· mathematica moravica vol. 10 (2006), 149–172 a survey of np−polyagroups survey article...

24
Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP -Polyagroups Survey Article Janez Uˇ san Abstract. This text is as an attempt to systemize the results about NP polyagroups. 1. Notion and example 1.1. Definition [12]: Let k> 1,s 1,n = k · s +1 and let (Q; A) be an n-groupoid. Then: we say that (Q; A) is an NP -polyagroup of the type (s, n - 1) iff the following statements hold: 1 For all i, j ∈{1,...,n} (i<j ) if i, j ∈{t · s +1|t ∈{0, 1,...,k}}, then the < i, j > -associative law holds in (Q; A); and 2 For all i ∈{t · s +1|t ∈{0, 1,...,k}} and for every a n 1 Q there is exactly one x i Q such that the equality A(a i1 1 ,x i ,a n1 i )= a n holds. Remark: For s =1(Q; A) is a (k + 1)-group, where k +1 3; k> 1. 1.2. Example: Let (Q; ·) be a group and let α be a mapping of the set Q into the set Q. Also, let A(x 5 1 ) def = x 1 · α(x 2 ) · x 3 · α(x 4 ) · x 5 for all x 5 1 Q. Then (Q; A) is an NP -polyagroup of the type (2,4). Remark: Consult Prop. 2.3 and Prop. 2.1. 2. Auxiliary proposition 2.1. Proposition [12]: Let k> 1,s > 1,n = k · s +1 and let (Q; A) be an n-groupoid. Also, let the following statements hold: 2000 Mathematics Subject Classification. Primary: 20N15. Key words and phrases. ngroup, {1,n}−neutral operation of the ngroupoid, near-P - polyagroup of the type (s, n 1). c 2006 Mathematica Moravica 149

Upload: others

Post on 03-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Mathematica Moravica

Vol. 10 (2006), 149–172

A Survey of NP−Polyagroups

Survey Article

Janez Usan

Abstract. This text is as an attempt to systemize the results about NP−polyagroups.

1. Notion and example

1.1. Definition [12]: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

n−groupoid. Then: we say that (Q; A) is an NP−polyagroup of the type

(s, n − 1) iff the following statements hold:

1◦ For all i, j ∈ {1, . . . , n} (i < j) if i, j ∈ {t · s + 1|t ∈ {0, 1, . . . , k}}, then the

< i, j > −associative law holds in (Q; A); and

2◦ For all i ∈ {t · s + 1|t ∈ {0, 1, . . . , k}} and for every an1 ∈ Q there is exactly

one xi ∈ Q such that the equality

A(ai−11 , xi, a

n−1i ) = an

holds.

Remark: For s = 1 (Q; A) is a (k + 1)−group, where k + 1 ≥ 3; k > 1.

1.2. Example: Let (Q; ·) be a group and let α be a mapping of the set Q into

the set Q. Also, let

A(x51)

def= x1 · α(x2) · x3 · α(x4) · x5

for all x51 ∈ Q. Then (Q; A) is an NP−polyagroup of the type (2,4).

Remark: Consult Prop. 2.3 and Prop. 2.1.

2. Auxiliary proposition

2.1. Proposition [12]: Let k > 1, s > 1, n = k · s + 1 and let (Q; A) be an

n−groupoid. Also, let the following statements hold:

2000 Mathematics Subject Classification. Primary: 20N15.Key words and phrases. n−group, {1, n}−neutral operation of the n−groupoid, near-P -

polyagroup of the type (s, n − 1).

c©2006 Mathematica Moravica149

Page 2:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

150 A Survey of NP−Polyagroups

(|) For all i, j ∈ {1, . . . , n} (i < j) if i, j ∈ {t · s + 1|t ∈ {0, 1, . . . , k}}, then the

< i, j > −associative law holds in (Q; A);

(||) For every an1 ∈ Q there is exactly one x ∈ Q such that the following equality

holds

A(an−11 , x) = an; and

(|||) For every an1 ∈ Q there is exactly one y ∈ Q such that the following equality

holds

A(y, an−21 ) = an.

Then (Q; A) is an NP−polyagroup of the type (s, n − 1).

Remark: For s = 1 see Prop. 2.2-III in [10]. See, also Prop. 4.1-XVI in [2003].

Sketch of a part of the proof.

a) A(a, as−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x,

(t)a

s−11 ,

(t)a

k−2t=i , b

s−11 , b) 1 =

A(a, as−11 ,

(t)a ,

(t)a

s−11

i−1t=1, y,

(t)a

s−11 ,

(t)a

k−2t=i , b

s−11 , b) ⇒

A( (j)c ,

(j)c

s−11

kj=i+1, A(a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x,

(t)a

s−11 ,

(t)a

k−2t=i , b

s−11 , b),

(j)c

s−11 ,

(j)c

ij=i) =

A( (j)c ,

(j)c

s−11

kj=i+1, A(a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, y,

(t)a

s−11 ,

(t)a

k−2t=i , b

s−11 , b),

(j)c

s−11 ,

(j)c

ij=i)

(|)⇒

A(A( (j)c ,

(j)c

s−11

kj=i+1, a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x), (t)

as−11 ,

(t)a

k−2t=i , b

s−11 , b,

(j)c

s−11 ,

(j)c

ij=i) =

A(A( (j)c ,

(j)c

s−11

kj=i+1, a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, y), (t)

as−11 ,

(t)a

k−2t=i , b

s−11 , b,

(j)c

s−11 ,

(j)c

ij=i)

(|||)⇒

A( (j)c ,

(j)c

s−11

kj=i+1, a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x) =

A( (j)c ,

(j)c

s−11

kj=i+1, a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, y)

(||)⇒ x = y.

b) A(a, as−11 ,

(t)a ,

(t)a

s−11

k−2t=i , x,

(t)a

s−11 ,

(t)a

i−1t=1, b

s−11 , b) =

A(a, as−11 ,

(t)a ,

(t)a

s−11

k−2t=i , y,

(t)a

s−11 ,

(t)a

i−1t=1, b

s−11 , b) ⇒

1i ∈ {1, . . . , k − 1}.

Page 3:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 151

A( (j)c ,

(j)c

s−11

kj=i+1, A(a, a

s−11 ,

(t)a ,

(t)a

s−11

k−2t=i , x,

(t)a

s−11 ,

(t)a

i−1t=1, b

s−11 , b),

(j)c

s−11 ,

(j)c

kj=i+1) =

A( (j)c ,

(j)c

s−11

kj=i+1, A(a, a

s−11 ,

(t)a ,

(t)a

s−11

k−2t=i , y,

(t)a

s−11 ,

(t)a

i−1t=1, b

s−11 , b),

(j)c

s−11 ,

(j)c

kj=i+1)

(|)⇒

A(A( (j)c ,

(j)c

s−11

ij=1, a, a

s−11 ,

(t)a ,

(t)a

s−11

k−2t=i , x), (t)

as−11 ,

(t)a

i−1t=1, b

s−11 , b,

(j)c

s−11 ,

(j)c

kj=i+1) =

A(A( (j)c ,

(j)c

s−11

ij=1, a, a

s−11 ,

(t)a ,

(t)a

s−11

k−2t=i , y), (t)

as−11 ,

(t)a

i−1t=1, b

s−11 , b,

(j)c

s−11 ,

(j)c

kj=i+1)

(|||)⇒

A( (j)c ,

(j)c

s−11

ij=1, a, a

s−11 ,

(t)a ,

(t)a

s−11

k−2t=i , x) =

A( (j)c ,

(j)c

s−11

ij=1, a, a

s−11 ,

(t)a ,

(t)a

s−11

k−2t=i , y)

(||)⇒ x = y.

c) A(a, as−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x,

(t)a

s−11 ,

(t)a

k−2t=i , b

s−11 , b) = d

b)⇔

A( (j)c ,

(j)c

s−11

kj=i+1, A(a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x,

(t)a

s−11 ,

(t)a

k−2t=i , b

s−11 , b),

(j)c

s−11 ,

(j)c

ij=1) =

A( (j)c ,

(j)c

s−11

kj=i+1, d,

(j)c

s−11 ,

(j)c

ij=1)

(|)⇔

A(A( (j)c ,

(j)c

s−11

kj=i+1, a, a

s−11 ,

(t)a ,

(t)a

s−11

i−1t=1, x), (t)

as−11 ,

(t)a

k−2t=i , b

s−11 , b,

(j)c

s−11 ,

(j)c

ij=1) =

A( (j)c ,

(j)c

s−11

kj=i+1, d,

(j)c

s−11 ,

(j)c

ij=1),

where (j)c

kj=1 and (j)

cs−11

kj=1 (s > 1) are arbitrary sequence over Q. �

2.21. Proposition [12]: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

n−groupoid. Also, let

(a) The < 1, s + 1 > −associative law holds in the (Q; A); and

(b) For every x, y, an−11 ∈ Q the following implication holds

A(x, an−11 ) = A(y, a

n−11 ) ⇒ x = y.

Then statement 1◦ from Def. 1.1. holds in (Q; A).

Remark: For s = 1 Prop. 2.21 is proved in [7]. Cf. Prop. 2.1-III in [2003].

The sketch of a part of the proof.

A(A(xn1 ), x2n−1

n+1 )(a)=A(xs

1, A(xs+ns+1 ), x2n−1

s+n+1) ⇒

Page 4:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

152 A Survey of NP−Polyagroups

A(ys1, A(A(xn

1 ), x2n−1n+1 ), yn−1

s+1 ) =

A(ys1, A(xs

1, A(xs+ns+1 ), x2n−1

s+n+1, yn−1s+1 )

(a)⇒

A(A(ys1, A(xn

1 ), x2n−1−sn+1 ), x2n−1

2n−s, yn−1s+1 ) =

A(A(ys1, x

s1, A(xs+n

s+1 ), x2n−1−ss+n+1 ), x2n−1

2n−s, yn−1s+1 )

(b)⇒

A(ys1, A(xn

1 ), x2n−1−sn+1 ) = A(ys

1, xs1, A(xs+n

s+1 ), x2n−1−ss+n+1 ).

(Cf. the proof of Prop. 4.21 in [11].) �

Similarly, it posible to prove also the following two propositions.

2.22. Proposition [12]: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

n−groupoid. Also, let

(a) The < (k − 1) · s + 1, k · s + 1 > −associative law holds in the (Q; A); and

(b) For every x, y, an−11 ∈ Q the following implications holds

A(an−11 , x) = A(an−1

1 , y) ⇒ x = y.

Then statement 1◦ from Def. 1.1. holds in (Q; A).

Remark: Cf. Prop. 2.1-III in [2003].

2.23. Proposition [9]: Let k > 1, s > 1, n = k ·s+1, i ∈ {t ·s+1|t ∈ {0, 1, . . . , k}}

and let (Q; A) be an n−groupoid. Also, let

(i) The < i − s, i > −associative law holds in the (Q; A);

(ii) The < i, i + s > −associative law holds in the (Q; ); and

(iii) For every x, y, an−11 ∈ Q the following implications holds

A(ai−11 , x, a

n−1i ) = A(ai−1

1 , y, an−11 ) ⇒ x = y.

Then statement 1◦ from Def. 1.1. holds in (Q; A).

2.3. Proposition [7]: Let (Q; A) be an n−groupoid and let n ≥ 2. Further on,

let the following statements hold:

(a) The < 1, n > −associative law holds in the (Q; A);

(b) For every sequence an−21 over Q, for every a ∈ Q and for every b ∈ Q, there

is at least one x ∈ Q such that the equality A(a, an−21 , x) = b holds; and

(c) For every sequence an−21 over Q, for every a ∈ Q and for every b ∈ Q, such

that the equality A(y, an−21 , a) = b holds.

Then there are mappings −1 and e, respectively, of the sets Qn−1 and Q

n−2 into

Q such that for every sequence an−21 over Q and for every a, x ∈ Q the following

equalities hold

Page 5:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 153

(2L) A(e(an−21 ), an−2

1 , x) = x,

(2R) A(x, an−21 , e(an−2

1 )) = x,

(3L) A((an−21 , a)−1

, an−21 , a) = e(an−2

1 ),

(3R) A(a, an−21 , (an−2

1 , a)−1) = e(an−21 ),

(4L) A((an−21 , a)−1

, an−21 , A(a, a

n−21 , x)) = x and

(4R) A(A(x, an−21 , a), an−2

1 , (an−21 , a)−1) = x.

Remark: e is an {1, n}−neutral operation of n−groupoid (Q; A) iff algebra (Q; A, e)

[of the type < n, n− 2 >] satisfies the laws (2L) and (2R) [5]. Operation −1 from

2.3 is a generalization of the inverse operation in a group [6]. Cf. Chapter II and

Chapter III in [2003].

By Prop. 2.3 and by Def. 1.1, we obtain:

2.4. Proposition: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

NP−polyagroup of the type (s, n − 1). Then there are mappings −1 and e, re-

spectively, of the sets Qn−1 and Q

n−2 into Q such that the laws:

(2L) A(e(an−21 ), an−2

1 , x) = x,

(2R) A(x, an−21 , e(an−2

1 )) = x,

(3L) A((an−21 , a)−1

, an−21 , a) = e(an−2

1 ),

(3R) A(a, an−21 , (an−2

1 , a)−1) = e(an−21 ),

(4L) A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x)) = x and

(4R) A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) = x.

hold in the algebra (Q; A,−1

, e).

3. Some characterizations of NP−polyagroups

3.11. Theorem: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is an NP−polyagroup of the type (s, n − 1) iff there is a mapping

−1 of the set Qn−1 into the set Q such that the laws:

(1Ls) A(A(xn1 ), x2n−1

n+1 ) = A(xs1, A(xs+n

s+1 ), x2n−1s+n+1),

(4L) A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x)) = x and

(4R) A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) = x

hold in the algebra (Q; A,−1 ).

Remark: For s = 1 see 1 − IX in [2003].

Page 6:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

154 A Survey of NP−Polyagroups

Proof. 1) ⇒: By Def. 1.1 and by Prop. 2.4.

2) ⇐: Firstly we prove the following statements:◦1 For every x, y, a

n−11 ∈ Q the following implication holds

A(x, an−11 ) = A(y, a

n−11 ) ⇒ x = y.

◦2 The statement 1◦ from Def. 1.1 holds.◦3 For every x, y, a

n−11 ∈ Q the following implication holds

A(an−11 , x) = A(an−1

1 , y) ⇒ x = y.

◦4 For every an−21 , b, c, x ∈ Q the following equivalences hold

A(x, an−21 , b) = c ⇔ x = A(c, an−2

1 , (an−21 , b)−1) and

A(b, an−21 , y) = c ⇔ y = A((an−2

1 , b)−1, a

n−21 , c).

Sketch of the proof of ◦1 :

A(x, an−21 , b) = A(y, a

n−21 , b) ⇒

A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) =

A(A(y, an−21 , b), an−2

1 , (an−21 , b)−1)

(4R)⇒

x = y.

The proof of ◦2 : By (1Ls),◦ 1 and by Prop. 2.21.

Sketch of the proof of ◦3 :

A(b, an−21 , x) = A(b, an−2

1 , y) ⇒

A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x)) =

A((an−21 , b)−1

, an−21 , A(b, an−2

1 , y))(4L)⇒

x = y.

Sketch of the proof of ◦4 :

a) A(x, an−21 , b) = c

◦1⇔

A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) =

A(c, an−21 , (an−2

1 , b)−1)(4R)⇔

x = A(c, an−21 , (an−2

1 , b)−1).

b) A(b, an−21 , y) = c

◦3⇔

A((an−21 , b)−1

, an−21 , A(b, an−2

1 , y)) =

A((an−21 , b)−1

, an−21 , c)

(4L)⇔

y = A((an−21 , b)−1

, an−21 , c).

Finally, by ◦1−◦4 and by Prop. 2.1 we conclude that (Q; A) is an NP−polyagroup

of the type (s, n − 1). Whence, by ” ⇒ ”, we obtain Th. 3.11. �

Similarly, it is posible to prove also the following proposition:

Page 7:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 155

3.12. Theorem: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an n−groupoid.

Then (Q; A) is an NP−polyagroup of the type (s, n− 1) iff there is a mapping −1

of the set Qn−1 into the set Q such that the laws:

(1Rs) A(x(k−1)·s1 , A(x

(k−1)·s+n

(k−1)·s+1 ), x2n−1(k−1)·s+n+1) = A(xk·s

1 , A(x2n−1k·s+1)),

(4L) A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x)) = x and

(4R) A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) = x

hold in the algebra (Q; A,−1 ).

Remark: For s = 1 see 1 − IX in [2003].

3.21. Theorem [13]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then: (Q; A) is an NP−polyagroup of the type (s, n − 1) iff the following state-

ments hold

(1) The < 1, s + 1 > −associative law holds in (Q; A);

(2) The < 1, n > −associative law holds in (Q; A);

(3) For every an1 ∈ Q there is at least one x ∈ Q such that the following

equality A(an−11 , x) = an holds; and

(4) For every an1 ∈ Q there is at least one y ∈ Q such that the following

equality A(y, an−11 ) = an holds.

Remark: For s = 1 Th. 3.21 is proved in [7]. See, also, Th. 5.21 in [11].

Proof. a) ⇒: By Def. 1.1.

b) ⇐: Firstly we prove the following statement:

1∗ There is mapping −1 of the set Qn−1 into the set Q such that the following

laws hold in the algebra (Q; A,−1 ) [of the type < n, n − 1 >]

(a) A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x)) = x and

(b) A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) = x.

The proof of 1∗ : By (2) − (4) and by Prop. 2.4.

Finally, by (1), by 1∗ and by Th. 3.11, we conclude that is an NP−polyagroup

of the type (s, n − 1). Whence, by ” ⇒ ”, we have Th. 3.21. �

Similarly, it is posible to prove also the following proposition:

3.22. Theorem [13]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then: (Q; A) is an NP−polyagroup of the type (s, n − 1) iff the following state-

ments hold

(1) The < (k − 1) · s + 1, k · s + 1 > −associative law holds in (Q; A);

(2) The < 1, n > −associative law holds in (Q; A);

Page 8:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

156 A Survey of NP−Polyagroups

(3) For every an1 ∈ Q there is at least one x ∈ Q such that the following

equality A(an−11 , x) = an holds; and

(4) For every an1 ∈ Q there is at least one y ∈ Q such that the following

equality A(y, an−11 ) = an holds.

Remark: For s = 1 Th. 3.22 is proved in [7].

3.31. Theorem [12]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is an NP−polyagroup of the type (s, n − 1) iff there are mappings

−1 and e, respectively, of the sets Qn−1 and Q

n−2 into the set Q such that the

following laws hold in the algebra (Q; A,−1

, e) [of the type < n, n − 1, n − 2 >]:

(1Ls) A(A(xn1 ), x2n−1

n+1 ) = A(xs1, A(xs+n

s+1 ), x2n−1s+n+1),

(2R) A(x, an−21 , e(an−2

1 )) = x and

(3R) A(a, an−21 , (an−2

1 )−1) = e(an−21 ).

Remark: For s = 1 Th. 3.31 is proved in [7]. Cf. 3-III in [2003].

Proof. a) ⇒: By Def. 1.1. and by Prop. 2.4.

b) ⇐: Firstly we prove the following statements:◦1 For every x, y, a

n−11 ∈ Q the following implication holds

A(x, an−11 ) = A(y, a

n−11 ) ⇒ x = y.

◦2 The statement 1◦ from Def. 1.1 holds.◦3 Law

(2L) A(e(an−21 ), an−2

1 , x) = x

holds in the algebra (Q; A,−1

, e).◦4 Law

(3L) A((an−21 )−1

, an−21 , a) = e(an−2

1 )

holds in the algebra (Q; A,−1

, e).◦5 Law

(4L) A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x)) = x and

(4R) A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1) = x.

hold in the algebra (Q; A,−1

, e).

Sketch of the proof of◦1 :

a) n − 2 − s ≥ 0 :n − 2 − s = k · s + 1 − 2 − s

= s(k − 1) − 1k>1≥ s − 1

s>1≥ 0.

Page 9:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 157

b) A(x, as−11 , a, a

n−2s ) = A(y, a

s−11 , a, a

n−2s )

a)⇒

A(A(x, as−11 , a, a

n−2s ), as−1

1 , e(an−2s , a

s−11 ),

n−2−sa , e(as−1

1 ,

n−2−s+1a )) =

A(A(y, as−11 , a, a

n−2s ), as−1

1 , e(an−2s , a

s−11 ),

n−2−sa , e(as−1

1 ,

n−2−s+1a ))

(1Ls)=⇒

A(x, as−11 , A(a, a

n−2s , a

s−11 , e(an−2

s , as−11 )),

n−2−sa , e(as−1

1 ,

n−2−s+1a )) =

A(y, as−11 , A(a, a

n−2s , a

s−11 , e(an−2

s , as−11 )),

n−2−sa , e(as−1

1 ,

n−2−s+1a ))

(2R)=⇒

A(x, as−11 , a,

n−2−sa , e(as−1

1 ,

n−2−s+1a )) =

A(y, as−11 , a,

n−2−sa , e(as−1

1 ,

n−2−s+1a ))

(2R)=⇒ x = y.

The proof of◦2: By (1Ls),

◦1 and by Prop. 2.21.

Sketch of the proof of◦3 :

A(e(an−21 ), an−2

1 , a) = b ⇒

A(A(e(an−21 ), an−2

1 , a), an−21 , (an−2

1 , a)−1) =

A(b, an−21 , (an−2

1 )−1)2◦

=⇒ 2

A(e(an−21 ), an−2

1 , A(a, an−21 , (an−2

1 , a)−1))

A(b, an−21 , (an−2

1 , a)−1)(3R)=⇒

A(e(an−21 ), an−2

1 , e(an−21 )) =

A(b, an−21 , (an−2

1 , a)−1)(2R)=⇒

e(an−21 ) = A(b, an−2

1 , (an−21 , a)−1)

(3R)=⇒

A(a, an−21 , (an−2

1 , a)−1) =

A(b, an−21 , (an−2

1 , a)−1)◦1

=⇒ a = b.

Sketch of the proof of◦4 :

A((an−21 , a)−1

, an−21 , a) = b ⇒

A(A((an−21 , a)−1

, an−21 , a), an−2

1 , (an−21 , a)−1) =

A(b, an−21 , (an−2

1 , a)−1)◦2

=⇒

A((an−21 , a)−1

, an−21 , A(a, a

n−21 , (an−2

1 , a)−1)) =

A(b, an−21 , (an−2

1 , a)−1)(3R)=⇒

A((an−21 , a)−1

, an−21 , e(an−2

1 )) =

A(b, an−21 , (an−2

1 , a)−1)(2R),

◦3

=⇒

A(e(an−21 ), an−2

1 , (an−21 , a)−1) =

A(b, an−21 , (an−2

1 )−1)◦1

=⇒b = e(an−21 ).

2< 1, n > −associative law.

Page 10:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

158 A Survey of NP−Polyagroups

Sketch of the proof of◦5 :

a) A((an−21 , b)−1

, an−21 , A(b, an−2

1 , x))◦2=

A(A((an−21 , b)−1

, an−21 , b), an−2

1 , x)◦4=

A(e(an−21 ), an−2

1 , x)◦3=x.

b) A(A(x, an−21 , b), an−2

1 , (an−21 , b)−1)

◦2=

A(x, an−21 , A(b, an−2

1 , (an−21 , b)−1))

(3R)=

A(x, an−21 , e(an−2

1 ))(2R)= x.

Finally, by (1Ls), by◦5 and Th. 3.11, we conclude that (Q; A) is an NP−polyagroup

of the type (s, n − 1). Whence, by ” ⇒ ”, we obtain Th. 3.31. �

Similarly, it is posible to prove also the following proposition:

3.32. Theorem [12]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is an NP−polyagroup of the type (s, n − 1) iff there are mappings

−1 and e, respectively, of the sets Qn−1 and Q

n−2 into the set Q such that the

following laws hold in the algebra (Q; A,−1

, e) [of the type < n, n − 1, n − 2 >]:

(1Rs) A(x(k−1)·s1 , A(x

(k−1)·s+n

(k−1)·s+1 , x2n−1(k−1)·s+n+1) = A(xk·s

1 , A(x2n−1k·s+1)),

(2L) A(e(an−21 ), an−2

1 , x) = x,

(3L) A((an−21 , a)−1

, an−21 , a) = e(an−2

1 ),

Remark: For s = 1 see 3 − III in [10].

3.41. Theorem [15]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is an NP−polyagroup of the type (s, n− 1) iff there is mapping e of

the set Qn−2 into the set Q such that the laws

(1Ls) A(A(xn1 ), x2n−1

n+1 ) = A(xs1, A(xs+n

s+1 ), x2n−1s+n+1),

(2L) A(e(an−21 ), an−2

1 , x) = x and

(2R) A(x, an−21 , e(an−2

1 )) = x

hold in the algebra (Q; A, e) of the type < n, n − 2 > .

Remark: For s = 1 Th. 3.41 is proved in [7]. Cf. 2-IX in [10].

Proof. 1) ⇒: By Def. 1.1 and by Prop. 2.4.[Every NP−polyagroup of the type

(s, n − 1) has an {1, n}−neutral operation.]

2) ⇐: Firstly we prove the following statements:

1 For all x, y, an−11 ∈ Q the following implication holds

A(x, an−11 ) = A(y, a

n−11 ) ⇒ x = y.

2 The statement 1◦ from Def. 1.1 holds.

Page 11:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 159

3 For all x, y, an−11 ∈ Q the following implication holds

A(an−11 , x) = A(an−1

1 , y) ⇒ x = y.

4 For every an1 ∈ Q there is exactly one x ∈ Q and exactly one y ∈ Q such that

the following equalities hold

A(an−11 , x) = an and A(an−1

1 , y) = an.

Sketch of the proof 1 : Sketch of the proof of◦1 from the proof of Th. 3.31.

The proof of 2 : By (1Ls), 1 and by Prop. 2.21.

Sketch of the proof of 3 :

A(an−2s , a, a

s−11 , x) = A(an−2

s , a, as−11 , y) ⇒

A(e(n−2−s+1

a , as−11 ),

n−2−sa , e(an−2

1 ), as−11 , A(an−2

s , a, as−11 , x) =

A(e(n−2−s+1

a , as−11 ),

n−2−sa , e(an−2

1 ), as−11 , A(an−2

s , a, as−11 , y)

b2⇒

A(e(n−2−s+1

a , as−11 ),

n−2−sa , A(e(an−2

1 ), as−11 , a

n−2s , a), as−1

1 , x) =

A(e(n−2−s+1

a , as−11 ),

n−2−sa , A(e(an−2

1 ), as−11 , a

n−2s , a), as−1

1 , y)(2L)⇒

A(e(n−2−s+1

a , as−11 ),

n−2−sa , a, a

s−11 , x) =

A(e(n−2−s+1

a , as−11 ),

n−2−sa , a, a

s−11 , y)

(2L)⇒ x = y.

Sketch of the proof of 4 :

a) A(x, as−11 , a, a

n−2s ) = b

b1⇔

A(A(x, as−11 , a, a

n−2s ), as−1

1 , e(an−2s , a

s−11 ), cn−2−s

1 , e(as−11 , a, c

n−2−s1 )) =

A(b, as−11 , e(an−2

s , as−11 ), cn−2−s

1 , e(as−11 , a, c

n−2−s1 ))

(1Ls)⇔

A(x, as−11 , A(a, a

n−2s , a

s−11 , e(an−2

s , as−11 )), cn−2−s

1 , e(as−11 , a, c

n−2−s1 )) =

A(b, as−11 , e(an−2

s , as−11 ), cn−2−s

1 , e(as−11 , a, c

n−2−s1 ))

(2R)⇔

A(x, as−11 , a, c

n−2−s1 , e(as−1

1 , a, cn−2−s1 )) =

A(b, as−11 , e(an−2

s , as−11 ), cn−2−s

1 , e(as−11 , a, c

n−2−s1 ))

(2R)⇔

x = A(b, as−11 , e(an−2

s , as−11 ), cn−2−s

1 , e(as−11 , a, c

n−2−s1 )),

where cn−2−s1 is an arbitrary sequence over Q.

b) A(an−2s , a, a

s−11 , x) = b

b3⇔

A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , e(an−21 ), as−1

1 , A(an−2s , a, a

s−11 , x)) =

A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , e(an−21 ), as−1

1 , b)b2⇔

A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , A(e(an−21 ), as−1

1 , an−2s , a), as−1

1 , x) =

A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , e(an−21 ), as−1

1 , b)(2L)⇔

A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , a, as−11 , x) =

A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , e(an−21 ), as−1

1 , b)(2L)⇔

Page 12:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

160 A Survey of NP−Polyagroups

x = A(e(cn−2−s1 , a, a

s−11 ), cn−2−s

1 , e(an−21 ), as−1

1 , b),

where cn−2−s1 is an arbitrary sequence over Q.

c) By a) and 1 and by b) and 3, we obtain 4.

Finally, by 2, 4 and by Prop. 2.1, we conclude that (Q; A) is an NP−polyagroup

of the type (s, n − 1). Whence, by ” ⇒ ”, we obtain Th. 3.41. �

Similarly, it is posible to prove also the following proposition:

3.42. Theorem [15]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is an NP−polyagroup of the type (s, n− 1) iff there is mapping e of

the set Qn−2 into the set Q such that the laws

(1Rs) A(x(k−1)·s1 , A(x

(k−1)·s+n

(k−1)·s+1 ), x2n−1(k−1)·s+n+1) = A(xk·s

1 , A(x2n−1k·s+1)),

(2L) A(e(an−21 ), an−2

1 , x) = x and

(2R) A(x, an−21 , e(an−2

1 )) = x

hold in the algebra (Q; A, e) of the type < n, n − 2 > .

Remark: For s = 1 Th. 3.42 is proved in [7]. Cf. 3-III in [10].

The following proposition, also, holds:

3.5. Theorem [12]: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is an NP−polyagroup of the type (s, n − 1) iff there are mappings

−1 and e, respectively, of the sets Qn−1 and Q

n−2 into the set Q such that the

following laws hold in the algebra (Q; A,−1

, e) [of the type < n, n − 1, n − 2 >]:

1) (1Ls), (2R), and (4L); or

2) (1Rs), (2R), and (4L); or

3) (1Ls), (2L), and (4R); or

4) (1Rs), (2L), and (4R).

Remarks: a) For s = 1 is proved in [7]. Cf. 2-IX in [10]. b) Cf. the proof of

Th.3.31 and the proof of Th.3.41.

4. Some more propositions

4.1. Proposition [15]: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

NP−polyagroup of the type (s, n − 1) and e its {1, n}−neutral operation. Then

the following laws

A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , x) = x and

Page 13:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 161

A(x, as−11 , e(cn−2−s

1 , a, as−11 ), cn−2−s

1 , a) = x

hold in the algebra (Q; A, e).

Remark: For s = 1 see Prop. 1.1-IV in [10].

Sketch of a part of the proof.

F (x, as−11 , a, c

n−2−s1 )

def= A(a, c

n−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , x) ⇒

A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , F (x, as−11 , a, c

n−2−s1 )) =

A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , x))1.1,1◦⇐⇒

A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , F (x, as−11 , a, c

n−2−s1 )) =

A(a, cn−2−s1 , A(e(as−1

1 , a, cn−2−s1 ), as−1

1 , cn−2−s1 , e(as−1

1 , a, cn−2−s1 )), as−1

1 , x)2.4⇐⇒

A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , F (x, as−11 , a, c

n−2−s1 )) =

A(a, cn−2−s1 , e(as−1

1 , a, cn−2−s1 ), as−1

1 , x)1.1,2◦⇐⇒F (x, a

s−11 , a, c

n−2−s1 )) = x. �

4.2. Theorem [15]: Let k > 1, s > 1, n = k·s+1 and let (Q; A) be an n−groupoid

and let E be an (n − 2)−ary operation in Q. Also, let the following laws

(o) E(cn−2−s1 , b, a

s−11 ) = E(as−1

1 , cn−2−s1 , b),

(1Ls) A(A(xn1 ), x2n−1

n+1 ) = A(xs1, A(xs+n

s+1 ), x2n−1s+n+1),

(2R) A(x, an−21 , E(an−2

1 )) = x and

(2L) A(a, cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 , x) = x

hold in the algebra (Q; A, E). Then (Q; A) is an NP−polyagroup of the type (s, n−

1).

Remarks: a) For s = 1 (o) is reduced to: E(cn−31 , b) = E(cn−3

1 , b). b) Cf. Th. 4.3.

c) For s = 1 ([2]) see 1.1-XII in [10].

Proof. Firstly we prove the following statements:

1 For all x, y, an−11 ∈ Q the implication holds

A(x, an−11 ) = A(y, a

n−11 ) ⇒ x = y.

2 Statement 1◦ from Def. 1.1 holds.

3 For all as−11 , a, c

n−2−s1 ∈ Q the following equality holds

a = E(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 ).

4 For every as−11 , a, c

n−2−s+11 , x, y ∈ Q the implication holds

A(a, as−11 , x, c

n−2−s+11 ) = A(a, a

s−11 , y, c

n−2−s+11 ) ⇒ x = y.

5 For every as−11 , a, c

n−2−s+11 , x, y ∈ Q the implication holds

A(cn−2−s+11 , x, a

s−11 , a) = A(cn−2−s+1

1 , y, as−11 , a) ⇒ x = y.

Page 14:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

162 A Survey of NP−Polyagroups

6 For every x, a, as−11 , a, c

n−2−s+11 ∈ Q

A(a, as−11 , x, c

n−2−s+11 ) = b ⇔

x = A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 )).

Sketch of the proof of 1 : Sketch of the proof of◦1 from the proof of Th. 3.31.

Sketch of the proof of 2 : By 1 and by Prop. 2.21.

Sketch of the proof of 3 :

A(a, cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 , E(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 ))( 2L)=

E(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 )),

A(a, cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 , E(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), as−1

1 ))(2R)= a.

Sketch of the proof of 4 :

A(a, as−11 , x, c

n−2−s+11 ) = A(a, a

s−11 , y, c

n−2−s+11 ) ⇒

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), A(a, a

s−11 , x, c

n−2−s+11 ), as−1

1 , E(cn−2−s+11 , a

s−11 )) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), A(a, a

s−11 , y, c

n−2−s+11 ), as−1

1 , E(cn−2−s+11 , a

s−11 ))

2⇒

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), a, a

s−11 , A(x, c

n−2−s+11 , a

s−11 , E(cn−2−s+1

1 , as−11 ))) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), a, a

s−11 , A(y, c

n−2−s+11 , a

s−11 , E(cn−2−s+1

1 , as−11 )))

(2R)⇒

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), a, a

s−11 , x) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), a, a

s−11 , y)

3⇒

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), E(cn−2−s

1 , E(as−11 , a, c

n−2−s1 ), as−1

1 ), as−11 , x) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), E(cn−2−s

1 , E(as−11 , a, c

n−2−s1 ), as−1

1 ), as−11 , y)

(o)⇒

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), E(as−1

1 , cn−2−s1 , E(as−1

1 , a, cn−2−s1 )), as−1

1 , x) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), E(as−1

1 , cn−2−s1 , E(as−1

1 , a, cn−2−s1 )), as−1

1 , y)( 2L)⇒

x = y.

Sketch of the proof of 5 :

A(cn−1−s1 , x, a

s−11 , a) = A(cn−1−s

1 , y, as−11 , a) ⇒

A(d2s1 , A(cn−1−s

1 , x, as−11 , a), dn−1

2s+1) =

A(d2s1 , A(cn−1−s

1 , y, as−11 , a), dn−1

2s+1)2⇒

A(A(d2s1 , c

n−2s1 ), cn−1−s

n−2s+1, x, as−11 , a, d

n−12s+1) =

A(A(d2s1 , c

n−2s1 ), cn−1−s

n−2s+1, y, as−11 , a, d

n−12s+1)

4⇒

x = y.

Sketch of the proof of 6 :

A(a, as−11 , x, c

n−2−s+11 ) = b

5⇔

Page 15:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 163

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), A(a, a

s−11 , x, c

n−2−s+11 ), as−1

1 ,

E(cn−2−s+11 , a

s−11 )) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 ))

2⇔

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), a, a

s−11 , A(x, c

n−2−s+11 , a

s−11 , E(cn−2−s+1

1 , as−11 )) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 ))

(2R)⇔

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), a, a

s−11 , x) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 ))

3⇔

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), E(cn−2−s

1 ,

E(as−11 , a, c

n−2−s1 ), as−1

1 ), as−11 , x) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 ))

(o)⇔

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), E(as−1

1 , a, cn−2−s1 ,

E(as−11 , a, c

n−2−s1 )), as−1

1 , x) =

A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 ))

( 2L)⇔

x = A(cn−2−s1 , E(as−1

1 , a, cn−2−s1 ), b, as−1

1 , E(cn−2−s+11 , a

s−11 )).

Finally, considering 2, 4, 6 and by Prop. 2.23, we conclude that (Q; A) is an

near−P−polyagroup of the type (s, n − 1). �

4.3. Theorem [15]: Let (Q; ·) be a group, let α be a mapping of the set Qs−1

into the set Q, k > 1, s > 1 and let n = k · s + 1. Also, let

A(x1,(1)y

s−11 , . . . , xk,

(k)y

s−11 , xk+1)

def= x1 · α(

(1)y

s−11 ) · · · · · xk · α(

(k)y

s−11 ) · xk+1

for all xk+11 ,

(1)y

s−11 , . . . ,

(k)y

s−11 ∈ Q. Further on, let

E((1)y

s−11 , b1, . . . , bk−1,

(k)y

s−11 )

def= (α(

(1)y

s−11 ) · b1 · · · · · bk−1 · α(

(k)y

s−11 ))−1

where −1 is an inverse operation in (Q; ·). Then the following statements hold:

(α) (Q; A) is an NP−polyagroup of the type (s, n − 1);

(β) E is an {1, n}−neutral operation of the (Q; A);

(γ) If (Q; ·) commutative group, then (o) from 4.2 holds in (Q; A); and

(δ) If (Q; ·) is no commutative and (Q; α) is a (s − 1)−quasigroup, then the

condition (o) [from 4.2] in (Q; A) does not holds.

Proof. Firstly we prove the following statements:

1 The < 1, s + 1 > −associative law holds in the (Q; A); and

2 = (b).

Sketch of the proof of 1 :

A(A(x1,

(1)

ys−11 , x2,

(2)

ys−11 , . . . , xk,

(k)

ys−11 , xk+1),

(k+1)

ys−11 , xk+2, . . . ,

(2k)

ys−11 , x2k+1) =

Page 16:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

164 A Survey of NP−Polyagroups

(x1 · α((1)

ys−11 ) · x2 · α(

(2)

ys−11 ) · · · · · xk · α(

(k)

ys−11 ) · xk+1) · α(

(k+1)

ys−11 ) · xk+2 · α(

(k+2)

ys−11 ) · · · · ·

α((2k)

ys−11 ) · x2k+1) =

x1 · α((1)

ys−11 ) · (x2 · α(

(2)

ys−11 ) · · · · · xk · α(

(k)

ys−11 ) · xk+1 · α(

(k+1)

ys−11 ) · xk+2) · α(

(k+2)

ys−11 ) · · · · ·

α((2k)

ys−11 ) · x2k+1) =

A(x1,

(1)

ys−11 , A(x2,

(2)

ys−11 , . . . ,

(k+1)

ys−11 , xk+2),

(k+2)

ys−11 , . . . ,

(2k)

ys−11 , x2k+1).

Sketch of the proof of 2 :

x · α((1)

ys−11 ) · b1 · · · · · bk−1 · α(

(k)

ys−11 ) · (α(

(1)

ys−11 ) · b1 · · · · · bk−1 · α(

(k)

ys−11 ))−1 =

(α((1)

ys−11 ) · b1 · · · · · bk−1 · α(

(k)

ys−11 ))−1 · α(

(1)

ys−11 ) · b1 · · · · · bk−1 · α(

(k)

ys−11 ) · x = x.

By 1, 2 and by Th. 3.1, we conclude that the statement (α) holds.

Sketch of the proof of (γ) :

(α((1)

ys−11 ) · b1 · · · · · bk · α(

(k)

ys−11 ))−1 = (α(

(k)

ys−11 ) · α(

(1)

ys−11 ) · b1 · · · · · bk)

−1.

Sketch of the proof of (δ) : By definition of no commutative group and by

definition of m−ary quasigroup. �

4.4. Theorem [15]: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

n−groupoid. Also, let E be an (n− 2)−ary operation in Q such that the following

law

(o) E(cn−2−s1 , b, a

s−11 ) = E(as−1

1 , cn−2−s1 , b)

holds in the (n − 2)−groupoid (Q; E). Then, (Q; A) is an NP−polyagroup iff the

laws (1Ls), (2R) and (2L) from Th. 4.2 hold in the algebra (Q; A, E).

Remark: For s = 1 law (o) holds. In addition, for s = 1 (Q; A, E) is a characteri-

zation of n−group [2]. See, also XII-1 in [10].

Proof. By Prop. 4.1 and by Th. 4.2.

4.5. Remark: Similarly, we obtain generalization the following proposition [2]:

Let (Q; A) be an n−groupoid and let n ≥ 3. Then: (Q; A) is an n−group iff there

is a mapping E of the set Qn−2 into the set Q such that the following laws hold in

the algebra (Q; A, E) [of the type < n, n − 2 >].

A(xn−21 , A(x2n−2

n−1 ), x2n−1) = A(xn−11 , A(x2n−2

n−1 )),

A(E(an−21 ), an−2

1 , x) = x and

A(x,E(an−21 ), an−2

1 ) = x.

(See, also XII-1 in [10].)

Page 17:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 165

4.6. Theorem [15]: Let k > 1, s ≥ 1 3, n = k·s+1, (Q; A) be an NP−polyagroup

of the type (s, n − 1), e its {1, n}−neutral operation and let

(o) A( xj ,

(j)

ys−11

kj=1, xk+1) = A(x1,

(j)

ys−11 , xj

kj=2,

(1)

ys−11 , xk+1)

for every xk+11 ,

(1)

ys−11 , . . . ,

(k)

ys−11 ∈ Q. Also, let

ck−11 ,

(1)

ys−11 , . . . ,

(k)

ys−11

arbitrary sequence over Q,

Y

def=(1)

ys−11 , . . . ,

(k)

ys−11 ,

and let

(a) BY (x, y)def= A(x,

(1)

ys−11 , c1, . . . , ck−1,

(k)

ys−11 , y),

(b) ϕY (x)def= A(e(

(i)

ys−11 , ci

k−1i=1 ,

(k)

ys−11 ),

(k)

ys−11 , x,

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1) and

(c) bYdef= A(e(an−2

1 )4,(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , . . . ,

(k)

ys−11 , e(an−2

1 ))

for all x, y ∈ Q. Then the following statements hold:

(1) (Q; By) is a group;

(2) ϕY ∈ Aut(Q; BY );

(3) ϕY (bY ) = bY ;

(4) For all x ∈ Q, BY (bY , x) = BY (ϕkY (x), bY ); and

(5) A(x1,

(1)

ys−11 , . . . , xk,

(k)

ys−11 , xk+1) =

k+1BY (x1, ϕY (x2), . . . , ϕ

kY (xk+1), bY )

for all xk+11 ∈ Q and for every sequence Y over Q.

Remark: For s = 1 see IV-3 in [10]. See, also Th.4.3.

Proof. Firstly, let

x · ydef= BY (x, y), ϕ(x)

def= ϕY (x), b

def= bY .

The proof of (1): By (a) and by Def. 1.1.

3For s = 1 (Q; A) is a (k + 1)−group.

4an−21

def=(1)

ys−11 , c1, . . . , ck−1,

(k)

ys−11 .

Page 18:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

166 A Survey of NP−Polyagroups

Sketch of the proof of (2):

ϕ(x · y) = A(e(an−21 ),

(k)

ys−11 , A(x,

(1)

ys−11 , c1, . . . , ck−1,

(k)

ys−11 , y),

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

1.1,1◦= A(A(e(an−2

1 ),(k)

ys−11 , x,

(1)

ys−11 , c1, . . . , ck−1),

(k)

ys−11 , y,

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

(b)=A(ϕ(x),

(k−1)

ys−11 , y,

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

2.4=A(A(ϕ(x),

(1)

ys−11 , c1, . . . , ck−1,

(k)

ys−11 , e(an−2

1 )),(k)

ys−11 , y,

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

1.1,1◦= A(ϕ(x),

(1)

ys−11 , c1, . . . , ck−1,

(k)

ys−11 , A(e(an−2

1 ),(k)

ys−11 , y,

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1))

(b)=A(ϕ(x),

(1)

ys−11 , c1, . . . , ck−1,

(k)

ys−11 , ϕ(y))

(a)=ϕ(x) · ϕ(y).

Sketch of the proof of (3):

ϕ(b)(b),(c)==A(e(an−2

1 ),(k)

ys−11 , A(e(an−2

1 ),(1)

ys−11 , . . . ,

(k−1)

ys−11 , e(an−2

1 ),(k)

ys−11 ,

e(an−21 )),

(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

1.1,1◦= A(A(e(an−2

1 ),(k)

ys−11 , e(an−2

1 ),(1)

ys−11 , . . . ,

(k−1)

ys−11 , e(an−2

1 )),(k)

ys−11 , e(an−2

1 ),(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

(bo)=A(A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ), . . . ,(k)

ys−11 , e(an−2

1 )),(k)

ys−11 , e(an−2

1 ),(1)

ys−11 , c1, . . . ,

(k−1)

ys−11 , ck−1)

4.1=A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ), . . . ,(k)

ys−11 , e(an−2

1 ))(c)=b.

Sketch of the proof of (4) [for the case k = 3, s > 1]:

Page 19:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 167

b · x(a)=A(b, an−2

1 , x)

(c)=A(A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 )), an−21 , x)

1.1,1◦= A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , A(e(an−2

1 ), an−21 , x))

2.4=A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , A(x, a

n−21 , e(an−2

1 )))

fn4= A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 ,

A(x,

(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 , e(an−2

1 )))

1.1,1◦= A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , A(e(an−2

1 ),(3)

ys−11 ,

x,

(1)

ys−11 , c1,

(2)

ys−11 , c2),

(3)

ys−11 , e(an−2

1 )))

(b)=A(e(an−2

1 ),(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , ϕ(x),

(3)

ys−11 , e(an−2

1 ))

1.1,4.1== A( e(an−2

1 ),(i)

ys−11

2i=1, A(c1,

(2)

ys−11 , c2,

(3)

ys−11 , e(an−2

1 )(1)

ys−11 ,

A(ϕ(x),(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 ,

e(an−21 ))),

(3)

ys−11 , e(an−2

1 ))

(bo)==A( e(an−2

1 ),(i)

ys−11

2i=1, A(c1,

(1)

ys−11 , c2,

(2)

ys−11 , e(an−2

1 ),(3)

ys−11 ,

A(ϕ(x),(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 ,

e(an−21 ))),

(3)

ys−11 , e(an−2

1 ))

1.1,1◦== A( e(an−2

1 ),(i)

ys−11

2i=1, A(c1,

(1)

ys−11 , c2,

(2)

ys−11 , A(e(an−2

1 ),(3)

ys−11 ,

ϕ(x),(1)

ys−11 , c1,

(2)

ys−11 , c2),

(3)

ys−11 ,

e(an−21 )),

(3)

ys−11 , e(an−2

1 ))

(b)=A( e(an−2

1 ),(i)

ys−11

2i=1, A(c1,

(1)

ys−11 , c2,

(2)

ys−11 , ϕ(ϕ(x)),

(3)

ys−11 , e(an−2

1 )),(3)

ys−11 , e(an−2

1 ))

(bo)=A( e(an−2

1 ),(i)

ys−11

2i=1, A(c1,

(3)

ys−11 , c2,

(1)

ys−11 , ϕ(ϕ(x)),

(2)

ys−11 , e(an−2

1 )),(3)

ys−11 , e(an−2

1 ))

Page 20:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

168 A Survey of NP−Polyagroups

1.1,1◦= A(e(an−2

1 ),(1)

ys−11 , A(e(an−2

1 ),(2)

ys−11 , c1,

(3)

ys−11 , c2,

(1)

ys−11 , ϕ(ϕ(x))),

(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

(bo)=A(e(an−2

1 ),(1)

ys−11 , A(e(an−2

1 ),(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 , ϕ(ϕ(x))),

(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

2.4=A(e(an−2

1 ),(1)

ys−11 , ϕ(ϕ(x)),

(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

1.1,4.1== A(e(an−2

1 ),(1)

ys−11 , A(c1,

(2)

ys−11 , c2,

(3)

ys−11 , e(an−2

1 ),(1)

ys−11 ,

A(ϕ(ϕ(x)),(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 , e(an−2

1 ))),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

(bo)==A(e(an−2

1 ),(1)

ys−11 , A(c1,

(1)

ys−11 , c2,

(2)

ys−11 , e(an−2

1 ),(3)

ys−11 ,

A(ϕ(ϕ(x)),(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 , e(an−2

1 ))),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

1.1,1◦== A(e(an−2

1 ),(1)

ys−11 , A(c1,

(1)

ys−11 , c2,

(2)

ys−11 , A(e(an−2

1 ),(3)

ys−11 ,

ϕ(ϕ(x)),(1)

ys−11 , c1,

(2)

ys−11 , c2),

(3)

ys−11 , e(an−2

1 )),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

(bo)==A(e(an−2

1 ),(1)

ys−11 , A(c1,

(2)

ys−11 , c2,

(3)

ys−11 , A(e(an−2

1 ),(3)

ys−11 ,

ϕ(ϕ(x)),(1)

ys−11 , c1,

(2)

ys−11 , c2),

(1)

ys−11 , e(an−2

1 )),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

(b)==A(e(an−2

1 ),(1)

ys−11 , A(c1,

(2)

ys−11 , c2,

(3)

ys−11 , ϕ(ϕ(ϕ(x))),

(1)

ys−11 , e(an−2

1 )),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

1.1,1◦== A(A(e(an−2

1 ),(1)

ys−11 , c1,

(2)

ys−11 , c2,

(3)

ys−11 , ϕ(ϕ(ϕ(x)))),

(1)

ys−11 , e(an−2

1 )),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 , e(an−2

1 ))

2.4==A(A(ϕ(ϕ(ϕ(x))), an−2

1 , e(an−21 )),

(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 ,

e(an−21 ))

Page 21:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 169

1.1,1◦== A(ϕ(ϕ(ϕ(x))), an−2

1 , A(e(an−21 ),

(1)

ys−11 , e(an−2

1 ),(2)

ys−11 , e(an−2

1 ),(3)

ys−11 ,

e(an−21 )))

(a),(c)== ϕ(ϕ(ϕ(x))) · b.

The proof of (5): By 2.4, 4.1, 1◦, (o), (a), (b) and (c). Cf. sketch of the proof of

(4) and IV-3 in [10].

5. On polyagroups

5.1. Definition [3]5: Let k > 1, s ≥ 1, n = k · s + 1 and let (Q; A) be an

n−groupoid. Then: we say that (Q; A) is a polyagroup of the type (s, n − 1)

iff the following statements hold:◦

1 For all i, j ∈ {1, . . . , n} (i < j) if i ≡ j(mod s), then the < i, j > −associative

law holds in (Q; A); and◦

2 (Q; A) is an n−quasigroup.

Remark: For s = 1 (Q; A) is a (k + 1)−group; k > 1.

5.2. Proposition: Every polyagroup of the type (s, n− 1) is an NP−polyagroup

of the type (s, n − 1).

Proof. By Def. 1.1 and by Def. 5.1.

5.3. Proposition: Every polyagroup of the type (s, n − 1) has {1, n}−neutral

operation.

Proof. By Proop. 5.2 and by Prop. 2.4. (Cf. II-2 in [10].)

5.4. Definition: Let k > 1, s ≥ 1, n = k ·s+1 and let (Q; A) be an n−groupoid.

Then: we say that (Q; A) is an iPs-associative n−groupoid, i ∈ {1, . . . , s}, iff

it is

(a) If i = 1, then < i, t · s + i > −associative law holds in (Q; A) for all

t ∈ {1, . . . , k}; and

(b) If i > 1, then < i, t · s + i > −associative law holds in (Q; A) for all

t ∈ {1, . . . , k − 1}.

5.5. Proposition: Let k > 1, s ≥ 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then, (Q; A) is a polyagroup of the type (s, n−1) iff the following statements

hold:

1 (Q; A) is an iPs-associative n−groupoid for all i ∈ {1. . . . , s}; and

5See, also [4].

Page 22:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

170 A Survey of NP−Polyagroups

2 (Q; A) is an n−quasigroup.

Remark: If (Q; A) is an n−group and n = k · s + 1, then (Q; A) is a polyagroup

of the type (s, n − 1).

Proof. By Def. 5.1 and by Def. 5.4.

5.6. Proposition: Let k > 1, s > 1, n = k · s + 1, i ∈ {1, . . . , s} and let (Q; A)

be an n−groupoid. Also, let

(α) The < i, s + i > −associative law holds in the (Q; A); and

(β) For every x, y, an−11 ∈ Q the following implication holds

A(ai−11 , x, a

n−1i ) = A(ai−1

1 , y, an−1i ) ⇒ x = y.

Then (Q; A) is an iPs-associative n−groupoid.

Remark: For k = 2 and i ∈ {2, . . . , s}, (Q; A) is an iPs-associative n−groupoid

iff (α).

Proof. See the proof of Prop. 2.21.

5.7. Proposition: Let k > 1, s > 1, n = k · s + 1, i ∈ {1, . . . , s} and let (Q; A)

be an n−groupoid. Also, let

(1) (Q; A) is an iPs-associative n−groupoid;

(2) For every an1 ∈ Q there is exactly one x ∈ Q such that the following equality

holds

A(ai−11 , x, a

n−1i ) = an; and

(3) For every an1 ∈ Q there is exactly one y ∈ Q such that the following equality

holds

A(a(k−1)s+i−11 , y, a

ks(k−1)s+i

) = aks+1.

Then for every aks+11 ∈ Q and for all t ∈ {1, . . . , k− 2} there is exactly one z ∈ Q

such that the following equality holds

A(ats+i−11 , z, a

ksts+i) = aks+1.

Sketch of the proof.

a) A(ats+i−11 , x, b

(k−t)s−i+11 ) = A(ats+i−1

1 , y, b(k−t)s−i+11 ) ⇒

A(ci−11 , d

(k−t−1)·s1 , A(ats+i−1

1 , x, b(k−t)s−i+11 ), cts+i−1

i , d(k−t)s−i+1(k−t−1)s+1) =

A(ci−11 , d

(k−t−1)·s1 , A(ats+i−1

1 , y, b(k−t)s−i+11 ), cts+i−1

i , d(k−t)s−i+1(k−t−1)s+1)

(1)⇒

A(ci−11 , A(d

(k−t−1)s1 , a

ts+i−11 , x, b

s−i+11 ), b

(k−t)s−i+1s−i+2 , c

ts+i−1i , d

(k−t)s−i+1(k−t−1)s+1) =

A(ci−11 , A(d

(k−t−1)s1 , a

ts+i−11 , y, b

s−i+11 ), b

(k−t)s−i+1s−i+2 , c

ts+i−1i , d

(k−t)s−i+1(k−t−1)s+1)

(2)⇒

Page 23:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

Janez Usan 171

A(d(k−t−1)s1 , a

ts+i−11 , x, b

s−i+11 ) =

A(d(k−t−1)s1 , a

ts+i−11 , y, b

s−i+11 )

(3)⇒x = y.

b) A(a(k−t−1)s1 , b

i−11 , x, c

(t+1)s−i+11 ) = A(a

(k−t−1)s1 , b

i−11 , y, c

(t+1)s−i+11 ) ⇒

A(dts+i−11 , A(a

(k−t−1)s1 , b

i−11 , x, c

(t+1)s−i+11 ), e

(k−t)s−i+11 ) =

A(dts+i−11 , A(a

(k−t−1)s1 , b

i−11 , y, c

(t+1)s−i+11 ), e

(k−t)s−i+11 )

(1)⇒

A(dts+i−11 , a

(k−t−1)s1 , A(bi−1

1 , x, c(t+1)s−i+11 , e

ks−(t+1)s1 ), e

(k−t)s−i+1ks−(t+1)s+1 =

A(dts+i−11 , a

(k−t−1)s1 , A(bi−1

1 , y, c(t+1)s−i+11 , e

ks−(t+1)s1 ), e

(k−t)s−i+1ks−(t+1)s+1

(3)⇒

(bi−11 , x, c

(t+1)s−i+11 , e

ks−(t+1)s1 ) =

(bi−11 , y, c

(t+1)s−i+11 , e

ks−(t+1)s1 )

(2)⇒x = y.

c) A(ats+i−11 , z, b

(k−t)s−i+11 ) = c

b)⇔

A(ci−11 , d

(k−t−1)s1 , A(ats+i−1

1 , z, b(k−t)s−i+11 ), e

(t+1)s−i+11 ) =

A(ci−11 , d

(k−t−1)s1 , c, e

(t+1)s−i+11 )

(1)⇔

A(ci−11 , A(d

(k−t−1)s1 , a

ts+i−11 , z, b

s−i+11 ), b

(k−t)s−i+1s−i+2 , e

(t+1)s−i+11 ) =

A(ci−11 , d

(k−t−1)s1 , c, e

(t+1)s−i+11 ),

where ci−11 , d

(k−t−1)s1 and e

(t+1)s−i+11 are arbitrary sequence over Q. [(k−t−1) s+

ts + i − 1 = (k − 1)s + i − 1; (3). ] �

5.8. Theorem [14]: Let k > 1, s > 1, n = k·s+1 and let (Q; A) be an n−groupoid.

Then: (Q; A) is a polyagroup of the type (s, n−1) iff the following statements

hold

(i) (Q; A) is an < i, s + i > −associative n−groupoid for all i ∈ {1, . . . , s};

(ii) (Q; A) is an < 1, n > −associative n−groupoid;

(iii) For every an1 ∈ Q there is at least one x ∈ Q and at least one y ∈ Q

such that the following equality hold

A(x, an−11 ) = an and A(an−1

1 , y) = an and

(iv) For every an1 ∈ Q and for all j ∈ {2, . . . , s}∪{(k−1) · s+2, . . . , k · s} there

is exactly one xj ∈ Q such that the following equality hold

A(aj−11 , x, a

n−1j ) = an.

Remarks: The case s = 1 (: (i) − (iii)) is described in [8]. See, also Th. 3.21.

Proof. 1) ⇒: By Def. 1.1.

2) ⇐: Firstly we prove the following statements:

1 (Q; A) is an NP−polyagroup;

2 (Q; A) is an iPs-associative n−groupoid for all i ∈ {2, . . . , s}; and

Page 24:  · Mathematica Moravica Vol. 10 (2006), 149–172 A Survey of NP−Polyagroups Survey Article Janez Uˇsan Abstract. This text is as an attempt to systemize the results about NP−po

172 A Survey of NP−Polyagroups

3 (Q; A) is an n−groupoid.

The proof. of 1 : By (i) for i = 1, (ii), (iii) and Th. 3.21.

The proof. of 2 :

a) k = 2 : By (i).

b) k > 2 : By (i) for i ∈ {2, . . . , s}, (iv) and by Prop. 5.6.

The proof. of 3 :

a) k = 2 : By (iv).

b) k > 2 : By 1, 2, (iv) and by Prop. 5.7.

By 1 − 3 and by Prop. 5.5, we conclude that the n−groupoid (Q; A) is a

polyagroup of the type (s, n − 1). �

References

[1] W. Dornte, Untersuchengen uber einen verallgemeinerten Gruppenbegriff, Math. Z.,29 (1928), 1–19.

[2] W.A. Dudek, Varieties of polyadic groups, Filomat (Nis), 9 (1995), No. 3, 657–674.[3] F. Sokhatsky, Invertible elements in associates and semigroups 1, Quasigroups and Related

Systems, 5 (1998), 53–68.[4] F.M. Sokhatsky and O. Yurevich, Invertible elements in associates and semigroups 2, Qua-

sigroups and Related Systems, 6 (1999), 61–70.[5] J. Usan, Neutral operations of n−groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ.

of Novi Sad, Math. Ser., Vol. 18 (1988), No. 2, 117–126.[6] J. Usan, A comment on n−groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math.

Ser., Vol. 24 (1994), No. 1, 281–288.[7] J. Usan, n-groups as variety of type 〈n, n − 1, n − 2〉, in: Algebra and Model Theory,

(A.G. Pinus and K.N. Ponomaryov, eds.), Novosibirsk 1997, 182–208.[8] J. Usan, On n−groups, Maced. Acad. Sci. and Arts, Contributions, Sect. Math. Techn. Sci.,

XVIII 1-2 (1997), 17–20.[9] J. Usan, One characterization of near−P−polyagroup, Math. Moravica, Vol. 6 (2002),

127–130.[10] J. Usan, n-groups in the light of the neutral operations, Math. Moravica Special Vol. (2003),

monograph, (Electronic version - 2006: http://www.moravica.tfc.kg.ac.yu).[11] J. Usan, (n, m)-groups in the light of the neutral operations, Preprint 2005.[12] J. Usan and R. Galic, On NP−polyagroups, Math. Communications, Vol.6(2001) No. 2,

153–159.[13] J. Usan and M. Zizovic, Note on near-P -polyagroups, Filomat (Nis) 15 (2001), 85–90.[14] J. Usan and M. Zizovic, Note on polyagroups, Math. Moravica, Vol. 6 (2002), 137–144.[15] J. Usan and M. Zizovic, Some comments on near-P -polyagroups, Math. Moravica,

8-1 (2004), 79–93.

Department of Mathematics

and Informatics

University of Novi Sad

Trg D. Obradovica 4

21000 Novi Sad

Serbia and Montenegro