math265% % % % fall2014% % % …math265% % % % fall2014% % % exam%1%review%key%draft%%%!!! b....

2
Math 265 Fall 2014 Exam 1 Review KEY draft 1. ! ! !!(!) !!! = ! !!! 2. a. Average velocity from t=2 to t=3: 50 ft/sec b. Average velocity from t=2 to t=2.5: 42 ft/sec c. Average velocity from t=2 to t=2+h: (34 – 16h) ft/sec d. Instantaneous velocity at t=2, using c) above: 34 ft/sec as h goes to 0 3. = 2 ! + !"## ! 4. = 300 ! ! ! 5. a. lim !!! !! ! !!!!!" ! ! !!" = !" ! b. lim !!" !!!" ! !! = 10 c. lim !!! ! !!! !!! = 1 d. lim !! ! !! ! !! ! = e. lim !!! ! !!!! ! ! !! = f. lim !! !!!! ! ! (!!!!) = 6. = ! ! !! ! ! !! if ±1 0 if = ±1 a. f is discontinuous at = 1 because lim !! () does not exist since lim !! ! () = whereas lim !! ! () = f is discontinuous at = 1 because lim !!! () = ! ! 1 = 0 b. Discontinuity at = 1 is infinite, while discontinuity at = 1 is removable. 7. a. Evaluate the following limits: i. lim !!! ! () = 1 ii. lim !!! ! () = iii. lim !!! DNE iv. lim !! ! () = 2 v. lim !! ! = 2 vi. lim !! = 2

Upload: others

Post on 09-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Math265% % % % Fall2014% % % …Math265% % % % Fall2014% % % Exam%1%Review%KEY%draft%%%!!! b. Intervalswherethefunctioniscontinuous: (−∞,−1)∪(−1,2)∪(2,∞)! c. Functionis!discontinuousat

Math  265         Fall  2014       Exam  1  Review  KEY  draft        

 

 1.  ! ! !!(!)

!!!    = !

!!!  

 2.  

a. Average  velocity  from  t=2  to  t=3:      -­‐50  ft/sec  b. Average  velocity  from  t=2  to  t=2.5:    -­‐42  ft/sec  c. Average  velocity  from  t=2  to  t=2+h:    (-­‐34  –  16h)  ft/sec  d. Instantaneous  velocity  at  t=2,  using  c)  above:    -­‐34  ft/sec  as  h  goes  to  0    

3. 𝑓 𝑟 = 2𝜋𝑟! + !"##!  

 4. 𝑉 𝑥 = 300𝑥 − !!

!  

 5.  

a. lim!→  !!!!!!!!!!"!!!!"

= !"!  

 b. lim!→  !"

!!!"!  !!

= 10    

c. lim!→  !!!!!!!!!

= −1    

d. lim!→  !!!!   !!!   !

= ∞    

e. lim!→!!!!!!!!!!!

= −∞    

f. lim!→  !!!!!

!!(!!!!)= −∞  

   

6.  𝑓 𝑥 =!!!!!!!!

if      𝑥   ≠  ±10 if    𝑥 =  ±1

   

 a.    f    is  discontinuous  at  𝑥 = 1    because  lim!→! 𝑓(𝑥)    does  not  exist  since  

lim!→!! 𝑓(𝑥) = −∞  whereas  lim!→!! 𝑓(𝑥) = ∞  f    is  discontinuous  at  𝑥 = −1    because  lim!→!! 𝑓(𝑥) = − !

!≠ 𝑓 −1 = 0  

b. Discontinuity    at    𝑥 = 1  is  infinite,  while  discontinuity    at    𝑥 = −1  is  removable.    

7.  a. Evaluate  the  following  limits:  

i. lim!→!!! 𝑓(𝑥) = 1  ii. lim!→!!! 𝑓(𝑥) = ∞  iii. lim!→!! 𝑓 𝑥  DNE  iv. lim!→!! 𝑓(𝑥) = 2  v. lim!→!! 𝑓 𝑥 = 2  vi. lim!→! 𝑓 𝑥 = 2  

Page 2: Math265% % % % Fall2014% % % …Math265% % % % Fall2014% % % Exam%1%Review%KEY%draft%%%!!! b. Intervalswherethefunctioniscontinuous: (−∞,−1)∪(−1,2)∪(2,∞)! c. Functionis!discontinuousat

Math  265         Fall  2014       Exam  1  Review  KEY  draft        

 

 b. Intervals  where  the  function  is  continuous:  (−∞,−1) ∪ (−1,2) ∪ (2,∞)  c. Function  is  discontinuous  at  -­‐1  because  lim!→!! 𝑓 𝑥  DNE  

 with  infinite  discontinuity  d. Function  is  discontinuous  at  2  because  lim!→! 𝑓 𝑥 = 2 ≠ 𝑓 2 = −1.    This  

discontinuity  is  removable.    

8. Equations  of  the  vertical  asymptotes:  x=-­‐2.      𝑓 𝑥 =   !!!!!!!!!!!!!!

= !!!!!!!

       lim!→!!! 𝑓(𝑥) = ∞;    lim!→!!! 𝑓(𝑥) = −∞  

 9. Since  𝑓 0 = −4  𝑎𝑛𝑑  𝑓 1 = 1,  then  by  IVT,  there  exists  a  𝑐  𝑖𝑛  (0,1)  such  that  

𝑓 𝑐 = 0, 𝑡ℎ𝑎𝑡  𝑖𝑠  2𝑐! + 3𝑐 − 4 = 0.    

10. Use  Squeeze  Theorem  to  show  that  lim!  →  !   𝑥! sin!!= 0.      

Since  −1 ≤ sin !!≤ 1,  we  can  multiply  all  sides  by  𝑥!  which  is  always  nonnegative,  

obtaining  −𝑥! ≤ 𝑥!sin !!≤ 𝑥!.    Now  lim!→! −𝑥! = 0  and  lim!→! 𝑥! = 0,  so  therefore  

by  Squeeze  Theorem,  lim!  →  !   𝑥! sin!!= 0  

 11. If    4x  +  5  ≤  f(x)  ≤  x2  +  x  -­‐  5,  we  have  lim!→!! 4𝑥 + 5 = −3,  and  

 lim!→!! 𝑥! + 𝑥 − 5 = −3.    Therefore  by  Squeeze  Theorem  lim!→!! 𝑓 𝑥 = −3    

12. For  the  limit:    lim!→! 𝑥! − 10 = 6,    illustrate  the  definition  by  finding  the  largest  possible  value  of  δ  that  correspond  to    ε  =  0.2.  

a. We  need  to  find  δ>0  such  that  if    0 < 𝑥 − 4 < 𝛿,  then   𝑥! − 10 − 6 < 0.2.    But  𝑥! − 10 − 6 < 0.2  means  that  −.2 < 𝑥! − 16 < .2.    Adding  16  to  all  sides,  we  

get  15.8 < 𝑥! < 16.2;  taking  square  roots,  we  get  3.9749 < 𝑥 < 4.0249;    Subtracting  4  from  all  side,  we  get  −.0251 < 𝑥 − 4 < .0249.    So  we  choose  𝛿 = .0249.  

b. Proof:  (Optional)    Choose  𝛿 = .0249  If  0 < 𝑥 − 4 < .0249,  then  −.0249 < 𝑥 − 4 < .0249;  which  implies  that  3.9751 < 𝑥 < 4.0249;  which  further  implies  that  15.8014 < 𝑥! < 16.1998;  which  means  that  −.1986 < 𝑥! − 16 < .1998;  This  means  that   𝑥! − 16 < .1998 < .2;    Therefore  lim!→! 𝑥! − 10 = 6      

 13. Prove  that    lim!  →! 2𝑥 − 4 = 2  using  𝜀 − 𝛿    definition.  

 14. Sketch  a  graph  of  a  function    f    defined  on  [-­‐2,  -­‐1)  ∪ (−1,  3]  and  continuous  on    

          [-­‐2,  -­‐1)  ∪  (-­‐1,  3)  that  satisfies  given  conditions:    𝑓 −2 = 0;  𝑓 1 =  0;    𝑓 3 = −2;    lim

!  →  !!!𝑓 𝑥 =  ∞;     lim

!  →  !!!𝑓 𝑥 =  −∞;     lim

!  →  !!𝑓 𝑥 =  2;