mathematical models for control of aircraft and satellites slides.pdf · 6! lecture notes ttk 4190...

69
1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Mathematical Models for Control of Aircraft and Satellites 1 Introduc+on 2 Aircra0 Modeling 2.1 Defini+on of Aircra0 StateSpace Vectors 2.2 BodyFixed Coordinate Systems for Aircra0 2.3 Aircra0 Equa+ons of Mo+on 2.4 Perturba+on Theory (Linear Theory) 2.5 Decoupling in Longitudinal and Lateral Modes 2.6 Aerodynamic Forces and Moments 2.7 Propeller Thrust 2.8 Aerodynamic Coefficients 2.9 Standard Aircra0 Maneuvers 2.10 Aircra0 Stability Proper+es 2.11 Design of flight control systems 3 Satellite Modeling 3.1 AXtude Model 3.2 Actuator Dynamics 3.3 Design of Satellite AXtude Control Systems 4 Matlab Simula+on Models 4.1 Boeing767 4.2 F16 Fighter 4.3 F2B Bristol Fighter 4.4 NTNU Cube Satellite

Upload: others

Post on 18-Jul-2020

32 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Mathematical Models for Control of Aircraft and Satellites 1  Introduc+on  2  Aircra0  Modeling  

2.1  Defini+on  of  Aircra0  State-­‐Space  Vectors    2.2  Body-­‐Fixed  Coordinate  Systems  for  Aircra0    2.3  Aircra0  Equa+ons  of  Mo+on    2.4  Perturba+on  Theory  (Linear  Theory)  2.5  Decoupling  in  Longitudinal  and  Lateral  Modes    2.6  Aerodynamic  Forces  and  Moments    2.7  Propeller  Thrust  2.8  Aerodynamic  Coefficients  2.9  Standard  Aircra0  Maneuvers    2.10  Aircra0  Stability  Proper+es    2.11  Design  of  flight  control  systems  

 3  Satellite  Modeling  3.1  AXtude  Model  3.2  Actuator  Dynamics  3.3  Design  of  Satellite  AXtude  Control  Systems  

4  Matlab  Simula+on  Models  4.1  Boeing-­‐767  4.2  F-­‐16  Fighter  4.3  F2B  Bristol  Fighter  4.4  NTNU  Cube  Satellite  

Page 2: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

2 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

The lecture notes •  Fossen, T. I. (2011). Mathematical Models for Control of Aircraft and Satellites���

(2nd edition). Department of Engineering Cybernetics, Lecture Notes, January 2011. uses a vectorial notation to describe aircraft and satellites. The notation is similar to the one used for marine craft (ships, high-speed craft and underwater vehicles). The equations of motion are based on: •  Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles ���

Wiley, Chapter 2. •  Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control ���

Wiley, Chapters 2 and 3. The kinematic and kinetic equations of a marine craft can be modified to describe aircraft and satellites by minor adjustments of notation and assumptions.

Chapter 1 Introduction

Page 3: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

3 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Chapter 2 – Aircraft Modeling

1  Introduc+on  2  Aircra0  Modeling  

2.1  Defini+on  of  Aircra0  State-­‐Space  Vectors    2.2  Body-­‐Fixed  Coordinate  Systems  for  Aircra0    2.3  Aircra0  Equa+ons  of  Mo+on    2.4  Perturba+on  Theory  (Linear  Theory)  2.5  Decoupling  in  Longitudinal  and  Lateral  Modes    2.6  Aerodynamic  Forces  and  Moments    2.7  Propeller  Thrust  2.8  Aerodynamic  Coefficients  2.9  Standard  Aircra0  Maneuvers    2.10  Aircra0  Stability  Proper+es    2.11  Design  of  flight  control  systems  

 3  Satellite  Modeling  3.1  AXtude  Model  3.2  Actuator  Dynamics  3.3  Design  of  Satellite  AXtude  Control  Systems  

4  Matlab  Simula+on  Models  4.1  Boeing-­‐767  4.2  F-­‐16  Fighter  4.3  F2B  Bristol  Fighter  4.4  NTNU  Cube  Satellite  

Page 4: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

4 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.1 Definition of Aircraft State-Space Vectors

Comment  1:  No+ce  that  the  capital  le[ers  L,  M,  N  for  the  moments  are  different  from  those  used  for  marine  cra0—that  is,  K,  M,  N:  The  reason  for  this  is  that  L  is  reserved  as  length  parameter  for  ships  and  underwater  vehicles.  Comment  2:  For  aircra0  it  is  common  to  use  capital  le[ers  for  the  states  U,  V,  W,  etc.  while  it  is  common  to  use  small  le[ers  u,  v,  w,  etc.  for  marine  cra0.  

! :!

UVWPQR

!

longitudinal (forward) velocitylateral (transverse) velocityvertical velocityroll ratepitch rateyaw rate

" :!

XEYEZE ,h!"

#

!

Earth-fixed x-positionEarth-fixed y-positionEarth-fixed z-position (axis downwards), altituderoll anglepitch angleyaw angle

#

#

Figure  2.1:  Defini+on  of  aircra0  body  axes,  veloci+es,  forces,  moments  and  Euler  angles  (McLean  1990).  

XYZLMN

:!

longitudinal forcetransverse forcevertical forceroll momentpitch momentyaw moment

#

Page 5: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

5 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.2 Body-Fixed Coordinate Systems for Aircraft

For aircraft it is common to use the following body-fixed coordinate systems:���

•  Body axes •  Stability axes •  Wind axes

���The axis systems are shown in Figure 2.2 where the angle of attack a and��� sideslip angle b are defined as:            Where        Is  the  total  speed  of  the  aircra0.  

Figure  2.2:  Defini+on  of  stability  and  wind  axes  for  an  aircra0  (Stevens  and  Lewis  1992).  

tan!!" :! WU

sin!"" :! VVT

#

#

VT ! U2 " V2 "W2 #

Page 6: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

6 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.2 Body-Fixed Coordinate Systems for Aircraft  Aerodynamic  effects  are  classified  according  to  the  Mach  number:  

       where  a  =  340  m/s  =  1224  km/h  is  the  speed  of  sound  in  air  at  a  temperature  of  20o  C  on  the  ocean  surface.  The  following  terminology  for  speed  ranges  is  used:    

Subsonic  speed    M  <  1.0  Transonic  speed    0.8  ≤  M  ≤  1.2  Supersonic  speed  1.0  ≤  M  ≤  5.0  Hypersonic  speed  5.0  ≤  M            

 An  aircra0  will  break  the  sound  barrier  at  M  =  1.0  and  this  is  clearly  heard  as  a  sharp  crack.  If  you  fly  at  low  al+tude  and  break  the  sound  barrier,  windows  in  building  will  break  due  to  pressure-­‐induced  waves.  

M :! VTa #

Page 7: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

7 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.2 Body-Fixed Coordinate Systems for Aircraft

pwind ! Rz,!!pstab !

cos!!" sin!!" 0! sin!!" cos!!" 0

0 0 1pstab

pstab ! Ry,"pbody !cos!"" 0 sin!""

0 1 0! sin!"" 0 cos!""

pbody

#

#

Rbodywind ! Rz,!!Ry," #

Rota+on  matrices  for  wind  and  stability  axes          The  rela+onship  between  vectors  expressed  in  different  coordinate  systems  can  be  derived  using  rota+on  matrices.      •  The  body-­‐fixed  coordinate  system  is  first  rotated  a  nega+ve  sideslip  angle  -­‐β  about  

the  z-­‐axis  •  The  new  coordinate  system  is  then  rotated  a  posi+ve  angle  of  a[ack  α  about  the  new  

y-­‐axis  such  that  the  resul+ng  x-­‐axis  points  in  the  direc+on  of  the  total  speed  VT.      The  first  rota+on  defines  the  wind  axes  while  the  second  rota+on  defines  the  stability  axes.  This  can  be  mathema+cally  expressed  as:  

Page 8: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

8 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

pwind ! Rbodywindpbody

"

pwind !

cos!!" sin!!" 0! sin!!" cos!!" 0

0 0 1

cos!"" 0 sin!""0 1 0

! sin!"" 0 cos!""pbody

"

pwind !

cos!""cos!!" sin!!" sin!""cos!!"! cos!"" sin!!" cos!!" ! sin!"" sin!!"

! sin!"" 0 cos!""pbody

#

#

#

2.2 Body-Fixed Coordinate Systems for Aircraft

Rbodywind ! Rz,!!Ry," #

This  gives  the  following  rela+onship  between  the  veloci+es  in  body  and  wind  axes:  

vbody !UVW

! !Rbodywind"!vwind ! Ry,!! Rz,!"!

VT00

!

VT cos!!"cos!""VT sin!""VT sin!!"cos!""

#

Page 9: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

9 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.3 Aircraft Equations of Motion Kinema+c  equa+ons  for  transla+on  The  kinema+c  equa+ons  for  transla+on  and  rota+on  of  a  body-­‐fixed  coordinate  system  ABC  with  respect  to  a  local  geographic  coordinate  system  NED  (North-­‐East-­‐Down)  can  be  expressed  in  terms  or  the  Euler  angles:  

X! EY! EŻE

" Rabcned

UVW

" Rz,#Ry,$Rx,!UVW

#

X! EY! EŻE

"c# !s# 0s# c# 00 0 1

c$ 0 s$0 1 0

!s$ 0 c$

1 0 00 c! !s!0 s! c!

UVW

%

X! EY! EŻE

"c#c$ !s#c! & c#s$s! s#s! & c#c!s$s#c$ c#c! & s!s$s# !c#s! & s$s#c!!s$ c$s! c$c!

UVW

#

Page 10: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

10 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.3 Aircraft Equations of Motion Kinema+c  equa+ons  for  aXtude  The  aXtude  is  given  by:                which  gives

PQR

!!"

00

# Rx,!"0$"

0# Rx,!" Ry,$"

00%"

#

!!

"!

#!$

1 s!t" c!t"0 c! !s!0 s!/c" c!/c"

PQR

, c" " 0 #

Page 11: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

11 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.3 Aircraft Equations of Motion Rigid-­‐body  kine+cs  The  aircra0  rigid-­‐body  kine+cs  can  be  expressed  as  (Fossen  1994,  2011):                    where  ν₁:=[U,V,W]T, ν₂:=[P,Q,R]T, τ₁:=[X,Y,Z]T and τ₂:=[L,M,N]T  It  is  assumed  that  the  coordinate  system  is  located  in  the  aircra0  center  of  gravity  (CG).            

m!!" 1 ! !2 ! !1" " #1

ICG!" 2 ! !2 ! !ICG!2" " #2

# #

MRB!" ! CRB!!"! " #RB #

MRB !mI3!3 O3!3

O3!3 ICG, CRB!!" !

mS!!2" O3!3

O3!3 !S!ICG!2" #

ICG :!Ix 0 !Ixz0 Iy 0

!Ixz 0 Iz

#

The  iner+a  tensor  is  defined  as  (assume  that  Ixy=Iyz=0  which  corresponds  to  xz-­‐plane  symmetry)  

Page 12: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

12 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.3 Aircraft Equations of Motion The  forces  and  moments  ac+ng  on  the  aircra0  can  be  expressed  as:                where  τ  is  a  generalized  vector  that  includes  aerodynamic  and  control  forces.      The  gravita+onal  force  fG = [0 0 mg]T acts  in  the  CG  (origin  of  the  body-­‐fixed  coordinate  system)  and  this  gives  the  following  vector  expressed  in  NED:    Hence,  the  aircra0  model  can  be  wri[en:          

!RB ! !g!"" " ! # g!!" ! !!Rabcned"!

fGO3!1

!

mg sin!""

!mg cos!"" sin!""!mg cos!""cos!""

000

#

m!U! " QW ! RV " g sin!#"" $ Xm!V! " UR ! WP ! g cos!#" sin!!"" $ Ym!W! " VP ! QU ! g cos!#"cos!!"" $ Z

IxP! ! Ixz!R! " PQ" " !Iz ! Iy"QR $ LIyQ! " Ixz!P2 ! R2" " !Ix ! Iz"PR $ MIzR! ! IxzP! " !Iy ! Ix"PQ " IxzQR $ N

#

MRB!" ! CRB!!"! ! g!#" " $ #

Page 13: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

13 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.3 Aircraft Equations of Motion Sensors  and  measurement  systems  It  is  common  that  aircra0  sensor  systems  are  equipped  with  three  accelerometers.  If  the  accelerometers  are  located  in  the  CG,  the  measurement  equa+ons  take  the  following  form:              In  addi+on  to  these  sensors,  an  aircra0  is  equipped  with:    

•  Gyros  for  angular  veloci+es  •  Magnetometers  for  heading  •  Al+tude  sensor  measuring  h  •  Wind  speed  VT  

These  sensors  are  used  in  iner+al  naviga+on  systems  (INS)  which  again  use  a  Kalman  filter  to  compute  es+mates  of  U,V,W,P,Q  and  R  as  well  as  the  Euler  angles  Φ,Θ  and  Ψ.      Other  measurement  systems  that  are  used  onboard  aircra0  are  global  naviga+on  satellite  systems  (GNSS),  radar  and  sensors  for  angle  of  a[ack.  

axCG ! Xm ! U" # QW ! RV # g sin!$"

ayCG ! Ym ! V" # UR ! WP ! g cos!$"sin!!"

azCG ! Zm ! W" # VP ! QU ! g cos!$"cos!!"

#

#

#

Page 14: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

14 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.4 Perturbation Theory (Linear Theory) Defini+on  of  nominal  and  perturba+on  values          According  to  linear  theory  it  is  possible  to  write  the  states  as  the  sum  of  a  nominal  value  (usually  constant)  and  a  perturba+on  (devia+on  from  the  nominal  value).  Moreover,        The  following  defini+ons  are  made:                            Consequently,  a  linearized  state-­‐space  model  will  consist  of  the  states  u,v,w,p,q,r,θ,φ and ψ.

Total state ! Nominal value " Perturbation

! :! !0 " !! !

X0

Y0

Z0

L0

M0

N0

"

!X!Y!Z!L!M!N

, " :! "0 " !" !

U0

V0

W0

P0

Q0

R0

"

uvwpqr

#

!

!"

:#!0

!0

"0

$

!

"

#

#

Page 15: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

15 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.4 Perturbation Theory (Linear Theory) Lineariza+on  of  the  rigid-­‐body  kine+cs  If  the  aerodynamic  forces  and  moments,  veloci+es,  angles  and  control  inputs  are  expressed  as  nominal  values  and  perturba+ons  τ = τ₀+δτ, ν = ν₀+δν and η = η₀+δη,  the  aircra0  equilibrium  point  will  sa+sfy  (it  is  assumed  that  ν₀= 0):        This  can  be  expanded  according  to:                    The  linearized  equa+ons  of  mo+on  are  usually  derived  by  a  1st-­‐order  Taylor  series  expansion  about  the  nominal  values.      Alterna+vely,  it  is  possible  to  subs+tute  nominal  values  +  perturba+ons  into  the  nonlinear  expressions    and  neglect  higher-­‐order  terms  of  the  perturbed  states.    

CRB!!0"!0 ! g!"0" " #0 #

m!Q0W0 ! R0V0 ! g sin!"0"" # X0

m!U0R0 ! P0W0 ! g cos!"0" sin!!0"" # Y0

m!P0V0 ! Q0U0 ! g cos!"0"cos!!0"" # Z0

!Iz ! Iy"Q0R0 ! P0Q0Ixz # L0

!P02 ! R0

2"Ixz ! !Ix ! Iz"P0R0 # M0

!Iy ! Ix"P0Q0 ! Q0R0Ixz # N0

#

Page 16: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

16 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.4 Perturbation Theory (Linear Theory) Example  1  (Lineariza+on  of  surge  using  perturba+on  theory)  

           Using:          In  steady-­‐state                              and        The  equa+ons  of  mo+on  is  reduced  to:        If  it  is  assumed  that  the  2nd-­‐order  terms  wq  and  vr  are  negligible,  the  linearized  model  becomes:  

m!U! " QW ! RV " g sin"##$ $ X%

m!U! 0 " u! " "Q0 " q#"W0 " w# ! "R0 " r#"V0 " v# " g sin"#0 " !#$ $ X0 " "X #

sin!!0 " !" # sin!!0"cos!!" " cos!!0"sin!!"! small! sin!!0" " cos!!0"! #

U! 0 " 0

m!Q0W0 ! R0V0 ! g sin!"0"" # X0 #

m!u! " Q0w "W0q " wq ! R0v ! V0r ! vr " gcos"#0#!$ $ "X #

m!u! " Q0w "W0q ! R0v ! V0r " gcos"#0#!$ $ "X #

Page 17: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

17 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.4 Perturbation Theory (Linear Theory) Linear  state-­‐space  model  for  aircra0  If  all  DOFs  are  linearized,  the  following  state-­‐space  model  is  obtained:                  Matrix-­‐vector  form  

m!u! " Q0w " W0q ! R0v ! V0r " g cos"#0#!$ $ "Xm!v! " U0r " R0u ! W0p ! P0w ! g cos"#0#cos"!0## " g sin"#0# sin"!0#!$ $ "Ym!w! " V0p " P0v ! U0q ! Q0u " g cos"#0# sin"!0## " g sin"#0#cos"!0#!$ $ "Z

Ixp! ! Ixzr! " "Iz ! Iy#"Q0r " R0q# ! Ixz"P0q " Q0p# $ "LIyq! " "Ix ! Iz#"P0r " R0p# ! 2Ixz"R0r " P0p# $ "M

Izr! ! Ixzp! " "Iy ! Ix#"P0q " Q0p# " Ixz"Q0r " R0q# $ "N

#

MRB!" ! NRB! ! G# " $ #

MRB !

m 0 0m 0 03!3

0 0 mIx 0 !Ixz

03!3 0 Iy 0!Ixz 0 Iz

NRB !

0 !mR0 mQ0 0 mW0 !mV0mR0 0 !P0 !W0 0 U0!mQ0 mP0 0 mV0 !mU0 0

!IxzQ0 !Iz ! Iy"R0 ! IxzP0 !Iz ! Iy"Q003!3 !Ix ! Iz"R0 !2IxzP0 !Ix ! Iz"P0 ! 2IxzR0

!Iy ! Ix"Q0 !Iy ! Ix"P0 " IxzR0 IxzQ0

G !

0 mg cos!"0" 003!3 !mg cos!"0"cos!!0" mg sin!"0" sin!!0" 0

mg cos!"0" sin!!0" mg sin!"0"cos!!0" 0

03!3 03!3

Page 18: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

18 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.4 Perturbation Theory (Linear Theory) Linear  state-­‐space  model  using  wind  and  stability  axes  An  alterna+ve  state-­‐space  model  is  obtained  by  using  α  and β as  states.    Assume  that  α and  β  are  small  such  that  cos(α) ≈ 1 and  sin(β) ≈ β.  Hence,                  The  rela+onship  between  the  body-­‐fixed  velocity  vector:  ν = [u,v,w,p,q,r]T and  the  new  state-­‐space  vector  x  can  be  wri[en  as:        If  the  total  speed  is  VT = U₀ = constant (linear  theory),  it  is  seen  that:              

U ! VT

V ! VT!

W ! VT"

"

U ! VT

! ! VVT

" ! WVT

# x !

u!

"

pqr

!

surge velocitysideslip angleangle of attackroll ratepitch rateyaw rate

#

! ! Tx ! diag!1,VT,VT,1,1,1,1"x #

!! " 1VTw!

"! " 1VTv!

V! T " 0

#

#

#

!! " UW! ! WU!U2 # W2

"! " V! VT ! VV! TVT2 cos"

V! T " UU! # VV! # WW!VT

#

#

#

lineariza+on

Page 19: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

19 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.5 Decoupling in Longitudinal and Lateral Modes For  an  aircra0  it  is  common  to  assume  that  the  longitudinal  modes  (DOFs  1,  3  and  5)  are  decoupled  from  the  lateral  modes  (DOFs  2,  4  and  6)  by  assuming:      •  The  fuselage  is  slender  (length  is  much  larger  than  the  width  and  the  height)    •  The  longitudinal  velocity  is  much  larger  than  the  ver+cal  and  transversal  veloci+es.            In  order  to  decouple  the  rigid-­‐body  kine+cs  in  longitudinal  and  lateral  modes  it  will  be  assumed  that  the  states  v,p,r  and  φ  are  negligible  in  the  longitudinal  channel  while  u,w,q  and  θ  are  negligible  when  considering  the  lateral  channel.      This  gives  two  decoupled  sub-­‐systems:    

•  Longitudinal  equa+ons  •  Lateral  equa+ons  

 

Page 20: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

20 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.5 Decoupling in Longitudinal and Lateral Modes Longitudinal  equa+ons    Kine2cs                              Kinema2cs      

m!u! " Q0w " W0q " g cos"#0#!$ $ "Xm!w! ! U0q ! Q0u " g sin"#0#cos"!0#!$ $ "Z

Iyq! $ "M #

m 0 00 m 00 0 Iy

u!w!q!

"

0 mQ0 mW0

!mQ0 0 !mU0

0 0 0

uwq

"

mg cos!#0"

mg sin!#0"cos!!0"

0! $

"X"Z"M

#

!! " q #

DOFs  1,  3  and  5

Page 21: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

21 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.5 Decoupling in Longitudinal and Lateral Modes Lateral  equa+ons    Kine2cs                            Kinema2cs      

m!v! " U0r ! W0p ! g cos"#0#cos"!0#!$ $ "YIxp! ! Ixzr! " "Iz ! Iy#Q0r ! IxzQ0p $ "LIzr! ! Ixzp! " "Iy ! Ix#Q0p " IxzQ0r $ "N

#

m 0 00 Ix !Ixz0 !Ixz Iz

v!p!r!

"

0 !mW0 mU0

0 !IxzQ0 !Iz ! Iy"Q0

0 !Iy ! Ix"Q0 IxzQ0

vpr

"

!mg cos!#0"cos!!0"

00

! $

"Y"L"N

#

!!

"!"

1 tan!#0"

0 1/cos!#0"

pr

#

DOFs  2,  4  and  6

Page 22: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

22 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.6 Aerodynamic Forces and Moments Aerodynamic  coefficients  The  following  abbrevia+ons  and  nota+on  will  be  used  for  the  aerodynamic  coefficients:                In  order  to  illustrate  how  control  surfaces  influence  the  aircra0,  an  aircra0  equipped  with  the  following  control  inputs  will  be  considered    

X index ! !X! index

L index ! !L! index

Yindex ! !Y! index

M index !!M

! index

Z index ! !Z! index

Nindex ! !N! index

!T Thrust Jet/propeller

!E ElevatorControl surfaces on the rear of the aircraft used for pitch andaltitude control

!A AileronHinged control surfaces attached to the trailing edge of the wing usedfor roll/bank control

!F FlapsHinged surfaces on the trailing edge of the wings used for brakingand bank-to-turn

!R Rudder Vertical control surface at the rear of the aircraft used for turning

Page 23: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

23 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.6 Aerodynamic Forces and Moments

Control  inputs  for  conven+onal  aircra0.      No+ce  that  the  two  ailerons  can  be  treated  as  one  control  input:          

!A ! 1/2!!AL " !AR"

Page 24: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

24 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.6 Aerodynamic Forces and Moments Linear  theory  will  be  assumed  in  order  to  reduce  the  number  of  aerodynamic  coefficients.  Control  inputs  and  aerodynamic  forces  and  moments  are  wri[en  as:      where  -­‐MF  is  aerodynamic  added  mass,  -­‐NF  is  aerodynamic  li0  and  drag  and  B  is  a  matrix  describing  the  actuator  configura+on  (thrust  and  control  surfaces).  The  actuator  dynamics  is  modeled  by  a  1st-­‐order  system:          where  uc  is  commanded  input,  u  is  the  actual  control  input  produced  by  the  actuators  and  T  =    diag{T₁,T₂,...,Tr}  is  a  diagonal  matrix  of  posi+ve  +me  constants.  This  gives:            The  matrices  M  and  N  are  defined  as  M  =  MRB+MF  and  N  =  NRB+NF.  The  linearized  kinema+cs  takes  the  following  form:  

! ! !MF"# ! NF" " Bu #

u! ! T!1!uc ! u" #

!MRB !MF"!" ! !NRB ! NF "! ! G# " Bu#

M!" ! N! ! G# " Bu #

!" ! J!# " J"! #

Page 25: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

25 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.6 Aerodynamic Forces and Moments Linear  state-­‐space  model  with  actuator  dynamics              Linear  state-­‐space  model  neglec+ng  the  actuator  dynamics            

!"

#"

u"!

J! J" 0!M!1G !M!1N M!1B0 0 !T!1

!

#

u"

00T!1

uc #

!"

#"!

J! J"!M!1G !M!1N

!

#"

0M!1B

u #

Page 26: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

26 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.6 Aerodynamic Forces and Moments Longitudinal  aerodynamic  forces  and  moments          McLean  (1990)  expresses  the  longitudinal  forces  and  moments  as:                    This  corresponds  to  the  matrices  -­‐MF  ,  -­‐NF    and  B  .  If  the  cruise  speed  U₀=  constant,  then  δT  = 0.  Al+tude  can  be  controlled  by  using  the  elevators  δE.    Flaps  δF  can  be  used  to  reduce  the  speed  during  landing.  The  flaps  can  also  be  used  to  turn  harder  for  instance  by  moving  one  flap  while  the  other  is  kept  at  the  zero  posi+on.  This  is  common  in  bank-­‐to-­‐turn  maneuvers.  For  conven+onal  aircra0  the  following  aerodynamic  coefficients  can  be  neglected:      such  that  

dXdZdM

!

Xu" Xw" Xq"Zu" Zw" Zq"Mu" Mw" Mq"

u"w"q"

#

Xu Xw XqZu Zw ZqMq Mw Mq

uwq

#

X!T X!E X!F

Z !TZ!E Z!F

M!T M!E M!F

!T!E!F

#

Xu! ,Xq,Xw! ,X!E ,Zu! ,Zw! ,Mu! #

dXdZdM

!

0 0 Xq"0 0 Zq"0 Mw" Mq"

u"w"q"

#

Xu Xw 0Zu Zw ZqMq Mw Mq

uwq

#

X!E

Z!E

M!E

!E #

Page 27: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

27 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.6 Aerodynamic Forces and Moments Lateral  aerodynamic  forces  and  moments          McLean  (1990)  expresses  the  longitudinal  forces  and  moments  as:              This  corresponds  to  the  matrices  -­‐MF  ,  -­‐NF    and  B  .    For  conven+onal  aircra0  the  following  aerodynamic  coefficients  can  be  neglected:          This  gives  

dYdLdN

!

Yv" Yp" Yr"Lv" Lp" Lr"Nv" Np" Nr"

v"p"r"

#

Yv Yp YrLv Lp LrNv Np Nr

vpr

#

Y!A Y!RL!A L!R

N!A N!R

!A!R

#

Yv! ,Yp,Yp! ,Yr,Yr! ,Y!A ,Lv! ,Lr! ,Nv! ,Nr! #

dYdLdN

!

0 0 00 Lp" 00 Np" 0

v"p"r"

#

Yv 0 0Lv Lp LrNv Np Nr

vpr

#

0 Y!RL !A

L!R

N!A N!R

!A!R

#

Page 28: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

28 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.7 Propeller Thrust

T ! Kt!n2D4 #

T Thrust force [N]Kt Thrust coefficient! Density of air [kg/m3]n Propeller angular velocity [rad/s]D Propeller diameter [m]

ftb !

XtYtZt

!

T00

# mtb !

LtMt

Nt

! rt/bb ! ftb ! S!rt/bb "ft

b

!

0Trtz!Trty

#

rt/bb ! !rtx ,rty ,rtz"! is the location of the propeller with respect to CO

Page 29: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

29 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.8 Aerodynamic Coefficients

fab !

XaYaZa

! q"SCXCYCz

mab !

LaMa

Na

! q"SbClc"CmbCn

#

#

The most important parameters used to describe an airfoil are:

b Wing span (tip to tip)c Wing chord (varies along span)c! Mean aerodynamic chordS Total wing areaAR " b2/S Aspect ratio

q! " 12 !aVT2 #

Dynamic pressure: Aerodynamic forces and moments:

Page 30: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

30 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.8 Aerodynamic Coefficients

The aerodynamic coefficients are in general functions of angle of attack α, sideslip angle β, Mach number M, altitude h, control surface deflections δS and the thrust coefficient: where SD is the area of the disc swept out by a propeller blade. Therefore, the aerodynamic coefficients are functions: Consequently, the aerodynamic coefficients may have complicated dependences, which are hard to model with great accuracy. If the aircraft has restricted flight modes, that is restricted to low Mach numbers and small angles of attack and sideslip, the aerodynamic coefficients may be greatly simplified. The complicated dependency may then be broken into a sum of simpler linear terms.

Ci, i ! D,Y,L, l,m,n

TC ! Tq"SD

#

Ci ! Ci!!,",M,h,#S,TC" #

Page 31: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

31 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.8 Aerodynamic Coefficients

CD0CL

! Rbs!CX

0!CZ

!

cos!!" 0 sin!!"0 1 0

! sin!!" 0 cos!!"

!CX0

!CZ

#

fab !

XaYaZa

! q"S0CY0

# q"SRsb!CD

0!CL

! q"S!CD cos!!" # CL sin!!"

CY!CD sin!!" ! CL cos!!"

#

Relationship between CX, CZ and CD, CL (drag/lift):

Page 32: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

32 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.8 Aerodynamic Coefficients

CD ! CD0 " CD!! " CD"E"E " CD"R

"R " CD"F"F #

CY ! CY0 " CY!! " CY"R"R " CY"A"A #

CL ! CL0 " CL!! " CL"F"F #

Linear Theory Lift and drag coefficients Sideforce coefficient Rolling moment coefficient Pitching moment coefficient Yawing moment coefficient

Cl ! Cl0 " Cl!! " Cl"A"A " Cl"R"R " Clpb

2VTP " Clr b

2VTR #

Cm ! Cm0 " Cm!! " Cm"e"e " Cmqc#

2VTQ #

Cn ! Cn0 " Cn!! " Cn"R"R " Cn"A"A " Cnpb

2VTP " Cnr b

2VTR #

Page 33: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

33 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.8 Aerodynamic Coefficients

Equations of motion including aerodynamic coefficients U! " VR ! WQ ! g sin!#" $ T

m $q%Sm CX

V! " WP ! UR $ g cos!#"sin!!" $ q%Sm CY

W! " UQ ! VP $ g cos!#"cos!!" $ q%Sm CZ

P! ! IxzIxR! " ! Iz ! IyIx

QR $ IxzIxPQ $

q%bSIxCl

Q! " ! Ix ! IzIyPR ! IxzIy

!P2 ! R2" $ TrtzIy$IpIy

&pR $q%Sc%IyCm

R! ! IxzIzP! " ! Iy ! IxIz

PQ ! IxzIzQR !

TrtyIz

! IpIz&pQ $

q%SbIzCn

#

#

#

#

#

#

Page 34: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

34 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.9 Standard Aircraft Maneuvers  The  nominal  values  depends  on  the  aircra0  maneuver.  For  instance:  

1.  Straight  flight:  Θ₀ = Q₀ = R₀ = 0 2.  Symmetric  flight:  Ψ₀ = V₀ = 0 3.  Flying  with  wings  level:  Φ₀ = P₀ = 0

 Constant  angular  rate  maneuvers  can  be  classified  according  to:    

1.  Steady  turn:  R₀ = constant 2.  Steady  pitching  flight:  Q₀= constant 3.  Steady  rolling/spinning  flight:  P₀ = constant

 

Page 35: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

35 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.9 Standard Aircraft Maneuvers Dynamic  equa+on  for  coordinated  turn  (bank-­‐to-­‐turn)    A  frequently  used  maneuver  is  coordinated  turn  where  the  accelera+on  in  the  y-­‐direc+on  is  zero,  no  sideslip  and  zero  steady-­‐state  pitch  and  roll  angles:          Furthermore  it  is  assumed  that  VT = U₀= constant Assume  that  the  longitudinal  and  lateral  mo+ons  are  decoupled  (u=w=q=θ=0).  If  perturba+on  theory  is  applied  under  the  assump+on  that  the  2nd-­‐order  terms  ur=pw=0,we  get:      Steady-­‐state  condi+on  

! ! !" ! 0#0 ! !0 ! 0

# #

m!V! " UR ! WP ! g cos"##sin"!#$ $ Y%

m!"U0 " u#"R0 " r# ! "W0 " w#"P0 " p# ! g cos"!#sin""#$ $ Y0

#

#

! ! V/U0 V ! V" ! 0

!Y ! 0

m!U0R0 ! U0r !W0P0 !W0p ! g sin!!"" " Y0 #

m!U0R0 !W0P0" ! Y0 # m!U0r !W0p ! g sin!!"" ! 0 #

Page 36: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

36 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.9 Standard Aircraft Maneuvers Bank-­‐to-­‐turn                  The  aircra0  is  o0en  trimmed  such  that    the  angle  of  a[ack  α₀=W₀/U₀  =  0.  This  implies  that  the  yaw  rate  can  be  expressed  as:          This  is  a  very  important  result  since  it  states  that  a  roll  angle  φ  different  from  zero  will  induce  a  yaw  rate  r  which  again  turns  the  aircra0  (bank-­‐to-­‐turn).    With  other  words,  we  can  use  a  moment  in  roll,  for  instance  generated  by  the  ailerons,  to  turn  the  aircra0.  The  yaw  angle  is  given  by:        An  alterna+ve  method  is  of  course  to  turn  the  aircra0  by  using  the  rear  rudder  to  generate  a  yaw  moment.  The  bank-­‐to-­‐turn  principle  is  used  in  many  missile  control  systems  since  it  improves  maneuverability,  in  par+cular  in  combina+on  with  a  rudder  controlled  system.  

m!U0r !W0p ! g sin!!"" ! 0 #

r ! W0U0p " g

U0sin!!" #

r ! gU0

sin!!"! small! g

U0! #

!! " r #

Page 37: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

37 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.9 Standard Aircraft Maneuvers Example  2  (Augmented  turning  model  using  rear  rudders)    Turning  autopilots  using  the  rudder  δR  as  control  input  is  based  on  the  lateral  state-­‐space  model.  The  differen+al  equa+on  for  ψ  is  augmented  on  the  lateral  model  as  shown  below:  

v!p!r!!!

"!

"

a11 a12 a13 a14 0a21 a22 a23 0 0a31 a32 a33 0 00 1 0 0 00 0 1 0 0

vpr!

"

#

b11

b21

b31

00

#R #

Page 38: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

38 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.9 Standard Aircraft Maneuvers Example  3  (Augmented  bank-­‐to-­‐turn  model  using  ailerons)  Bank-­‐to-­‐turn  autopilots  are  designed  using  the  lateral  state-­‐space  model  with  ailerons  as  control  inputs,  for  instance:        This  is  done  by  augmen+ng  the  bank-­‐to-­‐turn  equa+on            to  the  lateral  state-­‐space  model  according  to:  

!A ! 1/2!!AL " !AR"

v!p!r!!!

"!

"

a11 a12 a13 a14 0a21 a22 a23 0 0a31 a32 a33 0 00 1 0 0 00 0 0 g

U00

vpr!

"

#

b11

b21

b31

00

#A #

r ! gU0

sin!!"! small! g

U0! #

Page 39: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

39 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Dynamic  equa+on  for  al+tude  control          Aircra0  al+tude  control  systems  are  designed  by  considering  the  equa+on  for  the  ver+cal  accelera+on  in  the  center  of  gravity  expressed  in  NED  coordinates:        If  the  accelera+on  is  perturbed  according  to  azCG  =  az0  +  δaz  and  d/dt(W₀)  =  0,  the  following  equilibrium  condi+on  is  obtained:        Symmetric  straight-­‐line  flight  with  horizontal  wings  V₀ = Φ₀= Θ₀ = P₀ = Q₀ = 0  gives:      Assume  that  the  2nd-­‐order  terms  vp  and  uq  can  be  neglected  such  that  Differen+a+ng  the  al+tude  twice  with  respect  to  +me  gives  the  rela+onship:      If  we  integrate  this  expression  under  the  assump+on  that                                                                                                          we  get:        

   

Flight  path:                                                                                  where  α  =  w/U₀

2.9 Standard Aircraft Maneuvers

azCG ! W" # VP ! QU ! gcos!$"cos!!" #

az0 ! V0P0 ! Q0U0 ! gcos!"0"cos!!0" #

az0 ! !az " w# ! vp ! q!U0 ! u" ! gcos!""cos!#" # !az ! w" ! U0q #

h! " !!az " U0q ! w# #

h! !0" " U0!!0" ! w!0" " 0

h! " U0! ! w # ! :! " ! # #

h! " U0! #

Page 40: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

40 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.9 Standard Aircraft Maneuvers Example  4  (Augmented  model  for  al+tude  control  using  elevator)    An  autopilot  model  for  al+tude  control  based  on  the  longitudinal  state-­‐space  model  with  states  u,w  (alt.  α),  q  and  θ  is  obtained  by  augmen+ng  the  ODE  for  h  to  the  state-­‐space  model:  

u!w!q!!!

h!

"

a11 a12 a13 a14 0a21 a22 a23 a24 0a31 a32 a33 0 00 0 1 0 00 !1 0 U0 0

uwq!

h

"

b11 b12

b21 b22

b31 b32

0 00 0

"T"E

#

Page 41: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

41 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Hardware-in-the-loop testing— UAV Simulators

Page 42: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

42 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Simulator Architecture

Page 43: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

43 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Hardware-in-the-loop Testing using Matlab/Simulink and X-Plane

Ref. Lucio R. Ribeiro and Neusa Maria F. Oliveira. UAV Autopilot Controllers Test Platform Using Matlab/Simulink and X-Plane. 40th ASEE/IEEE Frontiers in Education Conference, Washington DC, 2010

Page 44: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

44 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Hardware-in-the-loop Testing using Matlab/Simulink and X-Plane

Manual: Brede Børhaug (2011). UAV Simulink and X-Plane simulator

Cirrus Thejet low flyby at OSL Gardermoen using the demo flight control system in Simulink

Page 45: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

45 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Hardware-in-the-loop Testing using Matlab/Simulink and FlightGear

Running UAV Models in Aerospace blockset with FlightGear

The FlightGear flight simulator project is an open-source, multi-platform, cooperative flight simulator development project. Source code for the entire project is available and licensed under the GNU General Public License.

Manual: Ingrid Hagen Johansen (2011). Simulink to FlightGear Interface. A User guide

Page 46: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

46 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

X-Plane Flying over and landing in Gardermoen

Page 47: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

47 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties The  aircra0  stability  proper+es  can  be  inves+gated  by  compu+ng  the  eigenvalues  of  the  system  matrix  A  using:      For  a  matrix  A  of  dimension  n  ×  n  there  are  n  solu+ons  of  λ.  

det!!I ! A" ! 0 #

Page 48: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

48 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties Longitudinal  stability  analysis          For  conven+onal  aircra0  the  characteris+c  equa+on  is  of  4th  order:          where  the  subscripts  ph  and  sp  denote  the  following  modes:        

•  Phugoid  mode  •  Short-­‐period  mode        

!!2 ! 2"ph#ph! ! #ph2 "!!2 ! 2"sp#sp! ! #sp

2 " " 0 #

The  phugoid  mode  is  observed  as  a  long  period  oscilla+on  with  li[le  damping.  In  some  cases  the  Phugoid  mode  can  be  unstable  such  that  the  oscilla+ons  increase  with  +me.      The  Phugoid  mode  is  characterized  by  the  natural  frequency  ωph  and  rela+ve  damping  ra+o  ζph.          The  short-­‐period  mode  is  a  fast  mode  given  by  the  natural  frequency  ωsp  and  rela+ve  damping  factor  ζsp. The  short-­‐period  mode  is  usually  well  damped.          

Page 49: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

49 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties

Phugoid mode demonstrated in simulator by pulsing throttle. Cockpit and external views.���Uploaded by Professor Eric Johnsen on Apr 30, 2010

Play YouTube video Play YouTube video

Two-view video showing a elevator deflection and the resulting free response oscillation known as the “long period” or phugoid. Uploaded by GuvnK on Feb 16, 2009

Page 50: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

50 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties

Short period mode demonstrated in simulator by pulsing elevator. Velocity vector also shown. Uploaded by Professor Eric Johnsen on Apr 30, 2010

Play YouTube video

Page 51: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

51 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties Classifica+on  of  eigenvalues      Conven+onal  aircra0  have  usually  two  complex  conjugated  pairs  of  Phugoid  and  short-­‐period  types.  For  the  B-­‐767  model  in  Chapter  4,  the  eigenvalues  can  be  computed  using  damp.m  in      Matlab:                        From  this  is  seen  that:    

 ωph  =0.0596  and  ζph  =  0.1070    ωsp  =2.0943  and  ζsp    =  0.4143  

 Time  constants:  Tph  =  105.4  s  and  Tsp  =  3.0  s  

Page 52: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

52 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties Tuck  mode:    Supersonic  aircra0  may  have  a  very  large  aerodynamic  coefficient  Mu.  This  implies  that  the  oscillatory  Phugoid  equa+on  gives  two  real  solu+ons  where  one  is  posi+ve  (unstable)  and  one  is  nega+ve  (stable).  This  is  referred  to  as  the  tuck  mode  since  the  phenomenon  is  observed  as  a  downwards  poin+ng  nose  (tucking  under)  for  increasing  speed.    

A  third  oscillatory  mode:    For  fighter  aircra0  the  center  of  gravity  is  o0en  located  behind  the  neutral  point  or  the  aerodynamic  center  (the  point  where  the  trim  moment  Mw  w  is  zero).  When  this  happens,  the  aerodynamic  coefficient  Mw  takes  a  value  such  that  the  roots  of  the  characteris+c  equa+on  has  four  real  solu+ons.  When  the  center  of  gravity  is  moved  backwards  one  of  the  roots  of  the  Phugoid  and    short-­‐period  modes  become  imaginary    and  they  form  a  new  complex  conjugated    pair.  This  is  usually  referred  to  as  the  3rd  oscillatory  mode.    

Page 53: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

53 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties Lateral  stability  analysis          The  lateral  characteris+c  equa+on  is  usually  of  5th  order:            where  the  term  λ in  the  last  equa+on  corresponds  to  a  pure  integrator  in  roll  (dψ/dt =  r).            The  term  (λ+e) is  the  aircra0  spiral/divergence  mode.  This  is  usually  a  very  slow  mode.  Spiral/divergence  corresponds  to  horizontally  leveled  wings  followed  by  roll  and  a  diverging  spiral  maneuver.            The  term  (λ+f) describes  the  subsidiary  roll  mode  while  the  2nd-­‐order  system  is  referred  to  as  Dutch  roll.  This  is  an  oscillatory  system  with  a  small  rela+ve  damping  factor  ζD. The  natural  frequency  in  Dutch  roll  is  denoted  ωD

!5 ! "4!4 ! "3!3 ! "2!2 ! "1! ! "0 " 0#

!!! ! e"!! ! f"!!2 ! 2#D$D! ! $D2 " " 0

#

#

Page 54: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

54 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties

Dutch roll mode demonstrated in simulator by pulsing rudder. Velocity vector shown Uploaded by Professor Eric Johnsen on Apr 30, 2010

Dutch roll on landing a B-747, well i managed to edit the plane, if it flies with no yaw damper it goes 9-10 times on low speed into a Dutch roll ���Uploaded by cba999casey on Jan 9, 2012

Play YouTube video

Play YouTube video

Page 55: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

55 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties Spiral roll mode demonstrated in simulator. Cockpit and map views. Uploaded by Professor Eric Johnsen on Apr 30, 2010

Play YouTube video

Roll mode demonstrated in simulator by pulsing aileron. Angular velocity vector shown. Uploaded by Professor Eric Johnsen on Apr 30, 2010

Play YouTube video

Page 56: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

56 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

2.10 Aircraft Stability Properties Lateral  stability  analysis          If  the  lateral  B-­‐767  Matlab  model  in  Chapter  4  is  considered,  the  Matlab  command  damp.m  gives:                        In  this  example  we  only  get  four  eigenvalues  since  the  pure  integrator  in  yaw  is  not  include  in  the  system  matrix.      It  is  seen  that  the  spiral  mode  is  given  by  e=  -­‐0.0143  while  the  subsidiary  roll  mode  is  given  by  f=  -­‐2.0863.      Dutch  roll  is  recognized  by  ωD  = 1.5038  and  ζD =  0.0745.

Page 57: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

57 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

3 Satellite Modeling

1  Introduc+on  2  Aircra0  Modeling  

2.1  Defini+on  of  Aircra0  State-­‐Space  Vectors    2.2  Body-­‐Fixed  Coordinate  Systems  for  Aircra0    2.3  Aircra0  Equa+ons  of  Mo+on    2.4  Perturba+on  Theory  (Linear  Theory)  2.5  Decoupling  in  Longitudinal  and  Lateral  Modes    2.6  Aerodynamic  Forces  and  Moments    2.7  Propeller  Thrust  2.8  Aerodynamic  Coefficients  2.9  Standard  Aircra0  Maneuvers    2.10  Aircra0  Stability  Proper+es    2.11  Design  of  flight  control  systems  

 3  Satellite  Modeling  3.1  AXtude  Model  3.2  Actuator  Dynamics  3.3  Design  of  Satellite  AXtude  Control  Systems  

4  Matlab  Simula+on  Models  4.1  Boeing-­‐767  4.2  F-­‐16  Fighter  4.3  F2B  Bristol  Fighter  4.4  NTNU  Cube  Satellite  

Page 58: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

58 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

3.1 Attitude Model Euler's  2nd  Axiom  Applied  to  Satellites      The  rigid-­‐body  kine+cs            were  ω = [p,q,r]T and  ICG  =ICGT  >  0  is  the  iner+a  tensor  about  the  center  of  gravity  given  by:              If  the  Euler  angles  are  used  to  represent  aXtude,  the  kinema+cs  become:          where    The  satellite  has  three  controllable  moments  τ  =  [τ₁,τ₂,τ₃]T  which  can  be  generated  using  different  actuators.    

ICG!" ! ! ! !ICG!" " # #

ICG !

Ix !Ixy !Ixz!Ixy Iy !Iyz!Ixz !Iyz Iz

#

!" ! J!!"# # J!!" !

1 sin!!" tan!"" cos!!" tan!""

0 cos!!" ! sin!!"0 sin!!"/ cos!"" cos!!"/ cos!""

cos!!" ! 0

! ! !!,",#""

Page 59: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

59 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

3.1 Attitude Model

The  dynamic  model  can  also  be  wri[en:        where  we  have  used  the  fact  that  a×b  =  -­‐b×a.  Furthermore,  it  is  possible  to  find  a  matrix  S(ω)  such  that  S(ω)  =  -­‐ST(ω)  is  skew-­‐symmetric.  With  other  words:        The  matrix    S(ω)  must  sa+sfy  the  condi+on:          A  matrix  sa+sfying  this  condi+on  is:  

ICG!" ! !ICG!" ! ! ! # #

ICG!" ! S!!"! " # #

S!!"! ! "!ICG!" ! ! #

S!!" !0 !Iyzq ! Ixzp " Izr Iyzr " Ixyp ! Iyq

Iyzq " Ixzp ! Izr 0 !Ixzr ! Ixyq " Ixp!Iyzr ! Ixyp " Iyq Ixzr " Ixyq ! Ixp 0

#

Page 60: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

60 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

3.3 Design of Satellite Attitude Control Systems Consider  the  Lyapunov  func+on  candidate:          where  h(θ)  is  a  posi+ve  definite  func+on  depending  of  the  aXtude.  Differen+a+on  of  V  with  respect  to  +me  gives:      

     Since  S(ω)  =  -­‐ST(ω)  ,  it  follows  that:  This  suggests  that  the  control  input  τ  should  be  chosen  as:            where  Kd  >  0.  This  finally  gives:        and  stability  and  convergence  follow  from  standard  Lyapunov  techniques.  

!!S!!"! ! 0 !! #

V! " !!!Kd! " 0 #

! ! !Kd" ! Tq!!q" "h"q#! !Kd" ! Tq!!q"Kpq# #

Nonlinear  quaternion-­‐based  PD-­‐controller  for  set-­‐point  regula+on

V ! 12 !!ICG! " h!q"" #

V! " !TICG!" # q" !!h!q#

" !!!"S!!"! # $" # !!Tq!!q" !h!q# #

Page 61: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

61 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

3.3 Design of Satellite Attitude Control Systems PD-­‐controller  of  Wen  and  Kreutz-­‐Delago  (1991)    

!!" # 12 !!"#

"!" # ! 12 !!! ! 1

2 ! " "#

#

#

! ! kp"# ! kd$ #

! ! kp"# ! kd$ #

V! " !ckp#!"#2 ! kd2###2 ! c ! 1

2 !$# ! 12 # " !"

!ICG# ! c!"! !# " ICG#

" ! !" #! ckp 0

0 kd ! 2c#I

!"

#

!

#

V ! !kp " ckd"!!!# ! 1"2 " !"!!"" " 12 #!ICG# ! c!!ICG# #

Page 62: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

62 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4 Matlab Simulation Models

1  Introduc+on  2  Aircra0  Modeling  

2.1  Defini+on  of  Aircra0  State-­‐Space  Vectors    2.2  Body-­‐Fixed  Coordinate  Systems  for  Aircra0    2.3  Aircra0  Equa+ons  of  Mo+on    2.4  Perturba+on  Theory  (Linear  Theory)  2.5  Decoupling  in  Longitudinal  and  Lateral  Modes    2.6  Aerodynamic  Forces  and  Moments    2.7  Propeller  Thrust  2.8  Aerodynamic  Coefficients  2.9  Standard  Aircra0  Maneuvers    2.10  Aircra0  Stability  Proper+es    2.11  Design  of  flight  control  systems  

 3  Satellite  Modeling  3.1  AXtude  Model  3.2  Actuator  Dynamics  3.3  Design  of  Satellite  AXtude  Control  Systems  

4  Matlab  Simula+on  Models  4.1  Boeing-­‐767  4.2  F-­‐16  Fighter  4.3  F2B  Bristol  Fighter  4.4  NTNU  Cube  Satellite  

Page 63: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

63 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

The  longitudinal  and  lateral  B-­‐767  state  vectors  are:                        Equilibrium  point:  

4.1 Boeing B-767

xlang !

u (ft/s)! (deg)q (deg/s)" (deg)

,xlat !

# (deg)p (deg/s)$ (deg/s)r (deg)

#

ulang !%E (deg)%T (%)

,ulat !%A (deg)%R (deg)

#

Speed VT ! 890 ft/s ! 980 km/hAltitude h ! 35 000 ftMass m ! 184 000 lbsMach-number M ! 0.8

Page 64: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

64 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4.1 Boeing B-767

Page 65: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

65 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4.2 F-16 Fighter The  lateral  F-­‐16  state  vectors  are:                      Equilibrium  point:  

xlat !

! (ft/s)" (ft/s)p (rad/s)r (rad)#A (rad)#R (rad)rw (rad)

,ulat !uA (rad)uR (rad)

,ylat !

rw (deg)p (deg/s)! (deg)" (deg)

#

Speed VT ! 502 ft/s ! 552 km/hMach-number M ! 0.45

Page 66: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

66 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4.2 F-16 Fighter

No+ce  that  the  last  two  eigenvalues  correspond  to  the  actuator  states.  

Page 67: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

67 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

The  lateral  model  of  the  F2B  Bristol  fighter  aircra0  is  given  below.  This  is  a  Bri+sh  aircra0  from  World  War  I.  The  aircra0  model  is  for  β=0  (coordinated  turn)  and  the  state-­‐space    vector  is:              where  the  dynamics  for  ψ  sa+sfies  the  bank-­‐to-­‐turn  equa+on:        Equilibrium  point:  

4.3 F2B Bristol Fighter

xlat !

p (deg/s)r (deg/s)! (deg)" (deg)

,ulat ! !#A (deg)" #

!! " gU0

" " 9.81138 ! 0.3048 " " 0. 233" #

Speed VT ! 138 ft/s ! 151.4 km/hAltitude h ! 6 000 ftMach-number M ! 0.126

Page 68: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

68 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4.3 F2B Bristol Fighter

Page 69: Mathematical Models for Control of Aircraft and Satellites slides.pdf · 6! Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) ! 2.2 Body-Fixed Coordinate Systems

69 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4.4 NTNU Student Cube Satellite

I_CG ! diag{[0.0108,0.0113,0.0048]}; % kg m^2