math review – complex numbers (1)

28
2009 Fall ME451 - GGZ Page 1 Week 1-2: Math Review and Laplace Transformation Math Review Math Review Complex Numbers (1) Complex Numbers (1) Complex number: ordered pair of two real numbers Multiplication 1 and , where , - + = j R y x C jy x s Conjugate: jy x s s - = = * Addition: ) ( ) ( , , 2 1 2 1 2 1 2 2 2 1 1 1 y y j x x s s jy x s jy x s + + + = + + = + = ) ( ) ( 1 2 2 1 2 1 2 1 2 1 y x y x j y y x x s s + + - = 2 2 * y x ss + =

Upload: others

Post on 22-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

2009 Fall ME451 - GGZ Page 1Week 1-2: Math Review and Laplace Transformation

Math Review Math Review –– Complex Numbers (1)Complex Numbers (1)

Complex number: ordered pair of two real numbers

Multiplication

1 and , where, −≅∈∈+= jRyxCjyxs

Conjugate: jyxss −== *

Addition:

)()( , ,212121222111

yyjxxssjyxsjyxs +++=++=+=

)()(1221212121

yxyxjyyxxss ++−=

22*yxss +=

2009 Fall ME451 - GGZ Page 2Week 1-2: Math Review and Laplace Transformation

Math Review Math Review –– Complex Numbers (2)Complex Numbers (2)

Euler’s identity

Phase:

j

eeeeje

jjjj

j

2sin ,

2cos where,sincos

θθθθθ θθθθ

−− −=

+=+=

Polar form:

θθθ sin,cos where, ryrxrejyxsj ===+=

Magnitude:22

yxr +=

)(

2

1

2

1

)(

21212211

21

2121

,

θθ

θθθθ

+

=

===

j

jjj

er

r

s

s

errssersers

x

y1tan

−=θ

x

y

Re

Im

2009 Fall ME451 - GGZ Page 3Week 1-2: Math Review and Laplace Transformation

Math Review Math Review –– LogarithmLogarithm

The logarithm of x to the base b is denoted by xb

log

The logarithm of 1000 to the base 10 is 3, i.e.,

Properties:

100010 that note ,31000log 3

10 ==

01log and 110log1010

==

yxy

x

yxxy

xyxxb

bbb

bbb

b

y

b

xb

loglog)(log

loglog)(log

)(log)(log and )(log

−=

+=

==

2009 Fall ME451 - GGZ Page 4Week 1-2: Math Review and Laplace Transformation

Math Review Math Review –– Matrix OperationsMatrix Operations

=

=

2221

1211

2221

1211 and

bb

bbB

aa

aaA

Determinant:12212211

det aaaaA −=

Multiplication: 2222122121221121

2212121121121111

++

++=

babababa

babababaAB

Inverse:

det

1121

1222

1

A

aa

aa

A

=−

2009 Fall ME451 - GGZ Page 5Week 1-2: Math Review and Laplace Transformation

Laplace TransformLaplace Transform

Definition:

∫∞

−==0

)()()]([ dtetfsFtfLst

The Laplace transform (LT) of f(t) is

LT: replace ODEs as linear input-output maps

solve ODEs w/ constant coefficients

t - domain

)(tf

s - domain

)(sF

LRe

Im

ts

2009 Fall ME451 - GGZ Page 6Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Example (1)Example (1)

Example (1)

0 ,1)( ≥= ttf

ss

es

dtedtetfsFtfL

st

stst

110

1

)()()]([

0

0 0

=+=

−=

===

∞ ∞

−−

∫ ∫

sLtfL

1]1[)]([ ==Q

∆≤

== ∆

→∆ 0;0

;lim)()(

1

0

tttf δ

11

lim

1lim

)()()()]([

0

00

0 0

=∆⋅∆

=

∆=

===

→∆

→∆

∞ ∞

−−

∫ ∫

dte

dtetdtetfsFtfL

st

stst δ

1)]([)]([ == tLtfL δQ

1

∆ t

)(tδ

0→∆

2009 Fall ME451 - GGZ Page 7Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Example (2)Example (2)

Example (2)

0 ,)( ≥= tttf

22

00

0 0 0 0 0

0 0

1)

10()00(

11

)(

)(

1 , )()()]([

sse

sse

s

t

dtt

vuvdt

t

udt

t

uvvdt

t

udt

t

uv

es

vtudttedtetfsFtfL

stst

ststst

=−−+−=−

⋅−

−−

=

∂+

∂=

∂−

∂=

−=====

∞ ∞ ∞ ∞ ∞

∞ ∞

−−−

∫ ∫ ∫ ∫ ∫

∫ ∫

2

1][)]([

stLtfL ==Q

2009 Fall ME451 - GGZ Page 8Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Property (1)Property (1)

Linearity

)()()]([)]([)]()([ sbGsaFtgbLtfaLtbgtafL +=+=+

)()(

)()(

)]()([)]()([

)(

0

)(

0

0

sbGsaF

dtetgbdtetfa

dtetbgtaftbgtafL

sG

st

sF

st

st

+=

+=

+=+

∫∫

∫∞

4342143421

Proof:

2009 Fall ME451 - GGZ Page 9Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Property (2)Property (2)

“s” Shifting property

)(lim)( where),()]([ then ),()]([ If sFasFasFtfeLsFtfLass

at

−→=−−==

)(

)(

)()]([

0

)(

0

asF

dtetf

dtetfetfeL

tas

statat

−=

=

=

∫∞

−−

Proof:

2009 Fall ME451 - GGZ Page 10Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Property (3)Property (3)

“t” Shifting property

)()]()([

then ,function stepunit is )( and )()]([ If

sFeatuatfL

tusFtfL

as−=−−

=

( )

)(

)()()(

)()()()()]()([

00

)(

0

sFe

atdefedeuf

dteatuatfdteatuatfatuatfL

as

sasas

a

stst

−−

+−

=

−===

−−=−−=−−

∫∫

∫∫

ττττττ ττ

Proof:

<

≥=−

at

atatu

,0

,1)(

a

1

)( atu −

t

2009 Fall ME451 - GGZ Page 11Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Property (4)Property (4)

Transforms of Derivatives

∂=−==

t

tftffssFtfLsFtfL

)()( )0()()]([ then ,)()]([ If &&

Proof:

( )

)0()()()(

)(

)(

)( , )()]([

)(

00

0 0 0 0 0

00

fssFdtetfsetf

dtt

vuvdt

t

udt

t

uvvdt

t

udt

t

uv

tfveudtt

vudtetftfL

sF

stst

stst

−=

−−=

∂+

∂=

∂−

∂=

==∂

∂==

∫ ∫ ∫ ∫ ∫

∫∫

−∞

∞ ∞ ∞ ∞ ∞

∞∞

43421

&&

)0()0()()]([ 2fsfsFstfL &&& −−=

2009 Fall ME451 - GGZ Page 12Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Property (5)Property (5)

Transforms of Integrals

)(1

])([ then ,)()]([ If0

sFs

dfLsFtfL

t

== ∫ ττ

Proof:

.0)0( and )()( then,,)()(Let 0

=== ∫ gtftgdftg

t

&ττ

)()0()]([)]([)]([)(

sderivative of s transformUsing

)(

ssGgtgLstgLtfLsF

sG

=−===321

&

)(1

])([)(

Therefore

t

0

sFs

dfLs G == ∫ ττ

2009 Fall ME451 - GGZ Page 13Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Example (3)Example (3)

Linearity ttf 21)( +=

)].([G(s) find ,)( If 2tgLetg

t ==

2

11

]1[)]1([)(

2

2

2

−==

==

−→

−→

ss

LeLsG

ss

ss

t

2

1][

Therefore

2t

−=

se L

22

212

1][2]1[]21[)]([

s

s

sstLLtLtfL

+=+=+=+=

“s” Shifting properties:

2009 Fall ME451 - GGZ Page 14Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Example (4)Example (4)

Then, .3)( and ,)( ,3Let −=−== tatfttfa

).3()62()( where

)]([)( Find

−−=

=

tuttg

tgLsG

2

3 12

)]3()3[(2)]3()3(2[)]([)(

se

tutLtutLtgLsG

s−=

−−=−−==

3

3s-

2

2G(s)

Therefore,

es

=

“t” Shifting properties:

6 93−

6−

3

6)(tg

t

2009 Fall ME451 - GGZ Page 15Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Example (5)Example (5)

)0()0()]([)]([ using ][sin 2fsftfLstfLwtL &&& −−=

wtwtf

wfwtwtf

fwttf

sin)(

)0( ,cos)(

0)0( ,sin)(Let

2−=

==

==

&&

&&

{ {wtftf

ffswtLswtwL )0()0(]sin[]sin[ Thus,0)(

2

)(

2 &32143421

&&

−−=−

22][sin

Therefore,

ws

wwtL

+=

Calculating

wwtLswtLw −=− ][sin][sin 22

wwtLws =+ ][sin)( 22

2009 Fall ME451 - GGZ Page 16Week 1-2: Math Review and Laplace Transformation

Cosine

Sine

Exponential

nth order ramp

Unit ramp

Unit step

Unit impulse

Description

Laplace Transform Laplace Transform –– LT Table to rememberLT Table to remember

)(tf

t

s

1)(tu

)(tδ

)]([)( tfLsF =

1

2

1

s

nt 1

!+n

s

n

ateas −

1

wtsin22

ws

w

+

wtcos 22ws

s

+

2009 Fall ME451 - GGZ Page 17Week 1-2: Math Review and Laplace Transformation

Convolution

Transforms of integrals

Transforms of

derivatives

“s” shifting properties

Linearity

Laplace Transform Laplace Transform –– LT PropertiesLT Properties

)]([)]([)]()([ tgbLtfaLtbgtafL +=+

)0()()]([ fssFtfL −=&

)]([)()]()([ tfLesFeatuatfLasas −− ==−−

ass

attfLasFtfeL

−==−= )]([)()]([

)0()0()()]([2

fsfsFstfL &&& −−=

M

∫ ==

t

tfLs

sFs

dfL0

)]([1

)(1

])([ ττ

∫∫ −=−=−

tt

dtfgdtgfsGsFL00

1 )()()()()]()([ ττττττ

“t” shifting properties

2009 Fall ME451 - GGZ Page 18Week 1-2: Math Review and Laplace Transformation

Inverse Laplace TransformInverse Laplace Transform

)]([)( Find )],([)(Given 1sFLtftfLsF

−==

t - domain

)(tf

s - domain

)(sF

1−L

Approach:

etc. ,properties tables,using term-by- term)]([Obtain (2)

functionscommon of s transform theselike"look " )( Make (1)

1sFL

sF

2009 Fall ME451 - GGZ Page 19Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform ––Example (1)Example (1)

)]([)( Find ,6

1)(Given 1

23sYLty

sss

ssY −=

−+

+=

3

152

2

103

61-

6

1)(

nextit discuss willWe

23

444 3444 21 +

+−

+=−+

+=

ssssss

ssY

ttee

sL

sL

sLty

32

111

15

2

10

3

6

1

]3

1[

15

2]

2

1[

10

3]

1[

6

1)(

−−−

−+−

=

+−

−+

−=

2009 Fall ME451 - GGZ Page 20Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform –– PFE Case (1)PFE Case (1)

CA, Bs

C

s

B

s

A

sss

ssY and , Find ,

32)3)(2(

1)(

++

−+=

+−

+=

)2()3()3)(2(1 −++++−=+⇒ sCssBsssAs

PFE: Partial Fraction ExpansionsA way to expand general rational functions into forms that

appears in the LT table

Case 1: real and distinct roots

15

2 )5)(3(2;3

10

3 )5)(2(3;2

6

1 )3)(2(1;0

−=⇒−−=−−=

=⇒==

−=⇒−==

CCs

BBs

AAs

2009 Fall ME451 - GGZ Page 21Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform –– PFE Case (1)PFE Case (1)

tt eetysss

sY 32

15

2

10

3

6

1)(

3

15/2

2

10/36/1)( −−+−=⇒

+

−+

−+

−=

AsCBAsCBA

CsCsBsBsAAsAs

sCssBsssAs

6)23()(

236

)2()3()3)(2(1

2

222

−−++++=

−+++−+=

−++++−=+

Case 1: real and distinct roots (cont’d)

unknowns 3 with equations 3

61:

231:

0:

0

1

2

−=

−+=

++=

As

CBAs

CBAs

Alternative approach:

We have

2009 Fall ME451 - GGZ Page 22Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform –– PFE Case (2)PFE Case (2)

323 )2()2(2)2(

3)(

++

++

+=

+

+=

s

C

s

B

s

A

s

ssY

0 20

1 2Let

)2(21

1 2Let

)2()2(3 2

=⇒=⇒∂

=⇒−=

++=⇒∂

=⇒−=

++++=+⇒

AA s

Bs

BsA s

Cs

CsBsAs

Case 2: real and repeated roots

32 )2(

1

)2(

1)(

++

+=

sssY

2009 Fall ME451 - GGZ Page 23Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform –– PFE Case (2)PFE Case (2)

tt

ssss

ssss

et

tety

tLtL

sssssY

2

2

2

2

2

2

2

3

2

232

2)(

]2

[][

11

)2(

1

)2(

1)(

−−

+=+=

+=+=

+=

+=

+=+

++

=

Case 2: real and repeated roots (cont’d)

2009 Fall ME451 - GGZ Page 24Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform –– PFE Case (3)PFE Case (3)

)( bias ±=

]2cos[]2[cos2

)(1

1

22teLtL

s

ssY

t

ss

ss

+=

+=

==+

=

Case 3: complex conjugate roots

iss

s

ss

ssY 21 :Roots

2)1(

1

52

1)(

222±−=⇒

++

+=

++

+=

tetyt 2cos)(

Therefore

−=

2009 Fall ME451 - GGZ Page 25Week 1-2: Math Review and Laplace Transformation

Inverse Laplace Transform Inverse Laplace Transform –– Example (2)Example (2)

22222

2

21)4)(1(

1)(

+

++

+++=

++

+=

s

EDs

s

C

s

B

s

A

sss

ssF

)1()()4()4)(1()4)(1(1222222 ++++++++++=+ ssEDssCsssBssAss

20/3,4163

)](24[4

)12)(4)(2(32

5/2521

4/1410

−=−=⇒−=−=−⇒

++−−=

+−+=−⇒=

=⇒=⇒−=

=⇒=⇒=

EDEDED

EDiDE

iEiDis

CCs

BBs

4/1 440 0

])1(2)[()1(]2)4(2[

)]1(2)4[()]1(2)4()4)(1[(2

2232

2222

−=−=⇒+=⇒=

+++++++++

++++++++++=⇒∂

BABAs

sssEDssDssssC

sssBssssssAss

)2sin2

12cos(

20

3

5

2

4

1

4

1)(

2

1

20

3

1

1

5

21

4

11

4

1)(

222ttettf

s

s

ssssF

t +−+++−=⇒+

+−+

+++−= −

2009 Fall ME451 - GGZ Page 26Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– ConvolutionConvolution

∫∫ −=−=

==

−−

tt

dttfgdttgfsGsFL

tgsGLtfsFL

00

1

11

)()()()()]()([

),()]([ and )()]([ If

ττττ

Example:

44 344 214342143421tttysGsF

sssssssY

3sin8

1sin

8

3)(

22

)(

2

)(

222 9

8/3

1

8/3

9

3

1

1

)9)(1(

3)(

−=

+−

+=

+

+=

++=

tsGLttsFLtf 3sin)]([)(g and sin)]([)( 11 ==== −−

tt

dtdtgfty

tt

3sin8

1sin

8

3

)(3sinsin)()()(00

−==

−=−= ∫∫

L

ττττττ

2009 Fall ME451 - GGZ Page 27Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Solving Solving ODEsODEs

ODE in

domain t

AE in

domain s

Solution

)(ty

Direct solution

Solve for

)(sY

L

1−L)(sY

2009 Fall ME451 - GGZ Page 28Week 1-2: Math Review and Laplace Transformation

Laplace Transform Laplace Transform –– Solving Solving ODEsODEs ExampleExample

0)0()0( ,21)(4)( ==++−=+ −yyettyty

t &&&

44 344 214434421

&

&

&

Solution Particular

22

2

Solution sHomogeneou

2

2

2

2

2

2

)4)(1(

1

4

)0()0()(

)1(

1)0()0()()4(

1

211)(4)0()0()( :

++

++

+

+=

+

+++=+

+++−=+−−

sss

s

s

ysysY

ss

sysysYs

ssssYysysYsL

0

)2sin2

12cos(

20

3

5

2

4

1

4

1)( ttetty

t +−+++−= −

222 2

1

20

3

1

1

5

21

4

11

4

1)(

+

+−+

+++−=

s

s

ssssY

ILT Example (2)