Profit Ma(imization S"ppose that the re%ationship bet!een profit an$

    o"tp"t is , .1*** q 5 >q6

    The first or$er con$ition for a ma(im"m isd -dq , .1*** 5 .* q , *

    q3 , .**

    Since the secon$ $eri&ati&e is a%!ays 5.*1q , .** is a %oba% ma(im"m

  • 8/9/2019 Math of Optimization

    20/112

    20

    F"nctions of Se&era% )ariab%es

    Most oa%s of economic a ents $epen$ on se&era%&ariab%es

    ' tra$e5offs m"st be ma$e The $epen$ence of one &ariab%e / y0 on a series of

    other &ariab%es / x. 1 x61 1 xn0 is $enote$ by

    . 6/ 1 19991 0n y f x x x=

  • 8/9/2019 Math of Optimization

    21/112

    21

    The partia% $eri&ati&e of y !ith respect to x. is$enote$ by

    Partia% +eri&ati&es

    . .. .

    or or or x y f

    f f x x

    It is "n$erstoo$ that in ca%c"%atin the partia%$eri&ati&e1 a%% of the other xDs are he%$ constant

  • 8/9/2019 Math of Optimization

    22/112

    22

    A more forma% $efinition of the partia%$eri&ati&e is

    Partia% +eri&ati&es

    6

    . 6 . 6

    *. 19991

    / 1 19991 0 / 1 19991 0%im

    n

    n n

    h x x

    f x h x x f x x x f x h

    + =

  • 8/9/2019 Math of Optimization

    23/112

    2

    Ca%c"%atin Partia% +eri&ati&es6 6

    . 6 . . 6 6

    . . 6.

    6 . 66

    .9 If / 1 0 1 then

    6 an$

    6

    y f x x ax bx x cx

    f f ax bx

    x

    f f bx cx

    x

    = = + + = = + = = +

    . 6

    . 6 . 6

    . 6

    . 6. 6

    69 If / 1 0 1 then

    an$

    ax bx

    ax bx ax bx

    y f x x e

    f f f ae f be

    x x

    +

    + +

    = = = = = =

  • 8/9/2019 Math of Optimization

    24/112

    2(

    Ca%c"%atin Partia% +eri&ati&es

    . 6 . 6

    . 6. . 6 6

    29 If / 1 0 %n %n 1 then

    an$

    y f x x a x b x

    f a f b f f

    x x x x

    = = + = = = =

  • 8/9/2019 Math of Optimization

    25/112

    2-

    Partia% +eri&ati&es

    Partia% $eri&ati&es are the mathematica%e(pression of the ceteris paribus

    ass"mption ' sho! ho! chan es in one &ariab%e affect someo"tcome !hen other inf%"ences are he%$constant

  • 8/9/2019 Math of Optimization

    26/112

    2

    Partia% +eri&ati&es

    e m"st be concerne$ !ith ho! &ariab%esare meas"re$

    ' if q represents the "antity of aso%ine$eman$e$ /meas"re$ in bi%%ions of %iters0 an$ p represents the price in $o%%ars per %iter1 then q- p !i%% meas"re the chan e in $eman$ /in

    bi%%ions of %iters per year0 for a $o%%ar per %iterchan e in price

  • 8/9/2019 Math of Optimization

    27/112

    2

    E%asticity

    E%asticities meas"re the proportiona% effectof a chan e in one &ariab%e on another ' "nit free

    The e%asticity of y !ith respect to x is

    1 y x

    y

    y x y x ye x x y x y

    x

    = = =

  • 8/9/2019 Math of Optimization

    28/112

    23

    E%asticity an$ F"nctiona% Form S"ppose that

    y = a + bx + other terms

    In this case1

    1 y x

    y x x xe b b

    x y y a bx= = = + +

    e y,x is not constant ' it is important to note the point at !hich the

    e%asticity is to be comp"te$

  • 8/9/2019 Math of Optimization

    29/112

    24

    E%asticity an$ F"nctiona% Form

    S"ppose that

    y = ax b

    In this case1

    .1

    b y x b

    y x xe abx b

    x y ax

    = = =

  • 8/9/2019 Math of Optimization

    30/112

    0

    E%asticity an$ F"nctiona% Form S"ppose that

    %n y = %n a G b %n x

    In this case1

    1

    %n%n y x

    y x ye b

    x y x = =

    E%asticities can be ca%c"%ate$ thro" h%o arithmic $ifferentiation

  • 8/9/2019 Math of Optimization

    31/112

  • 8/9/2019 Math of Optimization

    32/112

    2

    o"n Ds Theorem

    n$er enera% con$itions1 the or$er in !hich partia% $ifferentiation is con$"cte$ to e&a%"atesecon$5or$er partia% $eri&ati&es $oes notmatter

    ij ji f f =

  • 8/9/2019 Math of Optimization

    33/112

    se of Secon$5Or$er Partia%s Secon$5or$er partia%s p%ay an important ro%e

    in many economic theories

    One of the most important is a &ariab%eDso!n secon$5or$er partia%1 f ii ' sho!s ho! the mar ina% inf%"ence of xi on

    y/ y- xi0 chan es as the &a%"e of xi increases

    ' a &a%"e of f ii J * in$icates $iminishin mar ina%effecti&eness

  • 8/9/2019 Math of Optimization

    34/112

    (

    Ma(imizationB Se&era% )ariab%es

    S"ppose that y , f / x. 1 x61 1 xn0 If a%% xDs are &arie$ by a sma%% amo"nt1 the tota%

    effect on y !i%% be

    . 6. 6

    999 nn

    f f f dy dx dx dx

    x x x = + + +

    . . 6 6 999 n ndy f dx f dx f dx= + + + This e(pression is the tota% $ifferentia%

  • 8/9/2019 Math of Optimization

    35/112

    -

    First5Or$er Con$ition for a

    Ma(im"m /or Minim"m0 A necessary con$ition for a ma(im"m /or minim"m0 of the

    f"nction f / x. 1 x61 1 xn0 is that dy , * for any combination ofsma%% chan es in the xDs

    The on%y !ay for this to be tr"e is if

    . 6 999 *n f f f = = = = A point !here this con$ition ho%$s is ca%%e$ a critica% point

  • 8/9/2019 Math of Optimization

    36/112

    Fin$in a Ma(im"m

    S"ppose that y is a f"nction of x. an$ x6 y , 5 / x. 5 .06 5 / x6 5 606 G .*

    y , 5 x.6

    G 6 x. 5 x66

    G = x6 G > First5or$er con$itions imp%y that

    ..

    66

    6 6 *

    6 = *

    y x

    x y

    x x

    = + =

    = + =

    O8 3.

    36

    .

    6

    x

    x

    =

    =

  • 8/9/2019 Math of Optimization

    37/112

    Imp%icit F"nction Theorem

    It may not a%!ays be possib%e to so%&e imp%icitf"nctions of the form g / x1 y0,* for "ni "ee(p%icit f"nctions of the form y , f / x0 ' mathematicians ha&e $eri&e$ the necessary

    con$itions ' in many economic app%ications1 these con$itions are

    the same as the secon$5or$er con$itions for ama(im"m /or minim"m0

  • 8/9/2019 Math of Optimization

    38/112

    3

    +eri&ati&es of imp%icit f"nctions

    Imp%icit f"nctionB / 1 0 *

    Tota% $ifferentia%B *

    Hence1 the imp%icit $eri&ati&e can be fo"n$

    as the ne ati&e of the ratio of partia% $eri&ati&esof the imp%icit f"nction9

    x y

    x

    y

    f x y

    f dx f dy

    f dydx f

    dydx

    =

    = +

    =

  • 8/9/2019 Math of Optimization

    39/112

    4

    Pro$"ction Possibi%ity Frontier

    Ear%ier e(amp%eB6 x6 G y6 , 66> Can be re!rittenB f / x1 y0 , 6 x6 G y6 5 66> , * Keca"se f x , = x an$ f y , 6 y, the opport"nity cost tra$e5off

    bet!een x an$ y is= 6

    6 x

    y

    f dy x xdx f y y

    = = =

  • 8/9/2019 Math of Optimization

    40/112

    (0

    The En&e%ope Theorem

    The en&e%ope theorem concerns ho! theoptima% &a%"e for a partic"%ar f"nction chan es

    !hen a parameter of the f"nction chan es This is easiest to see by "sin an e(amp%e

  • 8/9/2019 Math of Optimization

    41/112

    (1

    The En&e%ope Theorem

    S"ppose that y is a f"nction of x

    y , 5 x6 G ax For $ifferent &a%"es of a1 this f"nction

    represents a fami%y of in&erte$ parabo%as If a is assi ne$ a specific &a%"e1 then y

    becomes a f"nction of x on%y an$ the &a%"e of x that ma(imizes y can be ca%c"%ate$

  • 8/9/2019 Math of Optimization

    42/112

    (2

    The En&e%ope Theorem

    6 . .2 2-6 L-== 6 => >-6 6>-=? 2 L

    Optimal Values of x and y for alternative values of a

  • 8/9/2019 Math of Optimization

    43/112

    (

    The En&e%ope Theorem

    As a increases,the maximal valuefor y ( y*) increases

    The relationshipbetween a and yis quadratic

    y 5#6a7

  • 8/9/2019 Math of Optimization

    44/112

    ((

    The En&e%ope Theorem

    S"ppose !e are intereste$ in ho! y3 chan esas a chan es

    There are t!o !ays !e can $o this ' ca%c"%ate the s%ope of y $irect%y ' ho%$ x constant at its optima% &a%"e an$ ca%c"%ate

    y- a $irect%y

  • 8/9/2019 Math of Optimization

    45/112

    (-

    The En&e%ope Theorem

    To ca%c"%ate the s%ope of the f"nction1 !e m"st so%&efor the optima% &a%"e of x for any &a%"e of a

    S"bstit"tin 1 !e et

    6 *

    36

    dy x a

    dxa

    x

    = + =

    =

    6 6

    6 6 6

    3 / 30 / 30 / - 60 / - 60

    3 - = - 6 - =

    y x a x a a a

    y a a a

    = + = +

    = + =

  • 8/9/2019 Math of Optimization

    46/112

    (

    The En&e%ope Theorem

    Therefore1

    dy3 /da , 6 a-= , a-6 , x3

    K"t1 !e can sa&e time by "sin the en&e%opetheorem ' for sma%% chan es in a1dy3-da can be comp"te$ by

    ho%$in x at x3 an$ ca%c"%atin y- a $irect%y from y

  • 8/9/2019 Math of Optimization

    47/112

  • 8/9/2019 Math of Optimization

    48/112

    (3

    The En&e%ope TheoremB S"mmary

    The en&e%ope theorem states that the chan e inthe optima% &a%"e of a f"nction !ith respect to a

    parameter of that f"nction can be fo"n$ by

    partia%%y $ifferentiatin the ob ecti&e f"nction!hi%e ho%$in x /or se&era% xDs0 at its optima%&a%"e

    3 O 3/ 0Pdy y x x ada a

    = =

  • 8/9/2019 Math of Optimization

    49/112

    (4

    The En&e%ope Theorem B Many )ariab%es

    The en&e%ope theorem can be e(ten$e$ to thecase !here y is a f"nction of se&era% &ariab%es

    y , f / x. 1 xn1a0

    Fin$in an optima% &a%"e for y !o"%$ consist ofso%&in n first5or$er e "ations

    y- xi , * / i , .1 1 n0

  • 8/9/2019 Math of Optimization

    50/112

    -0

    The En&e%ope Theorem

    Optima% &a%"es for these xDs !o"%$ be$etermine$ that are a f"nction of a

    3 3. .

    3 36 6

    3 3

    , / 01, / 01

    / 09n n

    x x a x x a

    x a=

  • 8/9/2019 Math of Optimization

    51/112

    -1

    The En&e%ope Theorem

    S"bstit"tin into the ori ina% ob ecti&e f"nctionyie%$s an e(pression for the optima% &a%"e of y / y30

    y3 , f : x. 3/ a01 x63/ a01 1 xn3/ a01a;

    +ifferentiatin yie%$s

    . 6

    . 6

    3 999 nn

    dxdx dxdy f f f f da x da x da x da a

    = + + + +

  • 8/9/2019 Math of Optimization

    52/112

  • 8/9/2019 Math of Optimization

    53/112

    -

    The En&e%ope Theorem

    6 6 3 3. 6 . 6

    6 6. 6 . 6

    . 6

    E(amp%eB

    / .0 / 60 .* .1 61 3 .*

    Instea$ of .*1 "se the parameter

    / 1 1 0 / .0 / 60In this case1 the optima% &a%"es of an$ $o not $epen$

    on 9 So

    3

    3 .

    y x x x x y

    a

    y f x x a x x a x x

    a

    y a

    dyda

    = + = = =

    = = +

    =

    =

  • 8/9/2019 Math of Optimization

    54/112

    -(

    Constraine$ Ma(imization

    hat if a%% &a%"es for the xDs are not feasib%eQ ' the &a%"es of x may a%% ha&e to be positi&e '

    a cons"merDs choices are %imite$ by the amo"ntof p"rchasin po!er a&ai%ab%e

    One metho$ "se$ to so%&e constraine$ma(imization prob%ems is the Ra ran ianm"%tip%ier metho$

  • 8/9/2019 Math of Optimization

    55/112

    --

    Ra ran ian M"%tip%ier Metho$

    S"ppose that !e !ish to fin$ the &a%"es of x. 1 x61 1 xn that ma(imize

    y , f / x. 1 x61 1 xn0 s"b ect to a constraint that permits on%y

    certain &a%"es of the xDs to be "se$

    g / x. 1 x61 1 xn0 , *

  • 8/9/2019 Math of Optimization

    56/112

    -

    Ra ran ian M"%tip%ier Metho$ The Ra ran ian m"%tip%ier metho$ starts

    !ith settin "p the e(pression

    L , f / x. 1 x61 1 xn 0 G g / x. 1 x61 1 xn0 !here is an a$$itiona% &ariab%e ca%%e$ aRa ran ian m"%tip%ier

    hen the constraint ho%$s1 L , f beca"se g / x. 1 x61 1 xn0 , *

  • 8/9/2019 Math of Optimization

    57/112

    -

    Ra ran ian M"%tip%ier Metho$ First5Or$er Con$itions

    . . .

    6 6 6

    . 6

    - *

    - *

    - *

    R- / 1 19991 0 *n n n

    n

    x f g

    x f g

    x f g

    g x x x

    = + = = + =

    = + = = =

  • 8/9/2019 Math of Optimization

    58/112

    -3

    Ra ran ian M"%tip%ier Metho$ The first5or$er con$itions can enera%%y be

    so%&e$ for x. 1 x61 1 xn an$

    The so%"tion !i%% ha&e t!o propertiesB ' the xDs !i%% obey the constraint ' these xDs !i%% ma#e the &a%"e ofL /an$ therefore

    f 0 as %ar e as possib%e

  • 8/9/2019 Math of Optimization

    59/112

  • 8/9/2019 Math of Optimization

    60/112

    0

    Ra ran ian M"%tip%ier Metho$ At the optima% choices for the xDs1 the ratio of

    the mar ina% benefit of increasin xi to themar ina% cost of increasin xi sho"%$ be thesame for e&ery x is the common cost5benefit ratio for a%% ofthe (Ds

    mar ina% benefit ofmar ina% cost of

    i

    i

    x x

    =

  • 8/9/2019 Math of Optimization

    61/112

    1

    Ra ran ian M"%tip%ier Metho$ If the constraint !as re%a(e$ s%i ht%y1 it !o"%$ not

    matter !hich x is chan e$ The Ra ran ian m"%tip%ier pro&i$es a meas"re of

    ho! the re%a(ation in the constraint !i%% affect the&a%"e of y

    pro&i$es a sha$o! price to the constraint

  • 8/9/2019 Math of Optimization

    62/112

    2

    Ra ran ian M"%tip%ier Metho$

    A hi h &a%"e of in$icates that y co"%$ be increase$s"bstantia%%y by re%a(in the constraint ' each x has a hi h cost5benefit ratio

    A %o! &a%"e of in$icates that there is not m"ch to be aine$ by re%a(in the constraint ,* imp%ies that the constraint is not bin$in

  • 8/9/2019 Math of Optimization

    63/112

    +"a%ity

    Any constraine$ ma(imization prob%em hasassociate$ !ith it a $"a% prob%em in

    constraine$ minimization that foc"sesattention on the constraints in the ori ina% prob%em

  • 8/9/2019 Math of Optimization

    64/112

    (

    +"a%ity

    In$i&i$"a%s ma(imize "ti%ity s"b ect to a b"$ et constraint ' $"a% prob%emB in$i&i$"a%s minimize the

    e(pen$it"re nee$e$ to achie&e a i&en %e&e% of"ti%ity

    Firms minimize the cost of inp"ts to pro$"ce

    a i&en %e&e% of o"tp"t ' $"a% prob%emB firms ma(imize o"tp"t for a i&en

    cost of inp"ts p"rchase$

  • 8/9/2019 Math of Optimization

    65/112

    -

    Constraine$ Ma(imization

    S"ppose a farmer ha$ a certain %en th of fence/ ! 0 an$ !ishe$ to enc%ose the %ar est possib%erectan "%ar shape

    Ret x be the %en th of one si$e Ret y be the %en th of the other si$e Prob%emB choose x an$ y so as to ma(imize the

    area / " , x#y0 s"b ect to the constraint that the perimeter is fi(e$ at ! , 6 x G 6 y

  • 8/9/2019 Math of Optimization

    66/112

  • 8/9/2019 Math of Optimization

    67/112

    Constraine$ Ma(imization

    Since y-6 , x-6 , 1 x m"st be e "a% to y ' the fie%$ sho"%$ be s "are ' x an$ y sho"%$ be chosen so that the ratio of

    mar ina% benefits to mar ina% costs sho"%$ be thesame

    Since x , y an$ y , 6 1 !e can "se the

    constraint to sho! that x , y , ! -=

    , ! -

  • 8/9/2019 Math of Optimization

    68/112

    3

    Constraine$ Ma(imization

    Interpretation of the Ra ran ian m"%tip%ier ' if the farmer !as intereste$ in #no!in ho! m"ch

    more fie%$ co"%$ be fence$ by a$$in an e(tra yar$

    of fence1 s" ests that he co"%$ fin$ o"t by$i&i$in the present perimeter / ! 0 by

    ' th"s1 the Ra ran ian m"%tip%ier pro&i$esinformation abo"t the imp%icit &a%"e of theconstraint

  • 8/9/2019 Math of Optimization

    69/112

  • 8/9/2019 Math of Optimization

    70/112

    0

    Constraine$ Ma(imization

    First5or$er con$itionsB L + - x = 6 5 + U y , *

    L + - y = 6 5 + U x , *

    L + - + = " $ x U y , *

    So%&in 1 !e et

    x , y , " .-6

    The Ra ran ian m"%tip%ier / + 0 , 6 " 5.-6

  • 8/9/2019 Math of Optimization

    71/112

    1

    En&e%ope Theorem V Constraine$

    Ma(imization S"ppose that !e !ant to ma(imize

    y , f / x. 1 1 xn%a)

    s"b ect to the constraint

    g / x. 1 1 xnWa0 , *

    One !ay to so%&e !o"%$ be to set "p theRa ran ian e(pression an$ so%&e the first5or$er con$itions

  • 8/9/2019 Math of Optimization

    72/112

  • 8/9/2019 Math of Optimization

    73/112

    Ine "a%ity Constraints

    In some economic prob%ems the constraintsnee$ not ho%$ e(act%y

    For e(amp%e1 s"ppose !e see# to ma(imize y= f / x. 1 x60 s"b ect to

    g / x. 1 x60 *1

    x.

    *1 an$ x6 *

  • 8/9/2019 Math of Optimization

    74/112

    (

    Ine "a%ity Constraints

    One !ay to so%&e this prob%em is to intro$"cethree ne! &ariab%es / a1b1 an$ c0 that con&ertthe ine "a%ities into e "a%ities

    To ens"re that the ine "a%ities contin"e toho%$1 !e !i%% s "are these ne! &ariab%es toens"re that their &a%"es are positi&e

  • 8/9/2019 Math of Optimization

    75/112

    -

    Ine "a%ity Constraints

    g / x. 1 x60 5a 6 , *W

    x. 5 b6 , *W an$

    x6 5 c6

    , * Any so%"tion that obeys these three e "a%ity

    constraints !i%% a%so obey the ine "a%ity

    constraints

  • 8/9/2019 Math of Optimization

    76/112

    Ine "a%ity Constraints

    e can set "p the Ra ran ian

    L , f / x. 1 x60 G . : g / x. 1 x60 5a 6; G 6: x. 5 b6; G 2: x6 5 c6;

    This !i%% %ea$ to ei ht first5or$er con$itions

  • 8/9/2019 Math of Optimization

    77/112

    Ine "a%ity Constraints

    L - x. , f . G . g . G 6 , *

    L - x6 , f . G . g 6 G 2 , *

    L - a , 56a . , *

    L - b , 56 b 6 , *

    L - c , 56 c 2 , *

    L - . , g(x . ,x60 5a 6 = * L - 6 , x. 5 b6 = *

    L - 2 , x6 5 c6 = *

  • 8/9/2019 Math of Optimization

    78/112

    3

    Ine "a%ity Constraints

    Accor$in to the thir$ con$ition1 either a or . , * ' if a , *1 the constraint g / x. 1 x60 ho%$s e(act%y

    ' if . , *1 the a&ai%abi%ity of some s%ac#ness ofthe constraint imp%ies that its &a%"e to theob ecti&e f"nction is *

    Simi%ar comp%emetary s%ac#nessre%ationships a%so ho%$ for x. an$ x6

  • 8/9/2019 Math of Optimization

    79/112

    4

    Ine "a%ity Constraints

    These res"%ts are sometimes ca%%e$ X"hn5T"c#er con$itions ' they sho! that so%"tions to optimization

    prob%ems in&o%&in ine "a%ity constraints !i%%$iffer from simi%ar prob%ems in&o%&in e "a%ityconstraints in rather simp%e !ays

    ' !e cannot o !ron by !or#in primari%y !ithconstraints in&o%&in e "a%ities

  • 8/9/2019 Math of Optimization

    80/112

    30

    Secon$ Or$er Con$itions 5

    F"nctions of One )ariab%e Ret y , f / x0 A necessary con$ition for a ma(im"m is that

    $ y-$ x , f D/ x0 , *

    To ens"re that the point is a ma(im"m1 y m"st be $ecreasin for mo&ements a!ay from it

  • 8/9/2019 Math of Optimization

    81/112

    31

    Secon$ Or$er Con$itions 5

    F"nctions of One )ariab%e The tota% $ifferentia% meas"res the chan e in y

    dy , f D/ x0 dx

    To be at a ma(im"m1 dy m"st be $ecreasinfor sma%% increases in x

    To see the chan es in dy1 !e m"st "se thesecon$ $eri&ati&e of y

  • 8/9/2019 Math of Optimization

    82/112

    32

    Secon$ Or$er Con$itions 5

    F"nctions of One )ariab%e

    Note that d 6 y J * imp%ies that f / x0dx6 J * Since dx& m"st be positi&e1 f / x0 J *

    This means that the f"nction f m"st ha&e aconca&e shape at the critica% point

    6 6:

  • 8/9/2019 Math of Optimization

    83/112

    3

    Secon$ Or$er Con$itions 5

    F"nctions of T!o )ariab%es S"ppose that y , f / x. 1 x60 First or$er con$itions for a ma(im"m are

    y- x. , f . , *

    y- x6 , f 6 , *

    To ens"re that the point is a ma(im"m1 y m"st$iminish for mo&ements in any $irection a!ayfrom the critica% point

  • 8/9/2019 Math of Optimization

    84/112

  • 8/9/2019 Math of Optimization

    85/112

    3-

    Secon$ Or$er Con$itions 5

    F"nctions of T!o )ariab%es The tota% $ifferentia% of y is i&en by

    dy , f . dx . G f 6 dx6

    The $ifferentia% of that f"nction is

    d 6 y , / f .. dx. G f .6 dx60dx. G / f 6. dx. G f 66dx60dx6

    d 6 y , f .. dx. 6 G f .6 dx6dx. G f 6. dx. dx6 G f 66dx66 Ky o"n Ds theorem1 f .6 , f 6. an$

    d 6 y , f .. dx. 6 G 6 f .6 dx. dx6 G f 66dx66

  • 8/9/2019 Math of Optimization

    86/112

    3

    Secon$ Or$er Con$itions 5

    F"nctions of T!o )ariab%esd 6 y , f .. dx. 6 G 6 f .6 dx. dx6 G f 66dx66

    For this e "ation to be "nambi "o"s%y ne ati&e

    for any chan e in the (Ds1 f .. an$ f 66 m"st bene ati&e

    If dx6 , *1 then d 6 y , f .. dx. 6

    ' for d 6 y J *1 f .. J *

    If dx. , *1 then d 6 y , f 66 dx66

    ' for d 6 y J *1 f 66 J *

  • 8/9/2019 Math of Optimization

    87/112

    3

    Secon$ Or$er Con$itions 5

    F"nctions of T!o )ariab%esd 6 y , f .. dx. 6 G 6 f .6 dx. dx6 G f 66dx66

    If neither dx. nor dx6 is zero1 then d & y !i%% be"nambi "o"s%y ne ati&e on%y if

    f .. f 66 5 f .6 & Y *

    ' the secon$ partia% $eri&ati&es / f .. an$ f 660 m"st bes"fficient%y ne ati&e so that they o"t!ei h any

    possib%e per&erse effects from the cross5partia%$eri&ati&es / f .6 , f 6. 0

    C t i $ M (i i ti

  • 8/9/2019 Math of Optimization

    88/112

    33

    Constraine$ Ma(imization

    S"ppose !e !ant to choose x. an$ x6 toma(imize

    y , f / x. 1 x60

    s"b ect to the %inear constraintc 5 b . x. 5 b6 x6 , *

    e can set "p the Ra ran ianL , f / x. 1 x60 G /c 5 b . x. 5 b6 x60

    C t i $ M (i i ti

  • 8/9/2019 Math of Optimization

    89/112

    34

    Constraine$ Ma(imization

    The first5or$er con$itions are

    f . 5 b . , *

    f 6 5 b6 , *c 5 b . x. 5 b6 x6 , *

    To ens"re !e ha&e a ma(im"m1 !e m"st"se the secon$ tota% $ifferentia%

    d 6 y , f .. dx. 6 G 6 f .6 dx. dx6 G f 66dx66

    Constraine$ Ma(imization

  • 8/9/2019 Math of Optimization

    90/112

    40

    Constraine$ Ma(imization

    On%y the &a%"es of x. an$ x6 that satisfy theconstraint can be consi$ere$ &a%i$ a%ternati&esto the critica% point

    Th"s1 !e m"st ca%c"%ate the tota% $ifferentia% ofthe constraint

    5b . dx. 5 b6 dx6 , *

    dx6 , 5/ b . -b60dx.

    These are the a%%o!ab%e re%ati&e chan es in x. an$ x6

    Constraine$ Ma(imization

  • 8/9/2019 Math of Optimization

    91/112

    41

    Constraine$ Ma(imization

    Keca"se the first5or$er con$itions imp%y that f . - f 6 , b . -b61 !e can s"bstit"te an$ et

    dx6 , 5/ f . - f 60 dx.

    Sinced 6 y , f .. dx. 6 G 6 f .6 dx. dx6 G f 66dx66

    !e can s"bstit"te for dx6 an$ etd 6 y , f .. dx. 6 5 6 f .6 / f . - f 60dx. 6 G f 66/ f . 6- f 660dx. 6

    Constraine$ Ma(imization

  • 8/9/2019 Math of Optimization

    92/112

    42

    Constraine$ Ma(imization

    Combinin terms an$ rearran ind 6 y , f .. f 66 5 6 f .6 f . f 6 G f 66 f . 6 :dx. 6- f 66;

    Therefore1 for d 6 y J *1 it m"st be tr"e that f .. f 66 5 6 f .6 f . f 6 G f 66 f . 6 J *

    This e "ation characterizes a set of f"nctionsterme$ "asi5conca&e f"nctions ' any t!o points !ithin the set can be oine$ by a

    %ine containe$ comp%ete%y in the set

    Conca&e an$ 4"asi5Conca&e

  • 8/9/2019 Math of Optimization

    93/112

    4

    Conca&e an$ 4 asi5Conca&eF"nctions

    The $ifferences bet!een conca&e an$ "asi5conca&e f"nctions can be i%%"strate$ !ith thef"nction

    y = f / x. 1 x60 , / x. x60'

    !here the xDs ta#e on on%y positi&e &a%"es an$' can ta#e on a &ariety of positi&e &a%"es

    Conca&e an$ 4"asi5Conca&e

  • 8/9/2019 Math of Optimization

    94/112

    4(

    Conca&e an$ 4 asi5Conca&eF"nctions

    No matter !hat &a%"e ' ta#es1 this f"nction is"asi5conca&e

    hether or not the f"nction is conca&e$epen$s on the &a%"e of ' ' if ' J *9>1 the f"nction is conca&e ' if ' Y *9>1 the f"nction is con&e(

  • 8/9/2019 Math of Optimization

    95/112

    4-

    Homo eneo"s F"nctions

    A f"nction f / x. 1 x61 xn0 is sai$ to behomo eneo"s of $e ree ' if

    f / tx. 1tx61 txn0 , t '

    f / x. 1 x61 xn0 ' !hen a f"nction is homo eneo"s of $e ree one1 a

    $o"b%in of a%% of its ar "ments $o"b%es the &a%"eof the f"nction itse%f

    ' !hen a f"nction is homo eneo"s of $e ree zero1a $o"b%in of a%% of its ar "ments %ea&es the &a%"eof the f"nction "nchan e$

  • 8/9/2019 Math of Optimization

    96/112

    4

    Homo eneo"s F"nctions

    If a f"nction is homo eneo"s of $e ree ' 1 the partia% $eri&ati&es of the f"nction !i%% be

    homo eneo"s of $e ree ' 5.

  • 8/9/2019 Math of Optimization

    97/112

  • 8/9/2019 Math of Optimization

    98/112

    43

    E"%erDs Theorem

    E"%erDs theorem sho!s that1 for homo eneo"sf"nctions1 there is a $efinite re%ationship

    bet!een the &a%"es of the f"nction an$ the

    &a%"es of its partia% $eri&ati&es

  • 8/9/2019 Math of Optimization

    99/112

  • 8/9/2019 Math of Optimization

    100/112

    100

    Homothetic F"nctions

    For both homo eneo"s an$ homotheticf"nctions1 the imp%icit tra$e5offs amon the&ariab%es in the f"nction $epen$ on%y on the

    ratios of those &ariab%es1 not on their abso%"te&a%"es

  • 8/9/2019 Math of Optimization

    101/112

    101

    Homothetic F"nctions

    S"ppose !e are e(aminin the simp%e1 t!o&ariab%e imp%icit f"nction f / x1 y0 , *

    The imp%icit tra$e5off bet!een x an$ y for at!o5&ariab%e f"nction is

    dy-dx , 5 f x- f y

    If !e ass"me f is homo eneo"s of $e ree ' 1its partia% $eri&ati&es !i%% be homo eneo"s of$e ree ' 5.

  • 8/9/2019 Math of Optimization

    102/112

    102

    Homothetic F"nctions

    The imp%icit tra$e5off bet!een x an$ y is.

    .

    / 1 0 / 1 0

    / 1 0 / 1 0

    ' x x

    '

    y y

    t f tx ty f tx tydy

    dx t f tx ty f tx ty

    = =

    If t , .- y1

    < 1. 1.

    < 1. 1.

    x x

    y y

    x x ( f f

    y ydydx x x

    ( f f y y

    = =

    h

  • 8/9/2019 Math of Optimization

    103/112

    10

    Homothetic F"nctions

    The tra$e5off is "naffecte$ by the monotonictransformation an$ remains a f"nction on%y ofthe ratio x to y

  • 8/9/2019 Math of Optimization

    104/112

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    105/112

    10-

    Important Points to NoteB

    +eri&ati&es are often "se$ in economics beca"se economists are intereste$ in ho!mar ina% chan es in one &ariab%e affect

    another ' partia% $eri&ati&es incorporate the ceteris

    paribus ass"mption "se$ in most economicmo$e%s

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    106/112

    10

    Important Points to NoteB

    The mathematics of optimization is animportant too% for the $e&e%opment ofmo$e%s that ass"me that economic a ents

    rationa%%y p"rs"e some oa% ' the first5or$er con$ition for a ma(im"m

    re "ires that a%% partia% $eri&ati&es e "a% zero

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    107/112

    10

    Important Points to NoteB

    Most economic optimization prob%emsin&o%&e constraints on the choices thata ents can ma#e

    ' the first5or$er con$itions for a ma(im"ms" est that each acti&ity be operate$ at a%e&e% at !hich the ratio of the mar ina%

    benefit of the acti&ity to its mar ina% cost

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    108/112

    103

    Important Points to NoteB

    The Ra ran ian m"%tip%ier is "se$ to he%pso%&e constraine$ ma(imization prob%ems ' the Ra ran ian m"%tip%ier can be interprete$ as

    the imp%icit &a%"e /sha$o! price0 of theconstraint

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    109/112

    104

    Important Points to NoteB

    The imp%icit f"nction theorem i%%"stratesthe $epen$ence of the choices that res"%tfrom an optimization prob%em on the

    parameters of that prob%em

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    110/112

    110

    Important Points to NoteB

    The en&e%ope theorem e(amines ho!optima% choices !i%% chan e as the

    prob%emDs parameters chan e

    Some optimization prob%ems mayin&o%&e constraints that are ine "a%itiesrather than e "a%ities

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    111/112

    111

    Important Points to NoteB

    First5or$er con$itions are necessary b"tnot s"fficient for ens"rin a ma(im"m orminim"m

    ' secon$5or$er con$itions that $escribe thec"r&at"re of the f"nction m"st be chec#e$

    Important Points to NoteB

  • 8/9/2019 Math of Optimization

    112/112

    Important Points to NoteB

    Certain types of f"nctions occ"r in manyeconomic prob%ems ' "asi5conca&e f"nctions obey the secon$5

    or$er con$itions of constraine$ ma(im"mor minim"m prob%ems !hen the constraintsare %inear

    ' homothetic f"nctions ha&e the property thatimp%icit tra$e5offs amon the &ariab%es$epen$ on%y on the ratios of these &ariab%es