mathematical relativity and the nature of the universe

37
Mathematical Relativity and the Nature of the Universe Priscila Reyes Advisor: Dr. Vehbi Emrah Paksoy Department of Mathematics Halmos College of Natural Science and Oceanography NSU Mathematics Colloquium Series November 28, 2016

Upload: others

Post on 22-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mathematical Relativity and the Nature of the Universe

Mathematical Relativity and the Nature of the Universe

Priscila Reyes

Advisor: Dr. Vehbi Emrah Paksoy

Department of Mathematics

Halmos College of Natural Science and Oceanography

NSU Mathematics Colloquium Series

November 28, 2016

Page 2: Mathematical Relativity and the Nature of the Universe

Brief Introduction to Mathematical Background

Page 3: Mathematical Relativity and the Nature of the Universe

Tensor Algebra

โ€ข Let ๐‘‰ = < ๐‘’1, โ€ฆ , ๐‘’๐‘› > be a vector space with dual ๐‘‰ โˆ—=< ๐‘’1, โ€ฆ , ๐‘’๐‘› >โ€ข Where ๐‘‰ โŠ— ๐‘‰ =< ๐‘’๐‘– โŠ—๐‘’๐‘— | 1 โ‰ค ๐‘– โ‰ค ๐‘— โ‰ค ๐‘› >

โ€ข Then ๐‘‡๐‘ ๐‘Ÿ ๐‘‰ is all possible tensors by

๐‘‡๐‘ ๐‘Ÿ ๐‘‰ = ๐‘‰ โŠ— ๐‘‰โŠ—โ‹ฏ๐‘‰โŠ—๐‘‰

โˆ—โŠ—๐‘‰

โˆ—โŠ—โ‹ฏโŠ—๐‘‰

โˆ—

r times s times

โ€ข ๐‘‡๐‘ ๐‘Ÿ ๐‘‰ is also known as an ๐‘Ÿ, ๐‘  โˆ’ tensor

Page 4: Mathematical Relativity and the Nature of the Universe

Lorentz Spaces

โ€ข Let (๐‘‰, ๐‘”) be an inner product space. If I=1, then (๐‘‰, ๐‘”) is a Lorentz space

โ€ข Ex. ๐‘น4, ๐‘” =

1 0 0 00 1 0 00 0 1 00 0 0 โˆ’1

Define

โ€ข V - a vector space

โ€ข g - an inner product on V

โ€ข I - the number of negative eigenvalues of g

Page 5: Mathematical Relativity and the Nature of the Universe

Causal Character

Page 6: Mathematical Relativity and the Nature of the Universe

Space-like, Light-like, and Time-like

โ€ข Let (๐‘‰, ๐‘”) be a Lorentzian manifold of dimension n

โ€ข A vector v in ๐‘‰ is calledโ€ข Space-like if ๐‘”(๐’—, ๐’—) > 0โ€ข Time-like if ๐‘” ๐’—, ๐’— < 0โ€ข Light-like if ๐‘” ๐’—, ๐’— = 0

โ€ข A vector is called causal if they are time-like or light-like

โ€ข A subspace ๐‘Š of ๐‘‰ is calledโ€ข Space-like if all vectors in ๐‘Š are space-like

โ€ข (If it is positive definite)

โ€ข Time-like if it contains a time-like vector

โ€ข Light-like if it has a light-like vector but no time-like vectorsโ€ข (If it is positive semi-definite)

Page 7: Mathematical Relativity and the Nature of the Universe

The Light Cone

โ€ข In the light cone (shown on the right), vectors areโ€ข Space-like if they lie outside of the cones

โ€ข Time-like if they lie inside of the cones

โ€ข Light-like if they lie at the boundaries of the cone

โ€ข Vectors pointing towards the positive z-axis are said to be future-pointing

โ€ข Vectors pointing towards the negative z-axis are said to be past-pointing

โ€ข The point of convergence of the two cones is called the present

โ€ข Events outside of the cones cannot be experienced by an observer

Page 8: Mathematical Relativity and the Nature of the Universe

Reverse Cauchy-Schwarz Inequality

โ€ข Let ๐‘‰ be a Lorentz space and u, v be causal vectors. Then,

|g ๐ฎ, ๐ฏ | โ‰ฅ | ๐’– | ร— | ๐’— |

โ€ข This is due to the properties of the orthogonal complement of a subspace and the properties of causal vectors

โ€ข The triangle inequality also has an equivalent in Lorentz spaces called the wrong-way triangle inequality

โ€ข The relational operator is reversed

Note

โ€ข The Cauchy-Schwarz inequality is๐’– โˆ™ ๐’— โ‰ค | ๐’– | ร— | ๐’— |

โ€ข The triangle inequality is

| ๐’– + ๐’—| โ‰ค ๐’– + | ๐’— |

Page 9: Mathematical Relativity and the Nature of the Universe

The Twin Paradox in Lorentz Spaces

โ€ข Assume that you have two twins, A and B (both aged 21), in a Lorentz space

โ€ข Twin A stays on earth

โ€ข Twin B goes on a rocket at 24

25the speed of light for 7 years and

then returns to earth

โ€ข What should the age of the twins be at twin Bโ€™s return?

Page 10: Mathematical Relativity and the Nature of the Universe

The Twin Paradox in Lorentz Spaces (cont.)

โ€ข The age of twin B in his own proper time is 21+7+7=35 years

โ€ข However, because of Lorentz contraction (which results in time dilation) twin Aโ€™s age has to be calculated as follows:

14

1 โˆ’๐‘ฃ2

๐‘2

=14

1 โˆ’

242

252๐‘2

๐‘2

=14

252 โˆ’ 242

252

=14ร—25

(25โˆ’24)(25+24)=

14โˆ—25

7= 50

Thus, the age of twin A is 21+50=71

7 years

7 years

Trajectory in

time of twin ATrajectory in

time of twin B

Page 11: Mathematical Relativity and the Nature of the Universe

Observers

Page 12: Mathematical Relativity and the Nature of the Universe

Definition of an Observer

โ€ข An observer is a future-pointing time-like curve ๐›พ(๐œ) such that ๐‘” ๐›พโˆ—, ๐›พโˆ— = โˆ’1

โ€ข ๐›พ: ๐ผโ†’M

โ€ข The image of ๐›พ is world line

โ€ข The world line is essentially the history of an observer

โ€ข ๐œ is proper time

โ€ข An observer is said to be free-falling if itโ€™s a geodesic

โ€ข A geodesic is the equivalent of a straight line in a manifold

Page 13: Mathematical Relativity and the Nature of the Universe

Spacetimes

Page 14: Mathematical Relativity and the Nature of the Universe

Background for the Orientability of a Spacetime:Differential Forms

โ€ข Let M be a manifold of dimension n and let ๐‘ โˆˆ ๐‘€โ€ข Note that ๐‘‡๐‘

โˆ—=< ๐‘‘๐‘ฅ1 , โ€ฆ , ๐‘‘๐‘ฅ๐‘› >, the tangent space of the dual of M at point

p

โ€ข ๐‘‘๐‘ฅ๐‘– are 1-forms

โ€ข ๐‘‘๐‘ฅ๐‘– โˆง ๐‘‘๐‘ฅ๐‘— = 1

2(๐‘‘๐‘ฅ๐‘– โŠ—๐‘‘๐‘ฅ๐‘— โˆ’ ๐‘‘๐‘ฅ๐‘— โŠ—๐‘‘๐‘ฅ๐‘–) is a 2-form

โ€ข Then, in general, ๐‘ค = ๐‘ค๐‘–1, โ€ฆ ๐‘–๐‘˜๐‘‘๐‘ฅ๐‘–1 โˆง โ‹ฏโˆง ๐‘‘๐‘ฅ๐‘–๐‘˜ is a k-form, where

1 โ‰ค ๐‘–, ๐‘–2 < โ‹ฏ < ๐‘–๐‘› โ‰ค ๐‘›

Page 15: Mathematical Relativity and the Nature of the Universe

Requirements for the Orientability and Time-Orientability of a Spacetime

โ€ข A manifold M is orientable if it has a nowhere vanishing n-form

โ€ข A Lorentzian manifold M is time-oriented if there exists a causal vector field X

โ‡’ X is time-like or light-like

โ€ข X is time-like if X(p) is time-like

โ€ข X is light-like if X(p) is light-like

Page 16: Mathematical Relativity and the Nature of the Universe

Definition of a Spacetime

โ€ข A spacetime is a 4-dimensional Lorentzian manifold (๐‘€, ๐‘”, ๐›ป) which is connected, oriented, and time oriented together with a Levi-Civita connectionโ€ข The covariant derivative ๐›ป is an affine

connection and it determines the curvature of the spacetime as well as its geodesics

โ€ข In particular, Christoffel symbols, denoted ฮ“๐‘–๐‘—๐‘˜

are included in the Levi-Civita connection and physically represent how much an object deviates from being flat

โ€ข Interesting spacetimes are solutions to Einsteinโ€™s Field Equations (EFE)

Page 17: Mathematical Relativity and the Nature of the Universe

The Shape and Composition of a Spacetime

โ€ข The Riemann curvature R is a particular (0,4)-tensor

โ€ข If R=0, the spacetime is said to be flat

โ€ข The Ricci tensor Ric is a particular (2,0) symmetric tensor

โ€ข If Ric = 0, the spacetime is said to be Ricci-flat

โ€ข A Ricci-flat spacetime represents a vacuum (there is no matter present)

โ€ข The scalar curvature of a spacetime S is the trace of the Ricci tensor

โ€ข The Einstein tensor ๐บ = ๐‘…๐‘–๐‘ โˆ’1

2๐‘†๐‘” is a (2,0)-tensor

โ€ข The Einstein tensor expresses the curvature of the spacetime

Page 18: Mathematical Relativity and the Nature of the Universe

Minkowski Spacetime

โ€ข ๐‘€ = โ„4

โ€ข g = ๐‘‘๐‘ฅ โŠ— ๐‘‘๐‘ฅ + ๐‘‘๐‘ฆ โŠ— ๐‘‘๐‘ฆ + ๐‘‘๐‘ง โŠ—dz โˆ’ dt โŠ— ๐‘‘๐‘ก

=

1 0 0 00 1 0 00 0 1 00 0 0 โˆ’1

โ€ข ๐›ปโˆ‚๐‘–

โˆ‚๐‘—= 0

โ‡’ Minkowski spaces model flat spacetime

โ‡’ Represent no gravitation

โ€ข Oriented by ฮฉ = ๐‘‘๐‘ฅ โˆง ๐‘‘๐‘ฆ โˆง ๐‘‘๐‘ง โˆง ๐‘‘๐‘ก

โ€ข Time-oriented by โˆ‚t =โˆ‚โˆ‚t

โ€ข Note that g(โˆ‚t, โˆ‚t) = -1

โ€ข Both flat and Ricci-flat

Page 19: Mathematical Relativity and the Nature of the Universe

Einstein-deSitter Spacetime

โ€ข ๐‘€ = โ„3 ร— (0,โˆž)

โ€ข g = ๐‘ก4

3(๐‘‘๐‘ฅ โŠ— ๐‘‘๐‘ฅ + ๐‘‘๐‘ฆ โŠ— ๐‘‘๐‘ฆ +๐‘‘๐‘ง โŠ— dz) โˆ’ dt โŠ— ๐‘‘๐‘ก

=

๐‘ก4

3 0 0 0

0 ๐‘ก4

3 0 0

0 0 ๐‘ก4

3 00 0 0 โˆ’1

โ€ข Oriented by ฮฉ = ๐‘‘๐‘ฅ โˆง ๐‘‘๐‘ฆ โˆง ๐‘‘๐‘ง โˆง ๐‘‘๐‘ก

โ€ข Time-oriented by โˆ‚t

โ€ข Not flat, but Ricci-flat

Page 20: Mathematical Relativity and the Nature of the Universe

Schwarzchild Spacetime

โ€ข ๐‘“ ๐‘Ÿ = 1 โˆ’๐‘Ÿ๐‘ 

๐‘Ÿ, ๐‘Ÿ๐‘  > 0

(0, ๐‘Ÿ๐‘ ) (๐‘Ÿ๐‘ , โˆž)

โ€ข ๐‘€ = (๐‘Ÿ๐‘ , โˆž) ร— ๐‘†2 ร— (0,โˆž)

r (๐œƒ, ๐œ™) t

0 โ‰ค ๐œƒ < ๐œ‹0 โ‰ค ๐œ™ < 2๐œ‹

โ€ข Oriented by ฮฉ = ๐‘‘๐‘Ÿ โˆง ๐‘‘๐œƒ โˆง ๐‘‘๐œ™ โˆง ๐‘‘๐‘ก

โ€ข Time-oriented by โˆ‚tโ€ข Represents an uncharged, static

black hole

โ€ข Not flat, but Ricci-flat

Page 21: Mathematical Relativity and the Nature of the Universe

The Schwarzchild Metric

โ€ข g = 1 โˆ’๐‘Ÿ๐‘ 

๐‘Ÿ

โˆ’1๐‘‘๐‘Ÿ โŠ— ๐‘‘๐‘Ÿ + +๐‘Ÿ2๐‘‘๐œƒโจ‚๐‘‘๐œƒ + ๐‘Ÿ2๐‘ ๐‘–๐‘›2๐œƒ๐‘‘๐œ™ โŠ— ๐‘‘๐œ™ โˆ’

1 โˆ’๐‘Ÿ๐‘ 

๐‘Ÿ๐‘‘๐‘ก โŠ— ๐‘‘๐‘ก

=

1 โˆ’๐‘Ÿ๐‘ 

๐‘Ÿ

โˆ’10 0 0

0 ๐‘Ÿ2 0 00 0 ๐‘Ÿ2๐‘ ๐‘–๐‘›2๐œƒ 0

0 0 0 โˆ’ 1 โˆ’๐‘Ÿ๐‘ 

๐‘Ÿ

Page 22: Mathematical Relativity and the Nature of the Universe

The Schwarzchild Radius

โ€ข Letโ€™s look at an observer in proper time in this spacetime:

๐›พ t = r ๐œ , ฮธ ๐œ , ๐œ™ ๐œ , ๐‘ก ๐œ = (๐›พ1, ๐›พ2, ๐›พ3, ๐›พ4)๐‘‘2๐›พ๐‘–

๐‘‘๐œ2= โˆ’ฮ“๐‘—๐‘˜

๐‘– ๐‘‘๐›พ๐‘—

๐‘‘๐œ

๐‘‘๐›พ๐‘˜

๐‘‘๐œ

โ€ข Then, the radial acceleration ๐‘‘2๐‘Ÿ

๐‘‘๐œ2= โˆ’ฮ“๐‘ก๐‘ก

๐‘Ÿ (๐‘‘๐‘ก

๐‘‘๐œ)2

โ‡’๐‘‘2๐‘Ÿ

๐‘‘๐œ2= โˆ’

1

2(1 โˆ’

๐‘Ÿ๐‘ 

๐‘Ÿ)(

๐‘Ÿ๐‘ 

๐‘Ÿ2)(๐‘‘๐‘ก

๐‘‘๐œ)2

Page 23: Mathematical Relativity and the Nature of the Universe

The Schwarzchild Radius (cont.)

โ€ข At rest, we have ๐‘‘๐‘Ÿ

๐‘‘๐œ=

๐‘‘๐œƒ

๐‘‘๐œ=

๐‘‘๐œ™

๐‘‘๐œ= 0

โ‡’ ๐›พโˆ— = 0,0,0,๐‘‘๐‘ก

๐‘‘๐œ= 0 โˆ‚๐‘Ÿ + 0 โˆ‚๐œƒ + 0 โˆ‚๐œ™ +

๐‘‘๐‘ก

๐‘‘๐œโˆ‚๐‘ก

โ€ข g(๐›พโˆ—, ๐›พโˆ—) = โˆ’1

โ‡’ โˆ’1 =๐‘‘๐‘ก

๐‘‘๐œ

2(โˆ’(1 โˆ’

๐‘Ÿ๐‘ 

๐‘Ÿ))

โ€ข๐‘‘2๐‘Ÿ

๐‘‘๐œ2=

โˆ’๐‘Ÿ๐‘ 

2๐‘Ÿ2

Page 24: Mathematical Relativity and the Nature of the Universe

The Schwarzchild Radius (cont.)

โ€ข๐‘‘2๐‘Ÿ

๐‘‘๐œ2=

โˆ’๐บ๐‘€

๐‘Ÿ2=

โˆ’๐‘Ÿ๐‘ 

2๐‘Ÿ2

โ€ข โ‡’๐‘Ÿ๐‘  = 2๐บ๐‘€ = The Schwarzchild radius

Note:

โ€ข ๐‘” ๐’“ =โˆ’๐บ๐‘€

๐‘Ÿ2๐’“

โ€ข F=mg(r)

Page 25: Mathematical Relativity and the Nature of the Universe

Physical Description of the Schwarzchild Radius

โ€ข The Schwarzchild radius is the event horizon of a black hole

โ€ข GM(sun) = 1.5km

โ€ข GM(earth) = 4.5mm

โ€ข If the radius of either the sun or the earth were to shrink to these sizes while keeping their original masses, they would become black holes!

Page 26: Mathematical Relativity and the Nature of the Universe

Kerr Spacetime

โ€ข g =

๐ด

๐ต0 0 0

0 ๐ด 0 0

0 0 ๐ฟ๐‘ ๐‘–๐‘›2๐œƒโˆ’2๐บ๐‘š๐‘Ÿ๐‘Ž๐‘ ๐‘–๐‘›2๐œƒ

๐ด

0 0โˆ’2๐บ๐‘š๐‘Ÿ๐‘Ž๐‘ ๐‘–๐‘›2๐œƒ

๐ดโˆ’(1 โˆ’

2๐บ๐‘š๐‘Ÿ

๐ด)

โ€ข ๐ด = ๐‘Ÿ2 + ๐‘Ž2๐‘๐‘œ๐‘ 2๐œƒ

โ€ข ๐ต = ๐‘Ÿ2 โˆ’ 2๐บ๐‘š๐‘Ÿ + ๐‘Ž2

โ€ข ๐ฟ = ๐‘Ÿ2 + ๐‘Ž2 +2๐บ๐‘š๐‘Ÿ๐‘Ž๐‘ ๐‘–๐‘›2๐œƒ

๐ด

โ€ข This is the metric given in Boyer-Lindquist coordinatesโ€ข Many others exist

โ€ข ๐ด > 2๐บ๐‘š๐‘Ÿ

โ€ข ๐ต > 0

โ€ข Conditions above imposed to have well-defined time direction

โ€ข ๐‘Ÿ, ๐œƒ, ๐œ™ are spherical coordinates and t is time

โ€ข Represents the history outside of an uncharged, rotating black hole with mass m and angular momentum per unit mass a

โ€ข Note that when a equals 0 , this actually collapses to Schwarzchild spacetime

โ€ข Kerr spacetime is not flat, but it is Ricci-flat

Page 27: Mathematical Relativity and the Nature of the Universe

Kerr Spacetime (cont.)

โ€ข What if a > Gm?โ€ข This is physically impossible. The black hole will spit out matter.

โ€ข What if a < Gm?โ€ข Let B=0

โ€ข โ‡’ ๐‘Ÿ2 โˆ’ 2๐บ๐‘š๐‘Ÿ + ๐‘Ž2 = 0

โ€ข Use quadratic formula to find

๐‘Ÿ ยฑ=๐บ๐‘š ยฑ 4(๐บ2๐‘š2 โˆ’ ๐‘Ž2)

2= ๐บ๐‘š ยฑ ๐บ2๐‘š2 โˆ’ ๐‘Ž2

โ€ข ๐‘Ÿ+ is the event horizon

โ€ข If ๐‘Ÿ < ๐‘Ÿ+, there is no coming back

Page 28: Mathematical Relativity and the Nature of the Universe

Kerr Spacetime (Singularity)

โ€ข At A=0, we have

๐‘Ÿ2 + ๐‘Ž2๐‘๐‘œ๐‘ 2๐œƒ = 0

r = 0 ๐œƒ =๐œ‹

2

โ€ข This represents the singularity of the black holeโ€ข It cannot be seen by an observer

โ€ข It has no future

โ€ข This is known as cosmic censorship

With a choice of spherical

coordinates, this is a circle

๐‘ฅ2 + ๐‘ฆ2 = ๐‘Ž2

at z = 0

r=0

๐œƒ=๐œ‹/2๐‘Ÿ+

Page 29: Mathematical Relativity and the Nature of the Universe

Kerr Limit of Stationarity

โ€ข If ๐ด < 2๐บ๐‘š๐‘Ÿ, t stops representing the time dimension and r becomes the time dimension in its place

โ€ข This is because in this case the sign of ๐‘‘๐‘ก โŠ— ๐‘‘๐‘ก will stop being negative

โ€ข This implies that we are not modeling a stationary object anymore, and it does change with time

Page 30: Mathematical Relativity and the Nature of the Universe

Kerr Limit of Stationarity (cont.)

โ€ข If ๐ด < 2๐บ๐‘š๐‘Ÿ, ๐‘Ÿ = ๐‘Ÿ๐‘ ๐‘ก๐‘Ž๐‘ก is the surface and ๐‘Ÿ๐‘ ๐‘ก๐‘Ž๐‘ก is the limit of stationarity

โ€ข It Is the largest solution of A=2Gmr

โ‡’ ๐‘Ÿ2 + ๐‘Ž2๐‘๐‘œ๐‘ 2๐œƒ = 2๐บ๐‘š๐‘Ÿ

โ‡’ ๐‘Ÿ2 โˆ’ 2๐บ๐‘š๐‘Ÿ + +๐‘Ž2๐‘๐‘œ๐‘ 2๐œƒ = 0 (Use quadratic formula)

โ‡’ ๐‘Ÿ๐‘ ๐‘ก๐‘Ž๐‘ก = ๐บ๐‘š + ๐บ2๐‘š2 โˆ’ ๐‘Ž2๐‘๐‘œ๐‘ 2๐œƒ > ๐บ๐‘š + ๐บ2๐‘š2 โˆ’ ๐‘Ž2 = ๐‘Ÿ+โ€ข The surface between ๐‘Ÿ+ and ๐‘Ÿ๐‘ ๐‘ก๐‘Ž๐‘ก is known as the ergosphere

Page 31: Mathematical Relativity and the Nature of the Universe
Page 32: Mathematical Relativity and the Nature of the Universe

Einstein Field Equation

Page 33: Mathematical Relativity and the Nature of the Universe

Statement of Einstein Field Equation

โ€ข The Einstein field equation is actually a set of equations that can be collapsed into one

โ€ข Let ๐‘€,โ„ณ, ๐น be a relativistic model. Let T and E be stress-energy tensors of โ„ณ and ๐น, respectively

โ€ข โ„ณ is a matter model

โ€ข F is the electro-magnetic field

โ€ข Then, ๐‘€,โ„ณ,๐น obeys the Einstein Field Equation if๐บ + ฮ›๐‘” = ๐‘‡ + ๐ธ

Geometry (notice G - the Einstein

tensor)

Matter, energy, and

electromagnetism

Page 34: Mathematical Relativity and the Nature of the Universe

Statement of Einstein Field Equation

โ€ข ๐บ + ฮ›๐‘” = ๐‘‡ + ๐ธโ€ข Implies that the geometry of spacetime determines matter, energy, and

electromagnetism and vice-versa

โ€ข ฮ› is the cosmological constant

Page 35: Mathematical Relativity and the Nature of the Universe

History of the Cosmological Constant

โ€ข Originally, Einstein included ฮ› because the universe was thought to be static

โ€ข Between 1929 and 1989, the equation was simplified to be

๐บ = ๐‘‡ + ๐ธ

โ€ข ฮ› was not needed anymore due to the discovery of the expanding universe

โ€ข Currently, we have added back ฮ› to account for dark matter and dark energy

โ€ข Energy density in a vacuum implies the existence of dark energy

โ€ข However, in a paper published on November 7, 2016 by Erik P. Verlinde, the concept of dark matter is challenged

โ€ข Verlinde renders it unnecessary as he explains that gravity may be an emergent phenomenon due to vacuum entanglements

Page 36: Mathematical Relativity and the Nature of the Universe

โ€ข Sachs, R. K., & Wu, H. (1977). General relativity for mathematicians. New York: Springer-Verlag.

โ€ข Verlinde, E. P., (2016). Emergent gravity and the dark universe

โ€ข Images:

โ€ข https://commons.wikimedia.org/wiki/File:Eddington_A._Space_Time_and_Gravitation._Fig._4.jpg

โ€ข https://commons.wikimedia.org/wiki/File:World_line.svg

โ€ข https://commons.wikimedia.org/wiki/File:Light-clock.png

โ€ข https://commons.wikimedia.org/wiki/File:Gravity_well_plot.svg

โ€ข https://commons.wikimedia.org/wiki/File:Spacetime_lattice_analogy.svg

โ€ข https://commons.wikimedia.org/wiki/File:Schematic_Kerr_Black_Hole.jpg

โ€ข https://commons.wikimedia.org/wiki/File:Albert_Einstein_Head.jpg

Page 37: Mathematical Relativity and the Nature of the Universe

Thank you for listening!