math116 notes indefiniteintegrals - home | …ehossain/indefinite-integrals.pdfexample3 1 2 i1...

4
Math 116 notes Indefinite Integrals 1 Anti derivatives b FTCI tells us that to calculate a definite integral fafandx all we have to do is 111 find an anti derivative Fan of fan then 121 use the formula fabfaddx Fcb Fca Any anti derivative will work Fortunately any two anti derivatives will only differ by a constant FAIT tf F CH and Fix are two anti derivatives of fox then Fi Cx Fix C for some constant Ce IR Proof We know that Fiat and Fix have the same derivative because FIM fan E'Cx Thus Fix Fix 0 The only way a function can have zero derivative everywhere isif itis a constant function thus EN Fa x C for some constant C c IR Blas Therefore anti derivatives are uniquely determined up to a constant Another word for anti derivative is indefinite integral and weuse the notation Jfc x DX Fix C a general anti derivative toexpress that F'Cx fix aka indefinite integral Easyexamples f2xdx X'tC fsincxidx cosh C I e dx ex C f tx dx InAltC etc So f find x represents the general anti derivative of fan Reversed'owwewrigheaddduineaurity assuming n to since the derivative of X is nx this means that the anti derivative of fix is x Therefore we have the following reverse version of the power rule find IT C a works for any n 11 Nele when n 1 f x dx In Cx C Also since differentiation is linear so isintegration fflxitglxldx ffcxldx fg.IN dx Jkfixidx Kffexidx for any constant KEIR Examplet Calculate the indefinite integral 15 3 3 7 d x Use linearity to split it up then apply the reverse power rule to each term f1dx fdx 15 3 3 7dx 51 3 dx 3 Xd x 7 IDI IT X 7 2 7 9 pony forget c ExampleI Calculate 1 9 1 Sin 3 1 te Dx Again use linearity to split it up 1 9 1 Sin Bx e dx 1 9 dx Is in 13 1 d fe4xd If SHH dx Fan then If Ckx dx f Kx tox Eason te C e gig II w

Upload: others

Post on 17-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Math116 notes IndefiniteIntegrals - Home | …ehossain/indefinite-integrals.pdfExample3 1 2 I1 3132dx Onceagainidentifyan insidefunction Inthiscase U seemstowork andthedifferentialisdu

Math116 notes Indefinite Integrals1 Antiderivatives

bFTCItellsusthattocalculateadefiniteintegralfafandx allwehavetodois 111findanantiderivativeFanoffanthen121usetheformulafabfaddx Fcb Fca Anyantiderivativewillwork Fortunately anytwoantiderivativeswillonlydifferbyaconstant

FAIT tf FCHandFix aretwoantiderivativesoffox thenFiCx Fix CforsomeconstantCeIRProof WeknowthatFiatandFix havethesamederivativebecauseFIM fan E'Cx ThusFix Fix 0 Theonlywayafunctioncanhavezeroderivative everywhereisif itisaconstantfunction thusEN Fax CforsomeconstantCcIR Blas

Therefore antiderivativesareuniquelydetermineduptoaconstant Anotherwordforantiderivativeis indefiniteintegral andweusethenotation

JfcxDX Fix C a generalantiderivative

toexpressthatF'Cx fix akaindefiniteintegral

Easyexamples f2xdx X'tC fsincxidx cosh C I edx exC ftxdx InAltC etc

So ffindxrepresentsthegeneralantiderivativeoffanReversed'owwewrigheaddduineaurity assumingnto

sincethederivativeofX is nx thismeansthattheantiderivativeoffix is x Therefore wehavethefollowing reverse versionofthepowerrule

find IT C a worksforany n1 1Nelewhenn 1 fx dx InCx CAlsosincedifferentiationislinear so isintegration

fflxitglxldx ffcxldx fg.INdx Jkfixidx Kffexidx foranyconstantKEIR

Examplet Calculatetheindefiniteintegral153 3 7dx Uselinearitytosplititup thenapplythereversepowerruletoeachterm f1dxfdx

153 3 7dx 513dx 3Xdx 7IDI ITX 7 2 7 9 ponyforget cExampleI Calculate 191Sin3 1 te Dx Againuselinearitytosplititup

1 91SinBx e dx 1 9dx Isin131d fe4xd If SHHdx FanthenIfCkxdx f Kx

tox Eason te C egig II w

Page 2: Math116 notes IndefiniteIntegrals - Home | …ehossain/indefinite-integrals.pdfExample3 1 2 I1 3132dx Onceagainidentifyan insidefunction Inthiscase U seemstowork andthedifferentialisdu

2 Substitution ReverseChainRule

IfFMisanantiderivativeoffix thenbythechainRule FCgullisanantiderivativeofflgcxllgtxl.BRfCgcxDg4x1dx FCgcx CAlternativelysetu gun ThenTY gM sotheaboveformulacanbewrittenas IfTheexpressiondug4x7dx

ffcgcxhgkxidx ffcuddI dx f.fiudu Flu C niggledandifferenutiaFJ

Thisiscalledthesubstitutionmethod becausewesubstitute uforgallNOTATION peopletendtowrite du gCHdxforsubstitutions Thisiscalledadifferential

Examplet f2xSinaidx Tomakeasubstitution locateaninsidefunctionwhosedifferentialisalsoafactorintheintegrand Inthiscase u x seemstoworkbecauseitsdifferential u 2xDXappearsintheintegrand

f2xsincedx fsina.ug4zgxudx fs.inudu coscu t C costx7 t C

ExampleI I fissimnexdx Inthiscasewenotice a Sinanisagoodsubstitution becauseitsdifferentialdu DXappearsas afactor

I I x dx sindx fTudu InAtul C InCltSinai C

Example3 1 2 I1 3132dx Onceagainidentifyan insidefunction Inthiscase U seemstoworkandthedifferentialisdu DXSo

1 2111 31312DX f u312du Zzu t C Zz113,52 C

Examplett Stancxidx Writetanks yougetStanandx Y DX Nowthesubstitutionshouldbeobvious U cosCx sothatdu Sinaidx or du SinxDX So

Stankidx 1 542 dx futdu IntultC InKosal Cx11

Example5Hereisanexampleusingadefiniteintegral x2 2 3DX Ifyousubstituteu x2 2 3 thenthedifferential isdu 2 2dx whichyoucanwriteas Idu Cx11Dx Withdefiniteintegrals youalsohavetokeeptrackoftheBOUNDSoftheintegral thesymbol S means from I to 2 butwechangedvariablesto uSowehavetoputtheboundsintermsofutoo

x I u 112 24 3 6X 2 u 212212 3 11 Notation

Sothenewintegralaftersubstituting a x2 2 3 is gt a F

1,2 24 3dx f ut Edu If tudu Elnlull In1111 tha th tExercisesEvaluatethefollowingintegralsbysubstitution

earctanct il Ix'sin dx 2 fFjdx 3 I dt 4 foi dx5 frattantodo 6 fxedx 7 fr dt 8 fivedy

Page 3: Math116 notes IndefiniteIntegrals - Home | …ehossain/indefinite-integrals.pdfExample3 1 2 I1 3132dx Onceagainidentifyan insidefunction Inthiscase U seemstowork andthedifferentialisdu

3 IntegrationByParts ReverseProductRuledu duTodifferentiateaproduct uv youusetheproductrule luv u d v d Ifyouintegratebothsides

withrespecttoX yougetuv fansdx fu vd dx fu dXtfvf DX fudv Ivdu

Nowsolveforfudvtwo fudv w fvda

Thisiscalledtheintegrationbypartsformula Here'stheidea ifyouwanttosolveanintegralofaproducti e Somethinglike Sfangkxidx youmaketwosubstitions u fix anddv g41DX Then

ffcxigixldx fudv uv fvdu flxlgcxl fgcxf.liDxThehopeisthattheintegral fg fixdxiseasierthantheoriginal fflxlg4xldxExamplet Let'suseintegrationbypartstosolve Ixcos DXYouhavetofigureoutuanddvsothattheintegralhastheformJudvWehavetwooptions

fxwc dy or feskyxdu dv U dv

Let'susethefirstone sou xanddv cos DXThenduDxandVSinai sotheIBPformulagives

Ixcoscxidx fudv uv fvdu xsinlxl fsinlxldxxsinlxltcoslxltc.eduExerciseforyoutryoption andconvinceyourselfthatitdoesn'tworkExampled fv dx TouseIBPonthisonesubin u x42xanddv p dx sothatdu dxx11 1andv ThentheIBPformulagives

x2t2x dx fudv w vdu 12121Witt 2VxtT2 2dx II 21427717 4 1 113dx 212 21VxT 415 111 C Ix22xNxtT f x11752 C

Example3 I InH1dx Letu In11anddu dx sothatdu DXandv Then

I xY3lnlxtdx fudv uv fvdu fx4l3lnlx7 fZx4l3yfdx o.oGo.o 3

443 Z143dx 4 43 ff t C C

Example4 Inkdx Thisisaweirdonebutwe'lluseIBP letu In11anddvdx There'sreallynootheroptionThendu XDXandv x so

IInlxidx w fdu XInk fdx Inx X t CExercise UseIBPtoevaluate farctancxidx

Page 4: Math116 notes IndefiniteIntegrals - Home | …ehossain/indefinite-integrals.pdfExample3 1 2 I1 3132dx Onceagainidentifyan insidefunction Inthiscase U seemstowork andthedifferentialisdu

Example5 Here'satoughie feisincxDx Let'stryIBPwith aex du sincxidx thendu e dxandv cosX so

Iexsincxdx excosx f coshedx ecosCx Jexcos DXHmmWegot fexcosandx Let'stryIBPagainwithu e dv cos dx

fexcoscxidx exsincxl fexs.inCxDxWhat We'rebackto feisincxidxAGAIN Here'sthetrick let IAI fexsinandx Thenwejustshowed

I x excoscx tf excoscxidx ecos1 1 Isinx IHSowecansolveforIG

Iexcosandx I e IsinCH Cosa c2

Moreexercises UseANYmethodtoevaluatethefollowingintegralsy HARD ga 15sin3 1DX b If 7dt c 1 2 4 7Dt HintforCclcompletethesquareThinkaboutarctan

d 7wVFwTdw e 18W dw Ifl f upDX HintforCfl completethesquareagain

g fyedy 1h11YeYdy lil 131nextdx j cos4oldo HintforCjltrigidentityHARD HARD xk Jxarctankidx let fzezdx m fVmaMdm FMIV dx Hintforinisin'tcost

MoreexercisesfromthetextbookSection8l substitution p493 I 222426293134Section8.2 integrationbyparts p498 I 183638