mathematical foundations of quantum field theory · mathematical foundations of quantum field...

76
Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TU München Zentrum Mathematik LMU, 02.11.2016 Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Upload: truongnhi

Post on 30-May-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Mathematical Foundationsof

Quantum Field Theory

Wojciech Dybalski

TU MünchenZentrum Mathematik

LMU, 02.11.2016

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 2: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Outline

1 Spacetime symmetries

2 Relativistic Quantum Mechanics

3 Relativistic (Haag-Kastler) QFT

4 Relativistic (Wightman) QFT

5 Relativistic (perturbative) QFT

6 Status of Quantum Electrodynamics

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 3: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Spacetime symmetries

Lorentz group

Minkowski spacetime: (R4, η) with η := diag(1,−1,−1,−1).

1 Lorentz group: L := O(1, 3) := Λ ∈ GL(4,R) |ΛηΛT = η

2 Proper ortochronous Lorentz group: L↑+ - connectedcomponent of unity in L.

L = L↑+ ∪ TL↑+ ∪ PL↑+ ∪ TPL↑+,

where T (x0, ~x) = (−x0, ~x) and P(x0, ~x) = (x0,−~x).

3 Covering group: L↑+ = SL(2,C) = Λ ∈ GL(2,C) | det Λ = 1

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 4: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Spacetime symmetries

Lorentz group

Minkowski spacetime: (R4, η) with η := diag(1,−1,−1,−1).

1 Lorentz group: L := O(1, 3) := Λ ∈ GL(4,R) |ΛηΛT = η

2 Proper ortochronous Lorentz group: L↑+ - connectedcomponent of unity in L.

L = L↑+ ∪ TL↑+ ∪ PL↑+ ∪ TPL↑+,

where T (x0, ~x) = (−x0, ~x) and P(x0, ~x) = (x0,−~x).

3 Covering group: L↑+ = SL(2,C) = Λ ∈ GL(2,C) | det Λ = 1

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 5: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Spacetime symmetries

Lorentz group

Minkowski spacetime: (R4, η) with η := diag(1,−1,−1,−1).

1 Lorentz group: L := O(1, 3) := Λ ∈ GL(4,R) |ΛηΛT = η

2 Proper ortochronous Lorentz group: L↑+ - connectedcomponent of unity in L.

L = L↑+ ∪ TL↑+ ∪ PL↑+ ∪ TPL↑+,

where T (x0, ~x) = (−x0, ~x) and P(x0, ~x) = (x0,−~x).

3 Covering group: L↑+ = SL(2,C) = Λ ∈ GL(2,C) | det Λ = 1

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 6: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Spacetime symmetries

Poincaré group

1 Poincaré group: P := R4 o L.

2 Proper ortochronous Poincaré group: P↑+ := R4 o L↑+.

3 Covering group: P↑+ = R4 o L↑+ = R4 o SL(2,C)

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 7: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Symmetries of a quantum theory

1 H - Hilbert space of physical states.

2 For Ψ ∈ H, ‖Ψ‖ = 1 define the ray Ψ := eiφΨ |φ ∈ R .

3 H - set of rays with the ray product [Φ|Ψ] := |〈Φ,Ψ〉|2.

Definition

A symmetry of a quantum system is an invertible map S : H → Hs.t. [SΦ|SΨ] = [Φ|Ψ].

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 8: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Theorem (Wigner 31)

For any symmetry transformation S : H → H we can find a unitaryor anti-unitary operator S : H → H s.t. SΨ = SΨ. S is unique upto phase.

Application:1 P↑+ is a symmetry of our theory i.e., P↑+ 3 (a,Λ) 7→ S(a,Λ).

2 Thus we obtain a projective unitary representation S of P↑+S(a1,Λ1)S(a2,Λ2) = eiϕ1,2S((a1,Λ1)(a2,Λ2)).

3 Fact: A projective unitary representation of P↑+ corresponds toan ordinary unitary representation of the covering group

P↑+ 3 (a, Λ) 7→ U(a, Λ) ∈ B(H).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 9: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Theorem (Wigner 31)

For any symmetry transformation S : H → H we can find a unitaryor anti-unitary operator S : H → H s.t. SΨ = SΨ. S is unique upto phase.

Application:1 P↑+ is a symmetry of our theory i.e., P↑+ 3 (a,Λ) 7→ S(a,Λ).

2 Thus we obtain a projective unitary representation S of P↑+S(a1,Λ1)S(a2,Λ2) = eiϕ1,2S((a1,Λ1)(a2,Λ2)).

3 Fact: A projective unitary representation of P↑+ corresponds toan ordinary unitary representation of the covering group

P↑+ 3 (a, Λ) 7→ U(a, Λ) ∈ B(H).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 10: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Theorem (Wigner 31)

For any symmetry transformation S : H → H we can find a unitaryor anti-unitary operator S : H → H s.t. SΨ = SΨ. S is unique upto phase.

Application:1 P↑+ is a symmetry of our theory i.e., P↑+ 3 (a,Λ) 7→ S(a,Λ).

2 Thus we obtain a projective unitary representation S of P↑+S(a1,Λ1)S(a2,Λ2) = eiϕ1,2S((a1,Λ1)(a2,Λ2)).

3 Fact: A projective unitary representation of P↑+ corresponds toan ordinary unitary representation of the covering group

P↑+ 3 (a, Λ) 7→ U(a, Λ) ∈ B(H).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 11: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Theorem (Wigner 31)

For any symmetry transformation S : H → H we can find a unitaryor anti-unitary operator S : H → H s.t. SΨ = SΨ. S is unique upto phase.

Application:1 P↑+ is a symmetry of our theory i.e., P↑+ 3 (a,Λ) 7→ S(a,Λ).

2 Thus we obtain a projective unitary representation S of P↑+S(a1,Λ1)S(a2,Λ2) = eiϕ1,2S((a1,Λ1)(a2,Λ2)).

3 Fact: A projective unitary representation of P↑+ corresponds toan ordinary unitary representation of the covering group

P↑+ 3 (a, Λ) 7→ U(a, Λ) ∈ B(H).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 12: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Positivity of energy

Consider a unitary representation P↑+ 3 (a, Λ) 7→ U(a, Λ) ∈ B(H).

1 Pµ := i−1∂aµU(a, I )|a=0 - energy momentum operators.

2 If SpP ⊂ V+ then we say that U has positive energy.

P

0P

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 13: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

Distinguished states

1 Def: Ω ∈ H is the vacuum state if U(a, Λ)Ω = Ω for all(a, Λ) ∈ P↑+.

2 Def: H1 ⊂ H is the subspace of single-particle states of massm and spin s if U H1 is the irreducible representation [m, s].

P

m

Ω

P0

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 14: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic Quantum Mechanics

DefinitionA relativistic quantum mechanical theory is given by:

1 H - Hilbert space.

2 P↑+ 3 (a, Λ) 7→ U(a, Λ) ∈ B(H) - a positive energy unitary rep.

3 B(H) - possible observables.

H may contain a vacuum state Ω and/or subspaces ofsingle-particle states H[m,s].

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 15: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

DefinitionA local relativistic QFT is a relativistic QM (U,H) with a net

R4 ⊃ O 7→ A(O) ⊂ B(H)

of algebras of observables A(O) localized in open bounded regionsof spacetime O, which satisfies:

1 (Isotony) O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2),

2 (Locality) O1 ∼ O2 ⇒ [A(O1),A(O2)] = 0,

3 (Covariance) U(a, Λ)A(O)U(a, Λ)∗ = A(ΛO + a).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 16: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Questions:

1 Where are charges and gauge groups?

2 Where are charge-carrying (possibly anti-commuting) fields?

3 How about spin-statistics connection and CPT theorem?

4 Where are pointlike-localized fields, Green functions,path-integrals...?

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 17: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 A :=

⋃O⊂R4 A(O) ⊂ B(H), α(a,Λ)( · ) := U(a, Λ) · U(a, Λ)∗.

2 Idea: Charges label ‘reasonable’ irreducible reps. of A.

3 ‘Reasonable’ reps. form a group whose dual is the globalgauge group. Charge conjugation ’C’:= taking inverse.

4 Def. π : A → B(Hπ) is an admissible representation if

π(α(a,Λ)(A)) = Uπ(a, Λ)π(A)Uπ(a, Λ)∗, A ∈ A,

for some relativistic QM (Uπ,Hπ).

5 Def: Vacuum rep. π0: (Uπ0 ,Hπ0 ,Ω), [π0(A)Ω] = Hπ0 .

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 18: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 A :=

⋃O⊂R4 A(O) ⊂ B(H), α(a,Λ)( · ) := U(a, Λ) · U(a, Λ)∗.

2 Idea: Charges label ‘reasonable’ irreducible reps. of A.

3 ‘Reasonable’ reps. form a group whose dual is the globalgauge group. Charge conjugation ’C’:= taking inverse.

4 Def. π : A → B(Hπ) is an admissible representation if

π(α(a,Λ)(A)) = Uπ(a, Λ)π(A)Uπ(a, Λ)∗, A ∈ A,

for some relativistic QM (Uπ,Hπ).

5 Def: Vacuum rep. π0: (Uπ0 ,Hπ0 ,Ω), [π0(A)Ω] = Hπ0 .

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 19: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 A :=

⋃O⊂R4 A(O) ⊂ B(H), α(a,Λ)( · ) := U(a, Λ) · U(a, Λ)∗.

2 Idea: Charges label ‘reasonable’ irreducible reps. of A.

3 ‘Reasonable’ reps. form a group whose dual is the globalgauge group. Charge conjugation ’C’:= taking inverse.

4 Def. π : A → B(Hπ) is an admissible representation if

π(α(a,Λ)(A)) = Uπ(a, Λ)π(A)Uπ(a, Λ)∗, A ∈ A,

for some relativistic QM (Uπ,Hπ).

5 Def: Vacuum rep. π0: (Uπ0 ,Hπ0 ,Ω), [π0(A)Ω] = Hπ0 .

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 20: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 A :=

⋃O⊂R4 A(O) ⊂ B(H), α(a,Λ)( · ) := U(a, Λ) · U(a, Λ)∗.

2 Idea: Charges label ‘reasonable’ irreducible reps. of A.

3 ‘Reasonable’ reps. form a group whose dual is the globalgauge group. Charge conjugation ’C’:= taking inverse.

4 Def. π : A → B(Hπ) is an admissible representation if

π(α(a,Λ)(A)) = Uπ(a, Λ)π(A)Uπ(a, Λ)∗, A ∈ A,

for some relativistic QM (Uπ,Hπ).

5 Def: Vacuum rep. π0: (Uπ0 ,Hπ0 ,Ω), [π0(A)Ω] = Hπ0 .

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 21: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups

1 Doplicher-Haag-Roberts (DHR) criterion: For any O

π A(O′) ' π0 A(O′),

where O′ := x ∈ R4 |x ∼ O.

x

I I

I

I

O OO’ ’

x0

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 22: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 Doplicher-Haag-Roberts (DHR) criterion: For any O

π A(O′) ' π0 A(O′),

where O′ := x ∈ R4 |x ∼ O.

2 That is, π(A) = WAW ∗ for A ∈ A(O′) and a unitary W .

3 Clearly, ρ(A) := W ∗π(A)W for A ∈ A is unitarily equiv. to π.

4 Fact: ρ : A → B(H) is an endomorphism ρ : A → A.Endomorphisms, in contrast to reps., can be composed!

5 Fact: For any ρ there is a unique ρ s.t. ρ ρ contains π0.ρ is called the charge conjugate representation.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 23: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 Doplicher-Haag-Roberts (DHR) criterion: For any O

π A(O′) ' π0 A(O′),

where O′ := x ∈ R4 |x ∼ O.

2 That is, π(A) = WAW ∗ for A ∈ A(O′) and a unitary W .

3 Clearly, ρ(A) := W ∗π(A)W for A ∈ A is unitarily equiv. to π.

4 Fact: ρ : A → B(H) is an endomorphism ρ : A → A.Endomorphisms, in contrast to reps., can be composed!

5 Fact: For any ρ there is a unique ρ s.t. ρ ρ contains π0.ρ is called the charge conjugate representation.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 24: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 Doplicher-Haag-Roberts (DHR) criterion: For any O

π A(O′) ' π0 A(O′),

where O′ := x ∈ R4 |x ∼ O.

2 That is, π(A) = WAW ∗ for A ∈ A(O′) and a unitary W .

3 Clearly, ρ(A) := W ∗π(A)W for A ∈ A is unitarily equiv. to π.

4 Fact: ρ : A → B(H) is an endomorphism ρ : A → A.Endomorphisms, in contrast to reps., can be composed!

5 Fact: For any ρ there is a unique ρ s.t. ρ ρ contains π0.ρ is called the charge conjugate representation.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 25: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charges and gauge groups1 Doplicher-Haag-Roberts (DHR) criterion: For any O

π A(O′) ' π0 A(O′),

where O′ := x ∈ R4 |x ∼ O.

2 That is, π(A) = WAW ∗ for A ∈ A(O′) and a unitary W .

3 Clearly, ρ(A) := W ∗π(A)W for A ∈ A is unitarily equiv. to π.

4 Fact: ρ : A → B(H) is an endomorphism ρ : A → A.Endomorphisms, in contrast to reps., can be composed!

5 Fact: For any ρ there is a unique ρ s.t. ρ ρ contains π0.ρ is called the charge conjugate representation.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 26: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charge-carrying fields

DefinitionA twisted-local relativistic QFT is a relativistic QM (U,H,Ω)

1 With algebras of charge-carrying fields O 7→ F(O) ⊂ B(H).

2 With a unitary k ∈ B(H) s.t. k2 = 1 and kF(O)k∗ ⊂ F(O)which gives F±(O) := F ∈ F(O) | kFk∗ = ±F .

which satisfies:

1 (Isotony) O1 ⊂ O2 ⇒ F(O1) ⊂ F(O2),

2 (Twisted locality) O1 ∼ O2 ⇒ [F±(O1),F±(O2)]± = 0,

3 (Covariance) U(a, Λ)F(O)U(a, Λ)∗ = F(ΛO + a).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 27: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Charge-carrying fields and gauge group

Theorem DHR 74, DR90Given a local relativistic QFT (U,H,Ω,A) one obtains:

1 A representation πph : A → B(Hph) containing ‘all’ DHRrepresentations.

2 A twisted local relativistic QFT (Uph,Hph,Ω,F , k),

3 A compact gauge group G of unitary operators on Hphcontaining k in its center.

4 πph(A(O)) = F ∈ F(O) | gFg∗ = F , g ∈ G .

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 28: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Spin-statistics connection

Theorem (Fierz 39, Pauli 40, Dell’Antonio 61...DHR 74)1 Suppose [F+Ω] ⊃ Hph,[m,s+]. Then s+ is integer.

2 Suppose [F−Ω] ⊃ Hph,[m,s−]. Then s− is half-integer.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 29: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

CPT theorem

Theorem (Lüders 54, Pauli 55, Jost 57,...Guido-Longo 95)

Under certain additional assumptions there exists an anti-unitaryoperator θ on Hph which has the expected properties of the CPToperator i.e.

1 θF(O)θ∗ = F(−O),

2 θUph(a, Λ)θ∗ = Uph(−a, Λ),

3 θHph,ρ = Hph,ρ and θρ( · )θ∗ = ρ( ·).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 30: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Pointlike localized fields

Definition (Fredenhagen-Hertel 81, Bostelmann 04)

A quadratic form φj is a pointlike field of a relativistic QFT, if thereexists Fj ,r ∈ F(Or ), where Or is the ball of radius r centered atzero, s.t.

‖(1 + P0)−`(φj − Fj ,r )(1 + P0)−`‖ →r→0

0 for some ` ≥ 0.

Theorem (Bostelmann 04)

Under certain technical assumptions one obtains that

φj(x) := U(x , I )φjU(x , I )∗

are relativistic quantum fields in the sense of Wightman.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 31: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Haag-Kastler) QFT

Pointlike localized fields

Definition (Fredenhagen-Hertel 81, Bostelmann 04)

A quadratic form φj is a pointlike field of a relativistic QFT, if thereexists Fj ,r ∈ F(Or ), where Or is the ball of radius r centered atzero, s.t.

‖(1 + P0)−`(φj − Fj ,r )(1 + P0)−`‖ →r→0

0 for some ` ≥ 0.

Theorem (Bostelmann 04)

Under certain technical assumptions one obtains that

φj(x) := U(x , I )φjU(x , I )∗

are relativistic quantum fields in the sense of Wightman.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 32: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

DefinitionA Wightman QFT is a relativistic QM (U,H,Ω) with distributions

S(R4) 3 f 7→ φj(f ) =:

∫d4x φj(x)f (x) ∈ [operators on H]

defining quantum fields. They satisfy

1 (Twisted locality) [φj(x), φk(y)]± = 0 for x − y spacelike,

2 (Covariance) U(a, Λ)φj(x)U(a, Λ)∗ = D(Λ−1)j ,kφk(Λx + a),

where D is a finite-dimensional representation of L↑+.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 33: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Irreducible representations of L↑+ = SL(2,C)

1 Representation space: H( j2 ,

k2 ) := Sym(⊗jC2)⊗ Sym(⊗kC2)

2 Representation: D( j2 ,

k2 )(Λ) = (⊗j Λ)⊗ (⊗k Λ)

Example 1. Some familiar fields

1 D = D(0,0) - scalar field ϕ

2 D = D( 12 ,

12 ) - vector field jµ

3 D = D( 12 ,0) ⊕ D(0, 12 ) - Dirac field ψ

4 D = D(1,0) ⊕ D(0,1) - Faraday tensor Fµν

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 34: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Irreducible representations of L↑+ = SL(2,C)

1 Representation space: H( j2 ,

k2 ) := Sym(⊗jC2)⊗ Sym(⊗kC2)

2 Representation: D( j2 ,

k2 )(Λ) = (⊗j Λ)⊗ (⊗k Λ)

Example 1. Some familiar fields

1 D = D(0,0) - scalar field ϕ

2 D = D( 12 ,

12 ) - vector field jµ

3 D = D( 12 ,0) ⊕ D(0, 12 ) - Dirac field ψ

4 D = D(1,0) ⊕ D(0,1) - Faraday tensor Fµν

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 35: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Example 2. Free scalar field ϕf

1 Consider a scalar field which satisfies

( + m2)ϕf(x) = 0, := ∂µ∂µ.

2 Fact: This is the usual free scalar field on H = Γ(L2(R3))

ϕf(x) =1

(2π)3/2

∫d3~p√2ω(~p)

(eiω(~p)x0−i~p~xa∗(~p) + e−iω(~p)x0+i~p~xa(~p)).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 36: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Example 3. Interacting scalar field ϕ

1 Consider a scalar field which satisfies

( + m2)ϕ(x) = − λ3!

”ϕ(x)3 ”.

Theorem (Glimm-Jaffe 68...)

1 This theory, called ϕ4, exists in 2 and 3 dimensional spacetimeand satisfies the Haag-Kastler and Wightman postulates.

2 Furthermore, the theory is non-trivial.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 37: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Scattering theory

1 Consider a massive Wightman theory of a scalar field ϕ.

P

m

Ω

P0

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 38: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Scattering theory1 Consider a massive Wightman theory of a scalar field ϕ.

2 Define a non-local field ϕε by

ϕε(p) := χ[m2−ε,m2+ε](p2)ϕ(p).

3 Set a∗t (gt) :=∫d3~x ϕε(t, ~x)

↔∂ 0g(t, ~x) where g is a positive

energy Klein-Gordon solution.

Theorem (Haag 58, Ruelle 62)

The following limits exist

Ψout/in := limt→+/−∞

a∗t (g1,t) . . . a∗t (gn,t)Ω

and span subspaces Hout,Hin ⊂ H naturally isomorphic to Γ(H1).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 39: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Scattering theory1 Consider a massive Wightman theory of a scalar field ϕ.

2 Define a non-local field ϕε by

ϕε(p) := χ[m2−ε,m2+ε](p2)ϕ(p).

3 Set a∗t (gt) :=∫d3~x ϕε(t, ~x)

↔∂ 0g(t, ~x) where g is a positive

energy Klein-Gordon solution.

Theorem (Haag 58, Ruelle 62)

The following limits exist

Ψout/in := limt→+/−∞

a∗t (g1,t) . . . a∗t (gn,t)Ω

and span subspaces Hout,Hin ⊂ H naturally isomorphic to Γ(H1).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 40: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Scattering theory1 Consider a massive Wightman theory of a scalar field ϕ.

2 Define a non-local field ϕε by

ϕε(p) := χ[m2−ε,m2+ε](p2)ϕ(p).

3 Set a∗t (gt) :=∫d3~x ϕε(t, ~x)

↔∂ 0g(t, ~x) where g is a positive

energy Klein-Gordon solution.

Theorem (Haag 58, Ruelle 62)

The following limits exist

Ψout/in := limt→+/−∞

a∗t (g1,t) . . . a∗t (gn,t)Ω

and span subspaces Hout,Hin ⊂ H naturally isomorphic to Γ(H1).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 41: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Theorem (Haag 58, Ruelle 62)

The following limits exist

Ψout/in := limt→+/−∞

a∗t (g1,t) . . . a∗t (gn,t)Ω

and span subspaces Hout,Hin ⊂ H naturally isomorphic to Γ(H1).

Infrared problems in scattering theory1 Scattering states of massless particles [Buchholz 77].

Ω

0

P

P

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 42: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Theorem (Haag 58, Ruelle 62)

The following limits exist

Ψout/in := limt→+/−∞

a∗t (g1,t) . . . a∗t (gn,t)Ω

and span subspaces Hout,Hin ⊂ H naturally isomorphic to Γ(H1).

Infrared problems in scattering theory1 Scattering states of massive particles in presence of massless

particles.[W.D. 05, Herdegen 13, Duell 16]

Ω

0

P

m

P

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 43: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Theorem (Haag 58, Ruelle 62)

The following limits exist

Ψout/in := limt→+/−∞

a∗t (g1,t) . . . a∗t (gn,t)Ω

and span subspaces Hout,Hin ⊂ H naturally isomorphic to Γ(H1).

The problem of asymptotic completeness

1 Hout = H? [Gérard-W.D. 13, W.D. 16]

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 44: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Scattering matrix and Green functions (LSZ)

.

p1

p2

p3

p4

pn

...

Theorem (Lehmann-Symanzik-Zimmermann 55, Hepp 66)out〈p3, p4, . . . , pn|p1, p2〉in = (−i)nG a,c(−p1,−p2, p3, . . . , pn),

where G a,c denotes connected, amputated Green functions.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 45: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Theorem (Lehmann-Symanzik-Zimmermann 55, Hepp 66)out〈p3, p4, . . . , pn|p1, p2〉in = (−i)nG a,c(−p1,−p2, p3, . . . , pn)

where G a,c denotes connected, amputated Green functions.

Green functions1 G (x1, . . . , xn) := 〈Ω, T ϕ(x1) . . . ϕ(xn)Ω〉, where T is time

ordering.

2 G (x1, . . . , xn) =∑

π∈P∏

R∈π G (xiR1, . . . , xiR|R|

)c, for example

G (x1, x2)c := G (x1, x2)− G (x1)G (x2).

3 G a,c(x1, . . . , xn) := (1 + m2) . . . (n + m2)G (x1, . . . xn)c.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 46: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Theorem (Lehmann-Symanzik-Zimmermann 55, Hepp 66)out〈p3, p4, . . . , pn|p1, p2〉in = (−i)nG a,c(−p1,−p2, p3, . . . , pn)

where G a,c denotes connected, amputated Green functions.

Green functions1 G (x1, . . . , xn) := 〈Ω, T ϕ(x1) . . . ϕ(xn)Ω〉, where T is time

ordering.

2 G (x1, . . . , xn) =∑

π∈P∏

R∈π G (xiR1, . . . , xiR|R|

)c, for example

G (x1, x2)c := G (x1, x2)− G (x1)G (x2).

3 G a,c(x1, . . . , xn) := (1 + m2) . . . (n + m2)G (x1, . . . xn)c.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 47: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (Wightman) QFT

Theorem (Lehmann-Symanzik-Zimmermann 55, Hepp 66)out〈p3, p4, . . . , pn|p1, p2〉in = (−i)nG a,c(−p1,−p2, p3, . . . , pn)

where G a,c denotes connected, amputated Green functions.

Green functions1 G (x1, . . . , xn) := 〈Ω, T ϕ(x1) . . . ϕ(xn)Ω〉, where T is time

ordering.

2 G (x1, . . . , xn) =∑

π∈P∏

R∈π G (xiR1, . . . , xiR|R|

)c, for example

G (x1, x2)c := G (x1, x2)− G (x1)G (x2).

3 G a,c(x1, . . . , xn) := (1 + m2) . . . (n + m2)G (x1, . . . xn)c.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 48: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral formula

G (x1, . . . , xn) = “1N

∫Dφφ(x1) . . . φ(xn) eiS[φ] ”, Dφ := ”

∏x∈R4

dφ(x)”,

S [φ] :=

∫d4x

(12∂µφ(x)∂µφ(x)− m2

2φ(x)2 − λ

4!φ(x)4

).

1 Wick rotation

GE (x1, . . . , xn) = “1N

∫Dφφ(x1) . . . φ(xn) e−SE [φ], ”

GE (x1, . . . , xn) := G (−ix01 , ~x1, . . . ,−ix0

n , ~xn), SE [φ] ≥ 0

2 We want to determine GE as formal power series in λ:

GE (x1, . . . , xn) =∞∑r=0

λrGE ,r (x1, . . . , xn).

No control over convergence of the series.Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 49: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral formula

G (x1, . . . , xn) = “1N

∫Dφφ(x1) . . . φ(xn) eiS[φ] ”, Dφ := ”

∏x∈R4

dφ(x)”,

S [φ] :=

∫d4x

(12∂µφ(x)∂µφ(x)− m2

2φ(x)2 − λ

4!φ(x)4

).

1 Wick rotation

GE (x1, . . . , xn) = “1N

∫Dφφ(x1) . . . φ(xn) e−SE [φ], ”

GE (x1, . . . , xn) := G (−ix01 , ~x1, . . . ,−ix0

n , ~xn), SE [φ] ≥ 0

2 We want to determine GE as formal power series in λ:

GE (x1, . . . , xn) =∞∑r=0

λrGE ,r (x1, . . . , xn).

No control over convergence of the series.Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 50: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral formula

G (x1, . . . , xn) = “1N

∫Dφφ(x1) . . . φ(xn) eiS[φ] ”, Dφ := ”

∏x∈R4

dφ(x)”,

S [φ] :=

∫d4x

(12∂µφ(x)∂µφ(x)− m2

2φ(x)2 − λ

4!φ(x)4

).

1 Wick rotation

GE (x1, . . . , xn) = “1N

∫Dφφ(x1) . . . φ(xn) e−SE [φ], ”

GE (x1, . . . , xn) := G (−ix01 , ~x1, . . . ,−ix0

n , ~xn), SE [φ] ≥ 0

2 We want to determine GE as formal power series in λ:

GE (x1, . . . , xn) =∞∑r=0

λrGE ,r (x1, . . . , xn).

No control over convergence of the series.Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 51: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory

1 Free Euclidean action

SE ,f [φ] :=12

∫d4x

(∂µφ(x)∂µφ(x) + m2φ(x)2).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 52: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory1 Free Euclidean action

SE ,f [φ] :=12

∫d4p

(2π)4

(φ(p)(p2 + m2)φ(−p)

)2 SE ,f [φ] = 1

2〈φ,C−1φ〉, where C (p) := 1

p2+m2 is calledcovariance.

3 SΛ0E ,f [φ] := 1

2〈φ, (CΛ0)−1φ〉, where CΛ0(p) := C (p)e−

p2+m2Λ0 .

4 GΛ0E ,f [iJ] := e−

12 〈J,C

Λ0 (p)J〉 = ” 1N

∫Dφ ei〈φ,J〉e−S

Λ0E ,f [φ]”.

GΛ0E ,f(x1, . . . , xn) =

δn

δJ(x1) . . . δJ(xn)GΛ0E ,f [J]

∣∣J=0.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 53: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory1 Free Euclidean action

SE ,f [φ] :=12

∫d4p

(2π)4

(φ(p)(p2 + m2)φ(−p)

)2 SE ,f [φ] = 1

2〈φ,C−1φ〉, where C (p) := 1

p2+m2 is calledcovariance.

3 SΛ0E ,f [φ] := 1

2〈φ, (CΛ0)−1φ〉, where CΛ0(p) := C (p)e−

p2+m2Λ0 .

4 GΛ0E ,f [iJ] := e−

12 〈J,C

Λ0 (p)J〉 = ” 1N

∫Dφ ei〈φ,J〉e−S

Λ0E ,f [φ]”.

GΛ0E ,f(x1, . . . , xn) =

δn

δJ(x1) . . . δJ(xn)GΛ0E ,f [J]

∣∣J=0.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 54: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory1 Free Euclidean action

SE ,f [φ] :=12

∫d4p

(2π)4

(φ(p)(p2 + m2)φ(−p)

)2 SE ,f [φ] = 1

2〈φ,C−1φ〉, where C (p) := 1

p2+m2 is calledcovariance.

3 SΛ0E ,f [φ] := 1

2〈φ, (CΛ0)−1φ〉, where CΛ0(p) := C (p)e−

p2+m2Λ0 .

4 GΛ0E ,f [iJ] := e−

12 〈J,C

Λ0 (p)J〉 = ” 1N

∫Dφ ei〈φ,J〉e−S

Λ0E ,f [φ]”.

GΛ0E ,f(x1, . . . , xn) =

δn

δJ(x1) . . . δJ(xn)GΛ0E ,f [J]

∣∣J=0.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 55: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory1 Free Euclidean action

SE ,f [φ] :=12

∫d4p

(2π)4

(φ(p)(p2 + m2)φ(−p)

)2 SE ,f [φ] = 1

2〈φ,C−1φ〉, where C (p) := 1

p2+m2 is calledcovariance.

3 SΛ0E ,f [φ] := 1

2〈φ, (CΛ0)−1φ〉, where CΛ0(p) := C (p)e−

p2+m2Λ0 .

4 GΛ0E ,f [iJ] := e−

12 〈J,C

Λ0 (p)J〉 = ” 1N

∫Dφ ei〈φ,J〉e−S

Λ0E ,f [φ]”.

GΛ0E ,f(x1, . . . , xn) =

δn

δJ(x1) . . . δJ(xn)GΛ0E ,f [J]

∣∣J=0.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 56: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory

1 GΛ0E ,f [iJ] := e−

12 〈J,C

Λ0 (p)J〉 is called generating functional. It is:

(a) continuous on S(R4)R,

(b) of positive type i.e. GE ,f [i(Jk − J`)] is a positive matrix,

(c) normalized i.e. GE ,f [0] = 1.

Theorem (Bochner-Minlos)

A functional on S(R4)R satisfying (a), (b), (c) is the Fouriertransform of a probabilistic Borel measure on S ′(R4)R i.e.

GΛ0E ,f [iJ] =

∫e i〈φ,J〉dµ(CΛ0 , φ)

Remark: Due to Λ0 the measure is supported on smooth functions.Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 57: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the free theory

1 GΛ0E ,f [iJ] := e−

12 〈J,C

Λ0 (p)J〉 is called generating functional. It is:

(a) continuous on S(R4)R,

(b) of positive type i.e. GE ,f [i(Jk − J`)] is a positive matrix,

(c) normalized i.e. GE ,f [0] = 1.

Theorem (Bochner-Minlos)

A functional on S(R4)R satisfying (a), (b), (c) is the Fouriertransform of a probabilistic Borel measure on S ′(R4)R i.e.

GΛ0E ,f [iJ] =

∫e i〈φ,J〉dµ(CΛ0 , φ)

Remark: Due to Λ0 the measure is supported on smooth functions.Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 58: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the interacting theory

1 Interaction

SΛ0E ,int[φ] =

∫(V )

d4x(aΛ01 φ(x)2 + aΛ0

2 ∂µφ(x)∂µφ(x) + aΛ03 φ(x)4).

2 The generating functional of interacting Green functions

GΛ0E [iJ] =

∫e i〈φ,J〉e−S

Λ0E ,int[φ]dµ(CΛ0 , φ).

3 Perturbative renormalizability: Find aΛ0i =

∑r≥1 a

Λ0i ,rλ

r s.t.

GE ,r (x1, . . . , xn) = limΛ0→∞

GΛ0E ,r (x1, . . . , xn)

exist and ‘renormalization conditions’ are satisfied.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 59: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the interacting theory

1 Interaction

SΛ0E ,int[φ] =

∫(V )

d4x(aΛ01 φ(x)2 + aΛ0

2 ∂µφ(x)∂µφ(x) + aΛ03 φ(x)4).

2 The generating functional of interacting Green functions

GΛ0E [iJ] =

∫e i〈φ,J〉e−S

Λ0E ,int[φ]dµ(CΛ0 , φ).

3 Perturbative renormalizability: Find aΛ0i =

∑r≥1 a

Λ0i ,rλ

r s.t.

GE ,r (x1, . . . , xn) = limΛ0→∞

GΛ0E ,r (x1, . . . , xn)

exist and ‘renormalization conditions’ are satisfied.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 60: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Relativistic (perturbative) QFT

Path-integral for the interacting theory

1 Interaction

SΛ0E ,int[φ] =

∫(V )

d4x(aΛ01 φ(x)2 + aΛ0

2 ∂µφ(x)∂µφ(x) + aΛ03 φ(x)4).

2 The generating functional of interacting Green functions

GΛ0E [iJ] =

∫e i〈φ,J〉e−S

Λ0E ,int[φ]dµ(CΛ0 , φ).

3 Perturbative renormalizability: Find aΛ0i =

∑r≥1 a

Λ0i ,rλ

r s.t.

GE ,r (x1, . . . , xn) = limΛ0→∞

GΛ0E ,r (x1, . . . , xn)

exist and ‘renormalization conditions’ are satisfied.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 61: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Perturbative QED

1 Formally given by the action

S =

∫d4x

ψ(iγµ(∂µ + ieAµ)−m)ψ − 1

4FµνF

µν,

where1 ψ - Dirac field,

2 Aµ - electromagnetic potential,

3 Fµν := ∂µAν − ∂νAµ - the Faraday tensor.

2 QED is a perturbatively renormalizable theory.[Feldman et al 88, Keller-Kopper 96]

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 62: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Axiomatic QED:Consider a Haag-Kastler theory (U,H,Ω,A) whose pointlikelocalized fields include Fµν and jµ = ”eψγµψ” s.t.

∂µFµν = jν , ∂αFµν + ∂µFνα + ∂νFαµ = 0.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 63: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of ψ:The DHR criterion not suitable for electrically chargedrepresentations π of QED i.e.

π A(O′) ' π0 A(O′) fails.

x

I I

I

I

O OO’ ’

x0

1 Indeed, due to the Gauss Law one can determine the electriccharge in O by operations in O′.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 64: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of ψ:The DHR criterion not suitable for electrically chargedrepresentations π of QED i.e.

π A(O′) ' π0 A(O′) fails.

x

I I

I

I

O OO’ ’

x0

1 Indeed, due to the Gauss Law one can determine the electriccharge in O by operations in O′.

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 65: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of ψ:An alternative criterion proposed in [Buchholz-Roberts 13]

π A(C c) ' π0 A(C c)

C

C

CC

= CCC

:

1 Composition/conjugation of reps. Global gauge group.

2 A promising direction for constructing ψ.

3 If electron is a Wigner particle, Compton scattering states canbe constructed. [Alazzawi-W.D. 15]

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 66: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of ψ:An alternative criterion proposed in [Buchholz-Roberts 13]

π A(C c) ' π0 A(C c)

C

C

CC

= CCC

:

1 Composition/conjugation of reps. Global gauge group.

2 A promising direction for constructing ψ.

3 If electron is a Wigner particle, Compton scattering states canbe constructed. [Alazzawi-W.D. 15]

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 67: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of ψ:An alternative criterion proposed in [Buchholz-Roberts 13]

π A(C c) ' π0 A(C c)

C

C

CC

= CCC

:

1 Composition/conjugation of reps. Global gauge group.

2 A promising direction for constructing ψ.

3 If electron is a Wigner particle, Compton scattering states canbe constructed. [Alazzawi-W.D. 15]

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 68: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of ψ:An alternative criterion proposed in [Buchholz-Roberts 13]

π A(C c) ' π0 A(C c)

C

C

CC

= CCC

:

1 Composition/conjugation of reps. Global gauge group.

2 A promising direction for constructing ψ.

3 If electron is a Wigner particle, Compton scattering states canbe constructed. [Alazzawi-W.D. 15]

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 69: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ.1 Suppose jµ = 0 and Fµν 6= 0. Then Aµ is not a Wightman

field. [Strocchi].

2 Standard way out: Aµ as a Wightman field on indefinitemetric "Hilbert space" [Gupta-Bleuler]. Can one avoid it?

3 Free Aµ in the axial gauge (i.e. eµAµ = 0) is a string-likelocalized field. [Schroer, Mund, Yngvason 06].

4 In fact,

Aµ(x , e) =

∫ ∞0

dt Fµν(x + te)eν ,

U(Λ)Aµ(x , e)U(Λ)−1 = (Λ−1)µνAν(Λx ,Λe).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 70: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ.1 Suppose jµ = 0 and Fµν 6= 0. Then Aµ is not a Wightman

field. [Strocchi].

2 Standard way out: Aµ as a Wightman field on indefinitemetric "Hilbert space" [Gupta-Bleuler]. Can one avoid it?

3 Free Aµ in the axial gauge (i.e. eµAµ = 0) is a string-likelocalized field. [Schroer, Mund, Yngvason 06].

4 In fact,

Aµ(x , e) =

∫ ∞0

dt Fµν(x + te)eν ,

U(Λ)Aµ(x , e)U(Λ)−1 = (Λ−1)µνAν(Λx ,Λe).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 71: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ.1 Suppose jµ = 0 and Fµν 6= 0. Then Aµ is not a Wightman

field. [Strocchi].

2 Standard way out: Aµ as a Wightman field on indefinitemetric "Hilbert space" [Gupta-Bleuler]. Can one avoid it?

3 Free Aµ in the axial gauge (i.e. eµAµ = 0) is a string-likelocalized field. [Schroer, Mund, Yngvason 06].

4 In fact,

Aµ(x , e) =

∫ ∞0

dt Fµν(x + te)eν ,

U(Λ)Aµ(x , e)U(Λ)−1 = (Λ−1)µνAν(Λx ,Λe).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 72: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ.1 Suppose jµ = 0 and Fµν 6= 0. Then Aµ is not a Wightman

field. [Strocchi].

2 Standard way out: Aµ as a Wightman field on indefinitemetric "Hilbert space" [Gupta-Bleuler]. Can one avoid it?

3 Free Aµ in the axial gauge (i.e. eµAµ = 0) is a string-likelocalized field. [Schroer, Mund, Yngvason 06].

4 In fact,

Aµ(x , e) =

∫ ∞0

dt Fµν(x + te)eν ,

U(Λ)Aµ(x , e)U(Λ)−1 = (Λ−1)µνAν(Λx ,Λe).

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 73: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ. Open questions:

1 What is the role of Aµ from the DHR perspective?Is it a charge-carrying field of some ‘charge’?

2 How to construct the local gauge group starting fromobservables?

3 What is the intrinsic meaning of local gauge invariance?

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 74: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ. Open questions:

1 What is the role of Aµ from the DHR perspective?Is it a charge-carrying field of some ‘charge’?

2 How to construct the local gauge group starting fromobservables?

3 What is the intrinsic meaning of local gauge invariance?

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 75: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Status of QED

Status of Aµ. Open questions:

1 What is the role of Aµ from the DHR perspective?Is it a charge-carrying field of some ‘charge’?

2 How to construct the local gauge group starting fromobservables?

3 What is the intrinsic meaning of local gauge invariance?

Wojciech Dybalski (TU München) Mathematical Foundations of QFT

Page 76: Mathematical Foundations of Quantum Field Theory · Mathematical Foundations of Quantum Field Theory Wojciech Dybalski TUMünchen ZentrumMathematik LMU,02.11.2016 Wojciech Dybalski

Mathematical Foundations of QFT

Physics MathematicsSpacetime symmetries Representations of groupsCharges, global gauge symmetries Representations of C ∗-algebrasCPT symmetry Tomita-Takesaki theoryQuantum fields Theory of distributionsPath integrals Measure theory in infinite dim.Renormalizability Combinatorics/ODE

Wojciech Dybalski (TU München) Mathematical Foundations of QFT