mathematics-2015 class-xii -...

22
MATHEMATICS-2015 Class-XII Section โ€“ A Q. 1. Write the value of โˆ†= + + + โˆ’ โˆ’ โˆ’ Sol. โˆ†= + + + โˆ’3 โˆ’3 โˆ’3 = + + + + + + โˆ’3 โˆ’3 โˆ’3 โ†’ + Taking common + + and โ€“ 3 from R 1 and R 3 respectively = โˆ’3 + + 1 1 1 1 1 1 =0 โˆต Q. 2. Write sum of the order and degree of the following differential equation : = Sol. Order =2 Degree =1 โˆด Sum = 2 + 1 = Q. 3. Write the integrating factor of the following differential equation : + + โˆ’ = Sol. 1+ 2 + 2 โˆ’ cot =0 2 โˆ’ cot = โˆ’1+ 2 2 โˆ’ cot = โˆ’1+ 2 2 โˆ’1+ 2 + cot 1+ 2 = + 2 1+ 2 = cot 1+ 2 Comparing with +P =Q P= 2 1+ 2 , Q= โˆ’cot 1+ 2 Integrating factor I. F. = P

Upload: lydiep

Post on 02-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

MATHEMATICS-2015 Class-XII

Section โ€“ A

Q. 1. Write the value of โˆ†= ๐’™ + ๐’š ๐’š + ๐’› ๐’› + ๐’™

๐’› ๐’™ ๐’šโˆ’๐Ÿ‘ โˆ’๐Ÿ‘ โˆ’๐Ÿ‘

Sol.

โˆ†= ๐‘ฅ + ๐‘ฆ ๐‘ฆ + ๐‘ง ๐‘ง + ๐‘ฅ

๐‘ง ๐‘ฅ ๐‘ฆโˆ’3 โˆ’3 โˆ’3

= ๐‘ฅ + ๐‘ฆ + ๐‘ง ๐‘ฅ + ๐‘ฆ + ๐‘ง ๐‘ฅ + ๐‘ฆ + ๐‘ง

๐‘ง ๐‘ฅ ๐‘ฆโˆ’3 โˆ’3 โˆ’3

๐€๐ฉ๐ฉ๐ฅ๐ฒ๐ข๐ง๐  ๐‘๐Ÿ โ†’ ๐‘๐Ÿ + ๐‘๐Ÿ

Taking common ๐‘ฅ + ๐‘ฆ + ๐‘ง and โ€“ 3 from R1 and R3 respectively

= โˆ’3 ๐‘ฅ + ๐‘ฆ + ๐‘ง 1 1 1๐‘ง ๐‘ฅ ๐‘ฆ1 1 1

= 0

โˆต ๐‘๐Ÿ๐š๐ง๐ ๐‘๐Ÿ‘ ๐š๐ซ๐ž ๐ข๐๐ž๐ง๐ญ๐ข๐œ๐š๐ฅ

Q. 2. Write sum of the order and degree of the following differential equation :

๐’…

๐’…๐’™

๐’…๐’š

๐’…๐’™

๐Ÿ‘ = ๐ŸŽ

Sol. Order = 2 Degree = 1 โˆด Sum = 2 + 1 = ๐Ÿ‘

Q. 3. Write the integrating factor of the following differential equation :

๐Ÿ + ๐’š๐Ÿ + ๐Ÿ๐’™๐’š โˆ’ ๐œ๐จ๐ญ ๐’š ๐’…๐’š

๐’…๐’™= ๐ŸŽ

Sol.

1 + ๐‘ฆ2 + 2๐‘ฅ๐‘ฆ โˆ’ cot ๐‘ฆ ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 0

2๐‘ฅ๐‘ฆ โˆ’ cot ๐‘ฆ ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= โˆ’ 1 + ๐‘ฆ2

2๐‘ฅ๐‘ฆ โˆ’ cot ๐‘ฆ = โˆ’ 1 + ๐‘ฆ2 ๐‘‘๐‘ฅ

๐‘‘๐‘ฆ

2๐‘ฅ๐‘ฆ

โˆ’ 1+๐‘ฆ2 +

cot ๐‘ฆ

1+๐‘ฆ2=

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ+

2๐‘ฅ๐‘ฆ

1+๐‘ฆ2=

cot ๐‘ฆ

1+๐‘ฆ2

Comparing with ๐‘‘๐‘ฅ

๐‘‘๐‘ฆ+ P๐‘ฅ = Q

P =2๐‘ฆ

1+๐‘ฆ2, Q =

โˆ’cot ๐‘ฆ

1+๐‘ฆ2

Integrating factor I. F. = ๐‘’ P ๐‘‘๐‘ฆ

= ๐‘’

2๐‘ฆ

1+๐‘ฆ2๐‘‘๐‘ฆ

= ๐‘’ ๐‘‘A

A Let A = 1 + ๐‘ฆ2 , ๐‘‘A = 2๐‘ฆ ๐‘‘๐‘ฆ

= ๐‘’ log A

= ๐€ = ๐Ÿ + ๐’š๐Ÿ

Q. 4. If ๐’‚ , ๐’ƒ and ๐’„ are mutually perpendicular unit vectors, then find the value of

๐Ÿ๐’‚ + ๐’ƒ + ๐’„ .

Sol.

๐‘Ž , ๐‘ and ๐‘ are mutually perpendicular unit vectors,

๐‘Ž . ๐‘ = 0, ๐‘Ž = ๐‘ = ๐‘ = 1 โ€ฆ (๐‘–)

๐‘ . ๐‘ = 0, ๐‘ . ๐‘Ž = 0

2๐‘Ž + ๐‘ + ๐‘ 2

= 2๐‘Ž + ๐‘ + ๐‘ 2

= 2๐‘Ž + ๐‘ + ๐‘ . 2๐‘Ž + ๐‘ + ๐‘

= 4๐‘Ž 2 + 2๐‘Ž ๐‘ + 2๐‘Ž ๐‘ + 2๐‘ ๐‘Ž + ๐‘ 2 + ๐‘ ๐‘ + 2๐‘ ๐‘Ž + ๐‘ ๐‘ + ๐‘ 2

= 4 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 From (i)

and

๐‘Ž 2 = ๐‘Ž 2 = 12 = 1

๐‘ 2 = ๐‘ 2

= 1

๐‘ 2 = ๐‘ 2 = 1

= 6 2๐‘Ž + ๐‘ + ๐‘ = ๐Ÿ” (squaring root on both sides)

Q. 5. Write a unit vector perpendicular to both the vectors ๐’‚ = ๐’Š + ๐’‹ + ๐’Œ and ๐’ƒ = ๐’Š + ๐’‹ . Sol.

๐‘Ž ร— ๐‘ = ๐‘– ๐‘— ๐‘˜

1 1 11 1 0

= ๐‘– โˆ’1 โˆ’ ๐‘— โˆ’1 + ๐‘˜ 0 = โˆ’๐‘– + ๐‘—

๐‘Ž ร— ๐‘ = โˆ’1 2 + 1 2 = 2

A unit vector โŠฅ to both ๐‘Ž and ๐‘ =๐‘Ž ร—๐‘

๐‘Ž ร—๐‘

=โˆ’๐‘– +๐‘—

2=

โˆ’๐Ÿ

๐Ÿ๐’Š +

๐Ÿ

๐Ÿ๐’‹

Q. 6. The equation of a line are ๐Ÿ“๐’™ โˆ’ ๐Ÿ‘ = ๐Ÿ๐Ÿ“๐’š + ๐Ÿ• = ๐Ÿ‘ โˆ’ ๐Ÿ๐ŸŽ๐’›. Write the direction cosines

of the line. Sol. 5๐‘ฅ โˆ’ 3 = 15๐‘ฆ + 7 = 3 โˆ’ 10๐‘ง

5 ๐‘ฅ โˆ’3

5 = 15 ๐‘ฆ +

7

15 = โˆ’10 ๐‘ง โˆ’

3

10 [LCM of 5,10,15 is 30

Dividing throughout by 30, we have

5 ๐‘ฅโˆ’

3

5

306=

15 ๐‘ฆ+7

15

302=

โˆ’10 ๐‘งโˆ’3

10

303

Direction ratios of given line are 6,2, โˆ’3 ๐‘Ž = 6, ๐‘ = 2, ๐‘ = โˆ’3

๐‘Ž2 + ๐‘2 + ๐‘2 = 62 + 22 + โˆ’3 2 = 7 Direction cosines are

๐‘™ =๐‘Ž

๐‘Ž2+๐‘2+๐‘2 ๐‘š =

๐‘

๐‘Ž2+๐‘2+๐‘2 ๐‘› =

๐‘

๐‘Ž2+๐‘2+๐‘2

=๐Ÿ”

๐Ÿ• =

๐Ÿ

๐Ÿ• =

โˆ’๐Ÿ‘

๐Ÿ•

Section โ€“ B Q. 7. To promote the making of toilets for women, an organisation tried to generate

awareness though (๐’Š) House call, (๐’Š๐’Š) letters and (๐’Š๐’Š๐’Š) announcements. The cost of each mode per attempt is given below : (๐’Š) Rs. 50 (๐’Š๐’Š) Rs. 20 (๐’Š๐’Š๐’Š) Rs. 40 The number of attempts made in tree villages ๐—, ๐˜ and ๐™ are given below :

(๐’Š) (๐’Š๐’Š) (๐’Š๐’Š๐’Š)

๐— ๐Ÿ’๐ŸŽ๐ŸŽ ๐Ÿ‘๐ŸŽ๐ŸŽ ๐Ÿ๐ŸŽ๐ŸŽ ๐˜ ๐Ÿ‘๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ“๐ŸŽ ๐Ÿ•๐Ÿ“ ๐™ ๐Ÿ“๐ŸŽ๐ŸŽ ๐Ÿ’๐ŸŽ๐ŸŽ ๐Ÿ๐Ÿ“๐ŸŽ

Find the total cost incurred by the organisation for the three villages separately, using

matrices.

Write one value generated by the organisation in the society.

Sol.

The number of attempt made in 3 villages X, Y, Z is written in Row matrix

400 300 100300 250 75500 400 150

The cost for each mode per attempt (in column matrix)

502040

Total cost = 400 300 100300 250 75500 400 150

502040

= 20000 + 6000 + 400015000 + 5000 + 300025000 + 8000 + 6000

= 300002300039000

Total cost incurred by the organization for village X = Rs. 30,000

Total cost incurred by the organization for village Y = Rs. 23,000

Total cost incurred by the organization for village Z = Rs. 39,000

Value generated by the organisation :

1. Prevention is better than cure so cleanliness leads to better quality of life (healthy life) It will help to avoid various diseases.

2. Concern for safety of women.

Q. 8. Solve for ๐’™ โˆถ ๐ญ๐š๐งโˆ’๐Ÿ ๐’™ + ๐Ÿ + ๐ญ๐š๐งโˆ’๐Ÿ ๐’™ โˆ’ ๐Ÿ = ๐ญ๐š๐งโˆ’๐Ÿ ๐Ÿ–

๐Ÿ‘๐Ÿ

Sol.

tanโˆ’1 ๐‘ฅ + 1 + tanโˆ’1 ๐‘ฅ โˆ’ 1 = tanโˆ’1 8

31

tanโˆ’1 ๐‘ฅ+1 + ๐‘ฅโˆ’1

1โˆ’ ๐‘ฅ+1 ๐‘ฅโˆ’1 = tanโˆ’1 8

31

โˆต ๐ญ๐š๐งโˆ’๐Ÿ ๐€ + ๐ญ๐š๐งโˆ’๐Ÿ ๐ = ๐ญ๐š๐งโˆ’๐Ÿ ๐€+๐

๐Ÿโˆ’๐€๐

2๐‘ฅ

1โˆ’ ๐‘ฅ2โˆ’1 =

8

31

62๐‘ฅ = 8 2 โˆ’ ๐‘ฅ2 62๐‘ฅ = 16 โˆ’ 8๐‘ฅ2 8๐‘ฅ2 + 62๐‘ฅ โˆ’ 16 = 0 4๐‘ฅ2 + 31๐‘ฅ โˆ’ 8 = 0 (Dividing by 2) 4๐‘ฅ2 + 32๐‘ฅ โˆ’ ๐‘ฅ โˆ’ 8 = 0 4๐‘ฅ ๐‘ฅ + 8 โˆ’ 1 ๐‘ฅ + 8 = 0 ๐‘ฅ + 8 4๐‘ฅ โˆ’ 1 = 0 ๐‘ฅ + 8 = 0 or 4๐‘ฅ โˆ’ 1 = 0

๐‘ฅ = โˆ’8 or ๐‘ฅ =1

4

Since ๐‘ฅ = โˆ’8 does not satisfy the given equation

โˆด ๐’™ =๐Ÿ

๐Ÿ’

Or Prove the following :

๐œ๐จ๐ญโˆ’๐Ÿ ๐’™๐’š+๐Ÿ

๐’™โˆ’๐’š + ๐œ๐จ๐ญโˆ’๐Ÿ

๐’š๐’›+๐Ÿ

๐’šโˆ’๐’› + ๐œ๐จ๐ญโˆ’๐Ÿ

๐’›๐’™+๐Ÿ

๐’›โˆ’๐’™ = ๐ŸŽ ๐ŸŽ < ๐‘ฅ๐‘ฆ, ๐‘ฆ๐‘ฅ, ๐‘ง๐‘ฅ < 1

Sol. ๐‹. ๐‡. ๐’. =

= cotโˆ’1 ๐‘ฅ๐‘ฆ +1

๐‘ฅโˆ’๐‘ฆ + cotโˆ’1

๐‘ฆ๐‘ง +1

๐‘ฆโˆ’๐‘ง + cotโˆ’1

๐‘ง๐‘ฅ+1

๐‘งโˆ’๐‘ฅ

= tanโˆ’1 ๐‘ฅโˆ’๐‘ฆ

1+๐‘ฅ๐‘ฆ + tanโˆ’1

๐‘ฆโˆ’๐‘ง

1+๐‘ฆ๐‘ง + tanโˆ’1

๐‘งโˆ’๐‘ฅ

1+๐‘ง๐‘ฅ

โˆต cotโˆ’1 ๐‘Ž

๐‘ = tanโˆ’1

๐‘

๐‘Ž

โˆต tanโˆ’1 Aโˆ’B

1+AB = tanโˆ’1 A โˆ’ tanโˆ’1 B

= tanโˆ’1 ๐‘ฅ โˆ’ tanโˆ’1 ๐‘ฆ + tanโˆ’1 ๐‘ฆ โˆ’ tanโˆ’1 ๐‘ง + tanโˆ’1 ๐‘ง โˆ’ tanโˆ’1 ๐‘ฅ = 0 = ๐‘. ๐‡. ๐’.

Q. 9. Using properties of determinants, prove the following :

๐’‚๐Ÿ ๐’ƒ๐’„ ๐’‚๐’„ + ๐’„๐Ÿ

๐’‚๐Ÿ + ๐’‚๐’ƒ ๐’ƒ๐Ÿ ๐’‚๐’„๐’‚๐’ƒ ๐’ƒ๐Ÿ + ๐’ƒ๐’„ ๐’„๐Ÿ

= ๐Ÿ’๐’‚๐Ÿ๐’ƒ๐Ÿ๐’„๐Ÿ.

Sol.

๐‹. ๐‡. ๐’. = ๐‘Ž2 ๐‘๐‘ ๐‘Ž๐‘ + ๐‘2

๐‘Ž2 + ๐‘Ž๐‘ ๐‘2 ๐‘Ž๐‘๐‘Ž๐‘ ๐‘2 + ๐‘๐‘ ๐‘2

Taking common ๐‘Ž, ๐‘, ๐‘ from C1, C2 and C3 respectively

= ๐‘Ž๐‘๐‘ ๐‘Ž ๐‘ ๐‘Ž + ๐‘

๐‘Ž + ๐‘ ๐‘ ๐‘Ž๐‘ ๐‘ + ๐‘ ๐‘

Applying C1 โ†’ C1 โˆ’ C2 โˆ’ C3

= ๐‘Ž๐‘๐‘ โˆ’2๐‘ ๐‘ ๐‘Ž + ๐‘

0 ๐‘ ๐‘Žโˆ’2๐‘ ๐‘ + ๐‘ ๐‘

Taking common โˆ’2๐‘ from C1, we have

= โˆ’2๐‘Ž๐‘๐‘2 1 ๐‘ ๐‘Ž + ๐‘0 ๐‘ ๐‘Ž1 ๐‘ + ๐‘ ๐‘

Applying R3 โ†’ R3 โˆ’ R1

= โˆ’2๐‘Ž๐‘๐‘2 1 ๐‘ ๐‘Ž + ๐‘0 ๐‘ ๐‘Ž0 ๐‘ โˆ’๐‘Ž

Expanding along C1, we have

= โˆ’2๐‘Ž๐‘๐‘2 . 1 โˆ’๐‘Ž๐‘ โˆ’ ๐‘Ž๐‘

= โˆ’2๐‘Ž๐‘๐‘2 โˆ’2๐‘Ž๐‘

= 4๐‘Ž2๐‘2๐‘2 = ๐‘. ๐‡. ๐’.

Q. 10. Find the ad joint of the matrix ๐€ = โˆ’๐Ÿ โˆ’๐Ÿ โˆ’๐Ÿ ๐Ÿ ๐Ÿ โˆ’๐Ÿ ๐Ÿ โˆ’๐Ÿ ๐Ÿ

and hence show that

๐€. ๐’‚๐’…๐’‹ ๐€ = ๐€ ๐ˆ๐Ÿ‘. Sol.

A = โˆ’1 โˆ’2 โˆ’2 2 1 โˆ’2 2 โˆ’2 1

A11 = 1 + 4 = โˆ’3, A12 = โˆ’ 2 + 4 = โˆ’6 A13 = โˆ’4 โˆ’ 2 = โˆ’6, A21 = โˆ’ โˆ’2 โˆ’ 4 = 6 A22 = 1 + 4 = 3, A23 = โˆ’ 2 + 4 = โˆ’6 A31 = 4 + 2 = 6, A32 = โˆ’ 2 + 4 = โˆ’6 A33 = โˆ’1 + 4 = 3

๐‘Ž๐‘‘๐‘— A = โˆ’3 6 6โˆ’6 3 โˆ’6โˆ’6 โˆ’6 3

๐‹. ๐‡. ๐’. = A. ๐‘Ž๐‘‘๐‘— A

= โˆ’1 โˆ’2 โˆ’2 2 1 โˆ’2 2 โˆ’2 1

โˆ’3 6 6โˆ’6 3 โˆ’6โˆ’6 โˆ’6 3

= 3 + 12 + 12 โˆ’6 โˆ’ 6 + 12 โˆ’6 + 12 โˆ’ 6โˆ’6 โˆ’ 6 + 12 12 + 3 + 12 12 โˆ’ 6 โˆ’ 6โˆ’6 + 12 โˆ’ 6 12 โˆ’ 6 โˆ’ 6 12 + 12 + 3

= 27 0 00 27 00 0 27

= 27 1 0 00 1 00 0 1

โ€ฆ (๐‘–)

Expanding along R1of matrix A, A = โˆ’1 1 โˆ’ 4 + 2 2 + 4 โˆ’ 2 โˆ’4 โˆ’ 2 = 3 + 12 + 12 = 27 ๐‘. ๐‡. ๐’. = A I3

= 27 1 0 00 1 00 0 1

โ€ฆ (๐‘–๐‘–)

From โ€ฆ (๐‘–) and โ€ฆ (๐‘–๐‘–) ๐‹. ๐‡. ๐’. = ๐‘. ๐‡. ๐’.

Q. 11. Show that the function ๐’‡ ๐’™ = ๐’™ โˆ’ ๐Ÿ + ๐’™ + ๐Ÿ for all ๐’™ โˆ‰ ๐‘, is not differentiable at

the points ๐’™ = โˆ’๐Ÿ and ๐’™ = ๐Ÿ.

Sol.

๐‘ฅ โˆ’ 1 = โˆ’ ๐‘ฅ โˆ’ 1 , ๐‘ฅ < 1+ ๐‘ฅ โˆ’ 1 , ๐‘ฅ โ‰ฅ 1

๐‘ฅ โˆ’ 1 = โˆ’ ๐‘ฅ โˆ’ 1 , ๐‘ฅ < โˆ’1+ ๐‘ฅ โˆ’ 1 , ๐‘ฅ โ‰ฅ โˆ’1

๐‘“ ๐‘ฅ = โˆ’ ๐‘ฅ โˆ’ 1 โˆ’ ๐‘ฅ + 1 for ๐‘ฅ < โˆ’1 โˆ’ ๐‘ฅ โˆ’ 1 + ๐‘ฅ + 1 for โˆ’ 1 โ‰ค ๐‘ฅ < 1 ๐‘ฅ โˆ’ 1 + ๐‘ฅ + 1 for ๐‘ฅ โ‰ฅ 1

๐‘“ ๐‘ฅ = โˆ’2๐‘ฅ, for ๐‘ฅ < โˆ’1 2, for โˆ’ 1 โ‰ค ๐‘ฅ < 1 2๐‘ฅ for ๐‘ฅ โ‰ฅ 1

๐€๐ญ ๐’™ = โˆ’๐Ÿ

LHD at ๐‘ฅ = โˆ’1 RHD at ๐‘ฅ = โˆ’1

= lim๐‘ฅโ†’โˆ’1โˆ’1๐‘“ ๐‘ฅ โˆ’๐‘“ โˆ’1

๐‘ฅโˆ’ โˆ’1 = lim๐‘ฅโ†’โˆ’1+

๐‘“ ๐‘ฅ โˆ’๐‘“ โˆ’1

๐‘ฅโˆ’ โˆ’1

= lim๐‘ฅโ†’โˆ’1โˆ’โˆ’2๐‘ฅโˆ’2

๐‘ฅโˆ’1 โˆต ๐‘“ โˆ’1 = 2 = lim๐‘ฅโ†’โˆ’1+

2โˆ’2

๐‘ฅโˆ’1

= lim๐‘ฅโ†’โˆ’1โˆ’2 ๐‘ฅโˆ’1

๐‘ฅโˆ’1 = lim๐‘ฅโ†’โˆ’1+ 0

= โˆ’2 = 0

LHD at ๐‘ฅ = โˆ’1 โ‰  RHD at ๐‘ฅ = โˆ’1

So, ๐’‡ ๐’™ is not differentiable at ๐’™ = โˆ’๐Ÿ

๐€๐ญ ๐’™ = โˆ’๐Ÿ

LHD at ๐‘ฅ = 1 RHD at ๐‘ฅ = 1

= lim๐‘ฅโ†’1โˆ’1๐‘“ ๐‘ฅ โˆ’๐‘“ 1

๐‘ฅโˆ’1 = lim๐‘ฅโ†’1+

๐‘“ ๐‘ฅ โˆ’๐‘“ 1

๐‘ฅโˆ’1

= lim๐‘ฅโ†’1โˆ’2โˆ’2

๐‘ฅโˆ’1

at ๐‘ฅ = 1 ๐‘“ ๐‘ฅ = 2๐‘ฅ

๐‘“ 1 = 2

= lim๐‘ฅโ†’1+2๐‘ฅโˆ’2

๐‘ฅโˆ’1

= lim๐‘ฅโ†’1+ 0 = lim๐‘ฅโ†’1โˆ’2 ๐‘ฅโˆ’1

๐‘ฅโˆ’1

= 0 = 2

LHD at ๐‘ฅ = 1 โ‰  RHD at ๐‘ฅ = 1

So, ๐’‡ ๐’™ is not differentiable at ๐’™ = ๐Ÿ

Q. 12. If ๐’š = ๐’†๐’Ž ๐ฌ๐ข๐งโˆ’๐Ÿ ๐’™, then show that ๐Ÿ โˆ’ ๐’™๐Ÿ ๐’…๐Ÿ๐’š

๐’…๐’™๐Ÿ โˆ’ ๐’™๐’…๐’š

๐’…๐’™โˆ’ ๐’Ž๐Ÿ๐’š = ๐ŸŽ.

Sol.

๐‘ฆ = ๐‘’๐‘š sin โˆ’1 ๐‘ฅ โ€ฆ (๐‘–) Differentiating both sides w.r.t. ๐‘ฅ, we get

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐‘’๐‘š sin โˆ’1 ๐‘ฅ .

๐‘š

1โˆ’๐‘ฅ2

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐‘ฆ.

๐‘š

1โˆ’๐‘ฅ2 โ€ฆ (๐‘–๐‘–)

1 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐‘š๐‘ฆ

Again differentiating both sides w.r.t. ๐‘ฅ, we get

1 โˆ’ ๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ 2+

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ.

1

1โˆ’๐‘ฅ22 . โˆ’2๐‘ฅ = ๐‘š๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

1 โˆ’ ๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ 2โˆ’

๐‘ฅ

1โˆ’๐‘ฅ22

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐‘š

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

1โˆ’๐‘ฅ2

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ 2โˆ’๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

1โˆ’๐‘ฅ2= ๐‘š

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

1 โˆ’ ๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ 2โˆ’ ๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐‘š 1 โˆ’ ๐‘ฅ2

๐‘ฆ๐‘š

1โˆ’๐‘ฅ2 [From (ii)]

๐Ÿ โˆ’ ๐’™๐Ÿ ๐’…๐Ÿ๐’š

๐’…๐’™๐Ÿ โˆ’ ๐’™๐’…๐’š

๐’…๐’™= ๐’Ž๐Ÿ๐’š = ๐ŸŽ

Q. 13. If ๐’‡ ๐’™ = ๐’™๐Ÿ + ๐Ÿ; ๐  ๐’™ =๐’™+๐Ÿ

๐’™๐Ÿ+๐Ÿ and ๐’‰ ๐’™ = ๐Ÿ๐’™ โˆ’ ๐Ÿ‘, then find ๐’‡โ€ฒ ๐’‰โ€ฒ ๐ โ€ฒ ๐’™ .

Sol.

g ๐‘ฅ =๐‘ฅ+1

๐‘ฅ2+1

Differentiating both sides w.r.t. ๐‘ฅ, we have

g ๐‘ฅ = ๐‘ฅ2+1 .

๐‘‘

๐‘‘๐‘ฅ ๐‘ฅ+1 โˆ’ ๐‘ฅ+1 .

๐‘‘

๐‘‘๐‘ฅ ๐‘ฅ2+1

๐‘ฅ2+1 2

= ๐‘ฅ2+1 .1โˆ’ ๐‘ฅ+1 .2๐‘ฅ

๐‘ฅ2+1 2

=๐‘ฅ2+1โˆ’2๐‘ฅ2+2๐‘ฅ

๐‘ฅ2+1 2

g ๐‘ฅ =โˆ’๐‘ฅ2โˆ’2๐‘ฅ+1

๐‘ฅ2+1 2

โ„Ž ๐‘ฅ = 2๐‘ฅ โˆ’ 3 Differentiating both sides w.r.t. ๐‘ฅ, we have

โ„Žโ€ฒ ๐‘ฅ = 2

โˆด โ„Žโ€ฒ gโ€ฒ ๐‘ฅ = 2 โ€ฆ (๐‘–) โˆต ๐‹๐ž๐ญ ๐’‰โ€ฒ ๐’™ = ๐Ÿ ๐ญ๐ก๐ž๐ง ๐’‰โ€ฒ ๐Ÿ’ = ๐Ÿ ๐š๐ง๐ ๐’‰โ€ฒ โˆ’๐Ÿ”๐’™ + ๐Ÿ“ = ๐Ÿ

๐‘“ ๐‘ฅ = ๐‘ฅ2 + 1 Differentiating both sides w.r.t. ๐‘ฅ, we have

๐‘“ ๐‘ฅ =1

๐‘ฅ2+1ร— 2๐‘ฅ =

๐‘ฅ

๐‘ฅ2+1

When ๐‘ฅ = 2, ๐‘“ ๐‘ฅ =1

22+1=

2

5

๐‘“โ€ฒ โ„Žโ€ฒ gโ€ฒ ๐‘ฅ =2

5ร—

5

5=

๐Ÿ ๐Ÿ“

๐Ÿ“ [From (i)

Q. 14. Evaluate : ๐Ÿ‘ โˆ’ ๐Ÿ๐’™ . ๐Ÿ + ๐’™ โˆ’ ๐’™๐Ÿ ๐’…๐’™ Sol.

3 โˆ’ 2๐‘ฅ . 2 + ๐‘ฅ โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ

= 2 + 1 โˆ’ 2๐‘ฅ 2 + ๐‘ฅ โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ

= 2 2 + ๐‘ฅ โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ + 1 โˆ’ 2๐‘ฅ 2 + ๐‘ฅ โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ [๐‹๐ž๐ญ ๐’‘ = ๐Ÿ๐’™ โˆ’ ๐’™๐Ÿ, ๐’…๐’‘ = ๐Ÿ โˆ’ ๐Ÿ๐’™ ๐’…๐’™

= 2 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ โˆ’ 2 ๐‘‘๐‘ฅ + ๐‘ ๐‘‘๐‘

= 2 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฅ + 1

2

2โˆ’ 1

4โˆ’ 2 ๐‘‘๐‘ฅ + ๐‘

1

2 ๐‘‘๐‘

= 2 โˆ’ ๐‘ฅ โˆ’1

2

2โˆ’

9

4 ๐‘‘๐‘ฅ + ๐‘

1

2 ๐‘‘๐‘

= 2 3

2

2โˆ’ ๐‘ฅ โˆ’

1

2

2๐‘‘๐‘ฅ + ๐‘

1

2 ๐‘‘๐‘

= 2 ร—1

2 ๐‘ฅ โˆ’

1

2

3

2

2โˆ’ ๐‘ฅ โˆ’

1

2

2+

9

4sinโˆ’1

๐‘ฅโˆ’1

23

2

+2

3๐‘

3

2 + C

โˆต ๐’‚๐Ÿ + ๐’™๐Ÿ ๐’…๐’™ =๐Ÿ

๐Ÿ ๐’™ ๐’‚๐Ÿ + ๐’™๐Ÿ + ๐’‚๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ ๐’™

๐’‚ + ๐‚

= ๐Ÿ๐’™โˆ’๐Ÿ

๐Ÿ ๐Ÿ + ๐’™ + ๐’™๐Ÿ +

๐Ÿ—

๐Ÿ’๐ฌ๐ข๐งโˆ’๐Ÿ

๐Ÿ๐’™โˆ’๐Ÿ

๐Ÿ‘ +

๐Ÿ

๐Ÿ‘ ๐Ÿ + ๐’™ + ๐’™๐Ÿ

๐Ÿ‘

๐Ÿ + ๐‚

Or

Evaluate : ๐’™๐Ÿ+๐’™+๐Ÿ

๐’™๐Ÿ+๐Ÿ ๐’™+๐Ÿ ๐’…๐’™

Sol.

Let ๐‘ฅ2+๐‘ฅ+1

๐‘ฅ+2 ๐‘ฅ2+1 =

A

๐‘ฅ+2+

B๐‘ฅ+C

๐‘ฅ2+1 โ€ฆ ๐‘–

โ‡’ ๐‘ฅ2 + ๐‘ฅ + 1 = A ๐‘ฅ2 + 1 + B๐‘ฅ + C ๐‘ฅ + 2 โ‡’ ๐‘ฅ2 + ๐‘ฅ + 1 = A ๐‘ฅ2 + 1 + B๐‘ฅ ๐‘ฅ + 2 + C ๐‘ฅ + 2 Comparing the coefficients of ๐‘ฅ2 , ๐‘ฅ and constant terms, 1 = A + B 1 = 2B + C 1 = A + 2C 1 โˆ’ B = A 1 โˆ’ 2B = C 1 = 1 โˆ’ B + 2 1 โˆ’ 2B โ€ฆ ๐‘–๐‘– โ€ฆ ๐‘–๐‘–๐‘– [From (ii) and (iii)]

1 โˆ’2

5= A 1 โˆ’ 2

2

5 = C 1 = 1 โˆ’ B + 2 โˆ’ 4B

[From ๐‘–๐‘ฃ] [From ๐‘–๐‘ฃ] 1 โˆ’ 1 โˆ’ 2 = โˆ’5B โˆ’ 2 = โˆ’5B

โˆด A =3

5 C =

1

5 B =

2

5 โ€ฆ (๐‘–๐‘ฃ)

Putting the value of A, B and C in (i), we get

๐‘ฅ2+๐‘ฅ+1

๐‘ฅ+2 ๐‘ฅ2+1 =

3

5

๐‘ฅ+2+

2

5๐‘ฅ+

1

5

๐‘ฅ2+1

โˆด ๐‘ฅ2+๐‘ฅ+1

๐‘ฅ+2 ๐‘ฅ2+1 ๐‘‘๐‘ฅ =

3

5

๐‘‘๐‘ฅ

๐‘ฅ+2+

1

5

2๐‘ฅ

๐‘ฅ2+1๐‘‘๐‘ฅ +

1

5

๐‘‘๐‘ฅ

๐‘ฅ2+1

=3

5

๐‘‘๐‘ฅ

๐‘ฅ+2+

1

5

๐‘‘๐‘

๐‘+

1

5

๐‘‘๐‘ฅ

๐‘ฅ2+1 โ€ฆ

Let ๐‘ = ๐‘ฅ2 + 1โˆด ๐‘‘๐‘ = 2๐‘ฅ ๐‘‘๐‘ฅ

=3

5log ๐‘ฅ + 2 +

1

5log ๐‘ +

1

5tanโˆ’1 ๐‘ฅ + ๐‘

=๐Ÿ‘

๐Ÿ“๐ฅ๐จ๐  ๐’™ + ๐Ÿ +

๐Ÿ

๐Ÿ“๐ฅ๐จ๐  ๐’™๐Ÿ + ๐Ÿ +

๐Ÿ

๐Ÿ“๐ญ๐š๐งโˆ’๐Ÿ ๐’™ + ๐’„

โˆต ๐’‡ ๐’™

๐’‡ ๐’™ ๐’…๐’™ = ๐ฅ๐จ๐  ๐’‡ ๐’™ + ๐’„

Q. 15. Find : ๐’…๐’™

๐œ๐จ๐ฌ๐Ÿ‘ ๐’™ ๐Ÿ ๐ฌ๐ข๐ง ๐Ÿ๐’™

๐…/๐Ÿ’

๐ŸŽ

Sol.

๐‘‘๐‘ฅ

cos 3 ๐‘ฅ 2 sin 2๐‘ฅ

๐œ‹/4

0

= ๐‘‘๐‘ฅ

cos 3 ๐‘ฅ 2.2 tan ๐‘ฅ

1+tan 2 ๐‘ฅ

๐œ‹/4

0 โˆต ๐ฌ๐ข๐ง๐Ÿ๐’™ =

๐Ÿ ๐ญ๐š๐ง ๐’™

๐Ÿ+๐ญ๐š๐ง๐Ÿ ๐’™

= ๐‘‘๐‘ฅ

cos 3 ๐‘ฅ .2 tan ๐‘ฅ

sec 2 ๐‘ฅ

๐œ‹/4

0 โˆต ๐Ÿ + ๐ญ๐š๐ง๐Ÿ ๐’™ = ๐ฌ๐ž๐œ๐Ÿ ๐’™

= ๐‘‘๐‘ฅ

2cos 3 ๐‘ฅ tan ๐‘ฅ .cos ๐‘ฅ

๐œ‹/4

0

=1

2

sec 2 ๐‘ฅ . sec 2 ๐‘ฅ .

tan ๐‘ฅ

๐œ‹/4

0๐‘‘๐‘ฅ =

1

2

1+tan 2 ๐‘ฅ sec 2 ๐‘ฅ ๐‘‘๐‘ฅ

tan ๐‘ฅ

๐œ‹/4

0

=1

2

1+๐‘2

๐‘๐‘‘๐‘

1

0

๐‹๐ž๐ญ ๐’‘ = ๐ญ๐š๐ง๐’™

๐’…๐’‘ = ๐ฌ๐ž๐œ๐Ÿ ๐’™ ๐’…๐’™ ๐–๐ก๐ž๐ง ๐’™ = ๐…/๐Ÿ’, ๐’‘ = ๐Ÿ๐–๐ก๐ž๐ง ๐’™ = ๐ŸŽ, ๐’‘ = ๐ŸŽ

=1

2

1

๐‘+

๐‘2

๐‘ ๐‘‘๐‘

1

0

=1

2 ๐‘โˆ’

1

2 + ๐‘3

2 ๐‘‘๐‘1

0=

1

2

2

1๐‘1/2 +

2

5๐‘5/2

0

1

=1

2 2 1 1/2 +

2

5 1 5/2 โˆ’

1

2 2 0 +

2

5 0

=1

2 2 +

2

5 =

1

2

10+2

5

=1

2

12

5 =

๐Ÿ”

๐Ÿ“

Q. 16. Find : ๐ฅ๐จ๐  ๐’™

๐’™+๐Ÿ ๐Ÿ๐’…๐’™

Sol.

log ๐‘ฅ

๐‘ฅ+1 2๐‘‘๐‘ฅ

= log ๐‘ฅ. ๐‘ฅ + 1 โˆ’2

I II ๐‘‘๐‘ฅ

Integrating by parts taking log ๐‘ฅ as Ist function, we have

= log ๐‘ฅ. ๐‘ฅ + 1 โˆ’2 ๐‘‘๐‘ฅ โˆ’ ๐‘‘

๐‘‘๐‘ฅ log ๐‘ฅ ๐‘ฅ + 1 โˆ’2 ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ

= log ๐‘ฅ. ๐‘ฅ+1 โˆ’1

โˆ’1โˆ’

1

๐‘ฅ. ๐‘ฅ+1 โˆ’1

โˆ’1๐‘‘๐‘ฅ

=โˆ’ log ๐‘ฅ

๐‘ฅ+1+

1

๐‘ฅ ๐‘ฅ+1 ๐‘‘๐‘ฅ

=โˆ’ log ๐‘ฅ

๐‘ฅ+1+

๐‘‘๐‘ฅ

๐‘ฅ2+๐‘ฅ

=โˆ’ log ๐‘ฅ

๐‘ฅ+1+

๐‘‘๐‘ฅ

๐‘ฅ2+๐‘ฅ+ 1

2

2+

1

2

2

=โˆ’ log ๐‘ฅ

๐‘ฅ+1+

1

2.1

2

log ๐‘ฅ +

1

2 โˆ’

1

2

๐‘ฅ + 1

2 +

1

2

+ C

โˆต ๐’…๐’™

๐’™๐Ÿ+๐’‚๐Ÿ =๐Ÿ

๐Ÿ๐’‚๐ฅ๐จ๐ 

๐’™โˆ’๐’‚

๐’™+๐’‚ + ๐’„

=โˆ’๐ฅ๐จ๐ ๐’™

๐’™+๐Ÿ+ ๐ฅ๐จ๐ 

๐’™

๐’™+๐Ÿ + ๐‚

Q. 17. If ๐’‚ = ๐’Š + ๐’‹ + ๐’Œ , ๐’ƒ = ๐Ÿ๐’Š + ๐’‹ and ๐’„ = ๐Ÿ‘๐’Š โˆ’ ๐Ÿ’๐’‹ โˆ’ ๐Ÿ“๐’Œ , then find a unit vector

perpendicular to both of the vectors ๐’‚ โˆ’ ๐’ƒ and ๐’„ โˆ’ ๐’ƒ .

Sol.

๐‘Ž โˆ’ ๐‘ = ๐‘– + 2๐‘— + 1๐‘˜ โˆ’ 2๐‘– + ๐‘—

= โˆ’๐‘– + ๐‘— + ๐‘˜

๐‘ โˆ’ ๐‘ = 3๐‘– โˆ’ 4๐‘— โˆ’ 5๐‘˜ โˆ’ 2๐‘– + ๐‘—

= โˆ’๐‘– โˆ’ 5๐‘— โˆ’ 5๐‘˜

Let D = ๐‘Ž โˆ’ ๐‘ ร— ๐‘ โˆ’ ๐‘

= ๐‘– ๐‘— ๐‘˜

โˆ’1 1 1 1 โˆ’5 โˆ’5

= ๐‘– โˆ’5 + 5 โˆ’ ๐‘— 5 โˆ’ 1 + ๐‘˜ 5 โˆ’ 1

= โˆ’4๐‘— + 4๐‘˜

D = 16 + 16 = 2 ร— 16 = 4 2

Required vector = ยฑD

D

= ยฑ โˆ’4๐‘— +4๐‘˜

4 2

= ยฑ โˆ’4๐‘—

4 2+

4๐‘˜

4 2

= ยฑ โˆ’๐Ÿ

๐Ÿ๐’‹ +

๐Ÿ

๐Ÿ๐’Œ

Q. 18. Find the equation of a line passing though the point ๐Ÿ, ๐Ÿ, โˆ’๐Ÿ’ and perpendicular to

two lines ๐’“ = ๐Ÿ–๐’Š โˆ’ ๐Ÿ๐Ÿ—๐’‹ + ๐Ÿ๐ŸŽ๐’Œ + ๐€ ๐Ÿ‘๐’Š โˆ’ ๐Ÿ๐Ÿ”๐’‹ + ๐Ÿ•๐’Œ and ๐’“ = ๐Ÿ๐Ÿ“๐’Š + ๐Ÿ๐Ÿ—๐’‹ +

๐Ÿ“๐’Œ + ๐ ๐Ÿ‘๐’Š + ๐Ÿ–๐’‹ โˆ’ ๐Ÿ“๐’Œ

Sol. The required line is perpendicular to the lines which are parallel to the vectors

๐‘1 = 3๐‘– โˆ’ 16๐‘— + 7๐‘˜ and ๐‘2

= 3๐‘– + 8๐‘— โˆ’ 5๐‘˜ respectively

So, it is parallel to the vector ๐‘ = ๐‘1 ร— ๐‘2

๐‘ = ๐‘– ๐‘— ๐‘˜

3 โˆ’16 73 5 โˆ’5

๐‘ = ๐‘– 80 โˆ’ 56 โˆ’ ๐‘— โˆ’15 โˆ’ 21 + ๐‘˜ 24 + 48

= 24๐‘– + 36๐‘— + 72๐‘˜ Thus, the required line passes thought the (1,2, โˆ’4) and is parallel to the vector

๐‘ = 24๐‘– + 36๐‘— + 72๐‘˜ and ๐‘Ž = ๐‘– + 2๐‘— โˆ’ 4๐‘˜

Vector equation of this line is ๐‘Ÿ = ๐‘Ž + ๐œ†๐‘

๐‘Ÿ = ๐‘– + 2๐‘— โˆ’ 4๐‘˜ + ๐œ† 24๐‘– + 36๐‘— + 72๐‘˜

or ๐’“ = ๐’Š + ๐Ÿ๐’‹ โˆ’ ๐Ÿ’๐’Œ + ๐ ๐Ÿ๐’Š + ๐Ÿ‘๐’‹ + ๐Ÿ”๐’Œ โ€ฆ ๐ฐ๐ก๐ž๐ซ๐ž ๐ = ๐Ÿ๐Ÿ ๐€

Or

Find the equation of a line passing though the points โ€“ ๐Ÿ, ๐Ÿ, ๐ŸŽ , ๐Ÿ, ๐Ÿ, โˆ’๐Ÿ and

parallel to the line ๐’™โˆ’๐Ÿ

๐Ÿ=

๐Ÿ๐’š+๐Ÿ

๐Ÿ=

๐’›+๐Ÿ

โˆ’๐Ÿ.

Sol. Let ๐‘Ž, ๐‘, ๐‘ be direction of ratios of the normal to the plane.

Equations of plane through point โ€“ 1,2,0 is

๐‘Ž ๐‘ฅ + 1 + ๐‘ ๐‘ฆ โˆ’ 2 + ๐‘ ๐‘ง โˆ’ 0 = 0 โ€ฆ (๐‘–) Point 2,2, โˆ’1 lies on (๐‘–) ๐‘Ž 2 + 1 + ๐‘ 2 โˆ’ 2 + ๐‘ โˆ’1 โˆ’ 0 = 0 3๐‘Ž + 0. ๐‘ โˆ’ ๐‘ = 0 โ€ฆ (๐‘–๐‘–)

Given line : ๐‘ฅ+1

1=

2 ๐‘ฆ + 1

2

2=

๐‘ง+1

โˆ’1

๐‘ฅโˆ’1

1=

๐‘ฆ + 1

2

1=

๐‘ง+1

โˆ’1

Direction ratios of given line are 1,1, โˆ’1 Required plane is parallel to the given line ๐‘Ž + ๐‘ + ๐‘ = 0 โ€ฆ (๐‘–๐‘–๐‘–) 3๐‘Ž + 0. ๐‘ โˆ’ ๐‘ = 0 ๐‘Ž + ๐‘ โˆ’ ๐‘ = 0

๐‘Ž

0+1=

โˆ’๐‘

โˆ’3+1=

๐‘

3โˆ’0

๐‘Ž

1=

๐‘

2=

๐‘

3= ๐‘˜(let)

๐‘Ž = ๐‘˜, ๐‘ = 2๐‘˜, ๐‘ = 3๐‘˜ Putting the value of ๐‘Ž, ๐‘, ๐‘ in (๐‘–), we have 1 ๐‘ฅ + 1 + 2 ๐‘ฆ โˆ’ 2 + 3๐‘ง = 0 ๐‘ฅ + 1 + 2๐‘ฆ โˆ’ 4 + 3๐‘ง = 0 โˆด ๐’™ + ๐Ÿ๐’š + ๐Ÿ‘๐’› โˆ’ ๐Ÿ‘ = ๐ŸŽ is the equation of the required plane.

Q. 19. 'Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence find the mean of the distribution. Sol. The Number of spades is a random variable Let it be denoted by X. X can take values 0,1,2 or 3

Let ๐‘ = P(a spade card) =13

52=

1

4

โˆด ๐‘ž = 1 โˆ’1

4=

3

4, Using P r = nCr

. ๐‘ž๐‘›โˆ’๐‘Ÿ . ๐‘๐‘Ÿ

P X = 0 = 3C0. ๐‘ž3โˆ’0. ๐‘0 = ๐‘ž3 =

3

4

3=

27

64

P X = 1 = 3C1. ๐‘ž3โˆ’1๐‘1 = 3๐‘ž2๐‘ = 3

3

4

2

1

4 =

27

64

P X = 2 = 3C2. ๐‘ž3โˆ’2. ๐‘2 = 32๐‘ž๐‘2 = 3

3

4

1

4

2=

9

64

P X = 3 = 3C3. ๐‘ž3โˆ’3. ๐‘3 = ๐‘3 =

1

4

3=

1

64

๐—๐’Š 0 1 2 3 ๐๐’Š 27

64

27

64

9

64

1

64

๐—๐’Š ๐๐’Š ๐๐’Š๐—๐’Š

0 27

64 0

1 27

64

27

64

2 9

64

18

64

3 1

64

3

64

P๐‘–X๐‘– =

48

64

Mean= P๐‘–X๐‘– =๐Ÿ’๐Ÿ–๐Ÿ‘

๐Ÿ”๐Ÿ’๐Ÿ’=

๐Ÿ‘

๐Ÿ’

Or For 6 trials of an experiment, let X be a binomial variants which satisfies the relation ๐Ÿ—๐ ๐— = ๐Ÿ’ = ๐ ๐— = ๐Ÿ Find the probability of success. Sol. Let ๐‘ be the probability of success. ๐‘› = 6 P ๐‘Ÿ = nCr

. ๐‘ž๐‘›โˆ’๐‘Ÿ๐‘๐‘Ÿ

9P X = 4 = P X = 2

9 6C4. ๐‘ž6โˆ’4๐‘4 = 6C4

. ๐‘ž6โˆ’2๐‘2

9. 6C4. ๐‘ž2๐‘4 = 6C4

. ๐‘ž4๐‘2 โˆต 6C4= 6C2

9๐‘2 = ๐‘ž2 Taking square-root, we get ๐‘ž = 3๐‘ As 0 โ‰ค ๐‘ โ‰ค 1 0 โ‰ค ๐‘ โ‰ค 1 Now ๐‘ + ๐‘ž = 1 ๐‘ + 3๐‘ž = 1 4๐‘ž = 1

๐‘ž =1

4

โˆด ๐“๐ก๐ž ๐ฉ๐ซ๐จ๐›๐š๐›๐ข๐ฅ๐ข๐ญ๐ฒ ๐จ๐Ÿ ๐ฌ๐ฎ๐œ๐œ๐ž๐ฌ๐ฌ, ๐’’ =๐Ÿ

๐Ÿ’

Section โ€“ C Question numbers 20 to 26 carry 6 marks each.

Q. 20. Consider ๐’‡: ๐‘+ โ†’ [โˆ’๐Ÿ—, โˆž] given by ๐’‡(๐’™) = ๐Ÿ“๐’™๐Ÿ + ๐Ÿ”๐’™ โˆ’ ๐Ÿ—. Prove that ๐’‡ is invertible

with ๐’‡โˆ’๐Ÿ(๐’š) = ๐Ÿ“๐Ÿ’+๐Ÿ“๐’šโˆ’๐Ÿ‘

๐Ÿ“ .

Sol. ๐‘“(๐‘ฅ) = 5๐‘ฅ2 + 6๐‘ฅ โˆ’ 9 (given) Let ๐‘“ ๐‘ฅ = ๐‘ฆ โ‡’ ๐‘ฆ = 5๐‘ฅ2 + 6๐‘ฅ โˆ’ 9 5๐‘ฆ = 25๐‘ฅ2 + 30๐‘ฅ โˆ’ 45 (Multiplying both sides by 5) 5๐‘ฆ = 25๐‘ฅ2 + 30๐‘ฅ + 3 2 โˆ’ 45 โˆ’ 3 2 5๐‘ฆ = 5๐‘ฅ + 3 2 โˆ’ 54 โ€ฆ (๐‘–) 5๐‘ฆ + 54 = 5๐‘ฅ + 3 2

5๐‘ฆ + 54 = 5๐‘ฅ + 3 (Square root on both sides)

5๐‘ฆ + 54 โˆ’ 3 = 5๐‘ฅ

๐‘ฅ = 5๐‘ฆ+54โˆ’3

5

g ๐‘ฆ = 5๐‘ฆ+54โˆ’3

5 โ€ฆ (๐‘–๐‘–)

โ‡’ g๐‘œ๐‘“ ๐‘ฅ = g ๐‘“ ๐‘ฅ

= g 5๐‘ฅ2 + 6๐‘ฅ โˆ’ 9

= 5 5๐‘ฅ2+6๐‘ฅโˆ’9 +54โˆ’3

5

= 25๐‘ฅ2+30๐‘ฅโˆ’45+54โˆ’3

5

= 25๐‘ฅ2+30๐‘ฅ+9โˆ’3

5

g๐‘œ๐‘“ ๐‘ฅ = 5๐‘ฅ+3 2โˆ’3

5=

5๐‘ฅ+3โˆ’3

5= ๐‘ฅ โ€ฆ (๐‘–๐‘–๐‘–)

and ๐‘“๐‘œg ๐‘ฆ = ๐‘“ g ๐‘ฆ

= ๐‘“ 5๐‘ฆ+54โˆ’3

5 [From (๐’Š๐’Š)

5

5๐‘ฆ+54โˆ’3

5 +3

2

โˆ’54

5

๐…๐ซ๐จ๐ฆ ๐’Š

๐Ÿ“๐’š = ๐Ÿ“๐’™ + ๐Ÿ‘ ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ’

๐’š = ๐Ÿ“๐’™+๐Ÿ‘ ๐Ÿโˆ’๐Ÿ“๐Ÿ’

๐Ÿ“

๐’‡ ๐’™ = ๐Ÿ“๐’™+๐Ÿ‘ ๐Ÿโˆ’๐Ÿ“๐Ÿ’

๐Ÿ“

= 5๐‘ฆ+54

2โˆ’54

5=

5๐‘ฆ+54โˆ’54

5=

5๐‘ฆ

5= ๐‘ฆ

๐‘“๐‘œg ๐‘ฆ = ๐‘ฆ โ€ฆ (๐‘–๐‘ฃ) From (๐‘–๐‘–๐‘–) and (๐‘–๐‘ฃ), ๐‘“ is invertible and ๐‘“โˆ’1 = g

๐‘“โˆ’1 ๐‘ฆ = 54+5๐‘ฆโˆ’3

5 [From (๐’Š๐’Š)

Or A binary operation * is defined on the set ๐’™ = ๐‘ โˆ’ {โˆ’๐Ÿ} by ๐’™ โˆ— ๐’š = ๐’™ + ๐’š + ๐’™๐’š, โˆ€ ๐’™, ๐’š โˆ‰ ๐—. Check whether ยป is commutative and associative. Find the identity element and also find the inverse of each element of X. Sol. (i) ๐‘ฅ โˆ— ๐‘ฆ = ๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ, , โˆ€ ๐‘ฅ, ๐‘ฆ โˆ‰ X

๐‘ฆ โˆ— ๐‘ฅ = ๐‘ฆ + ๐‘ฅ + ๐‘ฆ๐‘ฅ = ๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ = ๐‘ฅ โˆ— ๐‘ฆ Hence โ€˜*โ€™is associative

(ii) ๐‘ฅ โˆ— ๐‘ฆ โˆ— ๐‘ง = ๐‘ฅ โˆ— ๐‘ฆ + ๐‘ง + ๐‘ฆ๐‘ง

= ๐‘ฅ + ๐‘ฆ + ๐‘ง + ๐‘ฆ๐‘ง + ๐‘ฅ ๐‘ฆ + ๐‘ง + ๐‘ฆ๐‘ง

= ๐‘ฅ + ๐‘ฆ + ๐‘ง + ๐‘ฆ๐‘ง + ๐‘ฅ๐‘ฆ + ๐‘ง๐‘ฅ + ๐‘ฅ๐‘ฆ๐‘ง โ€ฆ (๐‘–)

๐‘ฅ โˆ— ๐‘ฆ โˆ— ๐‘ง = ๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ โˆ— ๐‘ง

= ๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ + ๐‘ง + ๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ ๐‘ง

= ๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ + ๐‘ง + ๐‘ฅ๐‘ง + ๐‘ฆ๐‘ง + ๐‘ฅ๐‘ฆ๐‘ง โ€ฆ (๐‘–๐‘–)

From (๐‘–) and ๐‘–๐‘– ๐‘ฅ โˆ— ๐‘ฆ โˆ— ๐‘ง = ๐‘ฅ โˆ— ๐‘ฆ โˆ— ๐‘ง

Hence โ€˜*โ€™is associative

Let โ€ฒ๐‘’โ€ฒ be the identity element of X

Then ๐‘ฅ โˆ— ๐‘’ = ๐‘ฅ + ๐‘’ + ๐‘ฅ๐‘’ = ๐‘ฅ โˆ€ ๐‘ฅ โˆˆ X

๐‘ฅ + ๐‘’ + ๐‘ฅ๐‘’ = ๐‘ฅ

โ‡’ ๐‘’ 1 + ๐‘ฅ = 0

โ‡’ ๐‘’ = 0 or 1 + ๐‘ฅ = 0

๐‘’ = 0 or ๐‘ฅ = โˆ’1, Which is not possible because ๐‘ฅ โˆˆ R โˆ’ โˆ’1 (given)

โˆด ๐‘’ = 0

Clearly X โˆ— 0 = ๐‘ฅ + 0 + 0 = ๐‘ฅ = 0 + ๐‘ฅ, โˆ€ ๐‘ฅ โˆˆ X

โˆด โ€˜0โ€™ is the identity element of X โ€ฆ (๐‘–)

Let ๐‘ฆ โˆˆ ๐‘ฅ be the inverse of ๐‘ฅ โˆˆ X

Then ๐‘ฅ โˆ— ๐‘ฆ = ๐‘ฆ โˆ— ๐‘ฅ = ๐‘’

๐‘ฅ + ๐‘ฆ + ๐‘ฅ๐‘ฆ = 0

๐‘ฅ + ๐‘ฆ 1 + ๐‘ฅ = 0

๐‘ฆ 1 + ๐‘ฅ = โˆ’๐‘ฅ

โ‡’ ๐‘ฆ =โˆ’๐‘ฅ

1+๐‘ฅ or ๐‘ฅโˆ’1 =

โˆ’๐‘ฅ

1+๐‘ฅ

Q. 21. Find the value of ๐’‘ for when the curves ๐’™๐Ÿ = ๐Ÿ—๐’‘(๐Ÿ— โˆ’ ๐’š) and ๐’™๐Ÿ = ๐’‘(๐’š + ๐Ÿ) cut each other at right angles. Sol. ๐‘ฅ2 = 9๐‘ 9 โˆ’ ๐‘ฆ . . (๐‘–) ๐‘ฅ2 = ๐‘ ๐‘ฆ + 1 โ€ฆ (๐‘–๐‘–) From (๐‘–) and ๐‘–๐‘– , 9๐‘ 9 โˆ’ ๐‘ฆ = ๐‘ ๐‘ฆ + 1 โ‡’ 81 โˆ’ 9๐‘ฆ = ๐‘ฆ + 1 โ‡’ 81 โˆ’ 1 = ๐‘ฆ + 9๐‘ฆ โ‡’ 80 โˆ’ 10๐‘ฆ โ‡’ ๐‘ฆ = 8 Putting the value of ๐‘ฆ in (๐‘–), we have ๐‘ฅ2 = 9๐‘ 9 โˆ’ 8

๐‘ฅ2 = 9๐‘ โ‡’ ๐‘ฅ = ยฑ3 ๐‘

โˆด Point of intersection A ยฑ3 p, 8

๐‘ฅ2 = 9๐‘ 9 โˆ’ ๐‘ฆ ๐‘ฅ2 = ๐‘ ๐‘ฆ + 1 Differentiating w.r.t. ๐‘ฅ, we have Differentiating w.r.t. ๐‘ฅ, we have

2๐‘ฅ = 9๐‘ โˆ’๐‘‘๐‘ฆ

๐‘‘๐‘ฅ 2๐‘ฅ = ๐‘

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘š1 =๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

โˆ’2๐‘ฅ

9๐‘ ๐‘š2 =

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

2๐‘ฅ

๐‘

If the curve cut at right-angles, then ๐‘š1 ร— ๐‘š2 = โˆ’1

=โˆ’2๐‘ฅ

9๐‘ร—

2๐‘ฅ

๐‘= โˆ’1

โ‡’ โˆ’9๐‘2 = โˆ’4๐‘ฅ2

โ‡’ 9๐‘2 = 4 9๐‘ Put ๐‘ฅ = ยฑ p

โ‡’ 9๐‘2 โˆ’ 36๐‘ = 0 โ‡’ 9๐‘ ๐‘ โˆ’ 4 = 0 โ‡’ 9๐‘ = 0 or ๐‘ โˆ’ 4 = 0 โ‡’ ๐’‘ = ๐ŸŽ or ๐’‘ = ๐Ÿ’

Q. 22. Using integration, prove that the curves ๐’š๐Ÿ = ๐Ÿ’๐’™ and ๐’™๐Ÿ = ๐Ÿ’๐’š divide the area of the square bounded by ๐’™ = ๐ŸŽ, ๐’™ = ๐Ÿ’, ๐’š = ๐Ÿ’ and ๐’š = ๐ŸŽ into three equal parts. Sol.

๐‘ฆ2 = 4๐‘ฅ โ‡’ ๐‘ฆ = 2 ๐‘ฅ โ€ฆ (๐‘–)

๐‘ฅ2 = 4๐‘ฆ โ‡’ ๐‘ฆ =๐‘ฅ2

4 โ€ฆ (๐‘–๐‘–)

For point of intersection ๐‘ฅ2 = 4๐‘ฆ

๐‘ฆ2

4

2

= 4๐‘ฆ from ๐‘– ๐‘ฆ2 = 4๐‘ฅ or ๐‘ฆ2

4= ๐‘ฅ

๐‘ฆ4 = 64๐‘ฆ ๐‘ฆ4 โˆ’ 64๐‘ฆ = 0 โ‡’ ๐‘ฆ ๐‘ฆ3 โˆ’ 64 = 0 โˆด ๐‘ฆ = 0 or ๐‘ฆ3 โˆ’ 64 โ‡’ ๐‘ฆ = 4

Shaded area I = ๐‘ฅ ๐‘‘๐‘ฆ4

0

= ๐‘ฆ2

4๐‘‘๐‘ฆ

4

0

=1

4.

1

3 ๐‘ฆ3 0

4

=1

12 43 โˆ’ 03

=64

12=

๐Ÿ๐Ÿ”

๐Ÿ‘ sq. units โ€ฆ (๐‘–)

Shaded area II = 2 ๐‘ฅ ๐‘‘๐‘ฅ โˆ’ ๐‘ฅ2

4 ๐‘‘๐‘ฅ

4

0

4

0

= 2.2

3 ๐‘ฅ3/2

0

4โˆ’

1

4.

1

3 ๐‘ฅ3 0

4

=4

3 43/2 โˆ’ 0

0

4โˆ’

1

12 43 โˆ’ 0

=4

3ร— 2 ร—

3

2โˆ’

1

12 64

=32

3โˆ’

16

3=

๐Ÿ๐Ÿ”

๐Ÿ‘ sq. units โ€ฆ (๐‘–๐‘–)

Shaded area III = ๐‘ฅ2

4๐‘‘๐‘ฅ

4

0

=1

4.

1

3 ๐‘ฅ3 0

4

=1

12 43 โˆ’ 0

=64

12=

๐Ÿ๐Ÿ”

๐Ÿ‘ sq. units โ€ฆ (๐‘–๐‘–๐‘–)

From (๐‘–),(๐‘–๐‘–) and ๐‘–๐‘–๐‘– ,

Area bounded by curves ๐’š๐Ÿ = ๐Ÿ’๐’™ and ๐’™๐Ÿ = ๐Ÿ’๐’š divides the area of square in three equal parts.

Q. 23. Show that the differential equation ๐’…๐’š

๐’…๐’™=

๐’š๐Ÿ

๐’™๐’šโˆ’๐’™๐Ÿ is homogeneous and also solve it.

Sol.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฆ2

๐‘ฅ๐‘ฆโˆ’๐‘ฅ2 โ€ฆ (๐‘–)

Dividing numerator and denominator by ๐‘ฅ2,

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฆ

๐‘ฅ

2

๐‘ฆ

๐‘ฅโˆ’1

= g ๐‘ฆ

๐‘ฅ โ€ฆ (๐‘–๐‘–)

R.H.S. of differential equation (๐‘–๐‘–) is of the from g ๐‘ฆ

๐‘ฅ and so it is a homogeneous.

Therefore, Equation (๐‘–) is a homogeneous differential equation

๐‹๐ž๐ญ ๐’š = ๐’—๐’™ โ‡’

๐’š

๐’™= ๐’—

๐’…๐’š

๐’…๐’™= ๐’—. ๐Ÿ + ๐’™.

๐’…๐’—

๐’…๐’™

๐‘ฃ + ๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฃ2

๐‘ฃโˆ’1

๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฃ2

๐‘ฃโˆ’1โˆ’ ๐‘ฃ

๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ=

๐‘ฃ2โˆ’๐‘ฃ2+๐‘ฃ

๐‘ฃโˆ’1

๐‘ฃโˆ’1

๐‘ฃ๐‘‘๐‘ฃ =

๐‘‘๐‘ฆ

๐‘ฅ โ€ฆ (๐‘–๐‘–๐‘–)

Integrating both sides of equation (๐‘–๐‘–๐‘–), we get

๐‘ฃ1

๐‘ฃโˆ’

1

๐‘ฃ ๐‘‘๐‘ฃ =

๐‘‘๐‘ฅ

๐‘ฅ

๐‘ฃ โˆ’ log ๐‘ฃ = log ๐‘ฅ + C

๐‘ฆ

๐‘ฅโˆ’ log

๐‘ฆ

๐‘ฅ โˆ’ log ๐‘ฅ = C

๐‘ฆ

๐‘ฅโˆ’ log

๐‘ฆ

๐‘ฅ. ๐‘ฅ = C โˆต ๐ฅ๐จ๐ ๐’Ž + ๐ฅ๐จ๐ ๐’ = ๐ฅ๐จ๐ ๐’Ž๐’

๐‘ฆ

๐‘ฅโˆ’ log ๐‘ฆ = C

๐‘ฆโˆ’log ๐‘ฆ

๐‘ฅ= C

๐’š โˆ’ ๐’™ ๐ฅ๐จ๐  ๐’š = ๐‚๐’™ which is the general solution of the given differential solution. Or

Find the particular solution of the differential equation (๐ญ๐š๐งโˆ’๐Ÿ ๐’š โˆ’ ๐’™)๐’…๐’š = (๐Ÿ +

๐’š๐Ÿ) ๐’…๐’™, given that ๐’™ = ๐Ÿ when ๐’š = ๐‘ถ. Sol. tanโˆ’1 ๐‘ฆ โˆ’ ๐‘ฅ ๐‘‘๐‘ฆ = 1 + ๐‘ฆ2 ๐‘‘๐‘ฅ

tan โˆ’1 ๐‘ฆโˆ’๐‘ฅ

1+๐‘ฆ2 =๐‘‘๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ=

tan โˆ’1 ๐‘ฆโˆ’๐‘ฅ

1+๐‘ฆ2 โˆ’๐‘ฅ

1+๐‘ฆ2

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ+

๐‘ฅ

1+๐‘ฆ2 =tan โˆ’1 ๐‘ฆ

1+๐‘ฆ2

Comparing with ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ P๐‘ฅ = Q

โˆด P =1

1+๐‘ฆ2 , Q =tan โˆ’1 ๐‘ฆ

1+๐‘ฆ2

I. F. = ๐‘’ P ๐‘‘๐‘ฆ = ๐‘’

tan โˆ’1 ๐‘ฆ

1+๐‘ฆ2 = ๐‘’ tan โˆ’1 ๐‘ฆ Hence the solution is ๐‘ฅ I. F. = Q. I. F. ๐‘‘๐‘ฆ

๐‘ฅ. ๐‘’ P ๐‘‘๐‘ฆ = tan โˆ’1 ๐‘ฆ

1+๐‘ฆ2 . ๐‘’ tan โˆ’1 ๐‘ฆ๐‘‘๐‘ฆ

= ๐‘ก. ๐‘’๐‘ก๐‘‘๐‘กI II

๐‹๐ž๐ญ ๐’• = ๐ญ๐š๐งโˆ’๐Ÿ ๐’š

๐’…๐’• =๐Ÿ

๐Ÿ+๐’š๐Ÿ ๐’…๐’š

๐‘ฅ. ๐‘’ tan โˆ’1 ๐‘ฆ = ๐‘ก. ๐‘’๐‘ก โˆ’ 1. ๐‘’๐‘ก๐‘‘๐‘ก = ๐‘ก . ๐‘’๐‘ก โˆ’ ๐‘’๐‘ก + C = ๐‘’๐‘ก ๐‘ก โˆ’ 1 + C

๐‘ฅ. ๐‘’ tan โˆ’1 ๐‘ฆ = ๐‘’ tan โˆ’1 ๐‘ฆ tanโˆ’1 ๐‘ฆ โˆ’ 1 + C

๐‘ฅ = tanโˆ’1 ๐‘ฆ โˆ’ 1 +C

๐‘’ tan โˆ’1 ๐‘ฆ โ€ฆ (๐‘–) โˆต ๐‘ฅ = 1, ๐‘ฆ = 0

1 = tanโˆ’1 0 โˆ’ 1 +C

๐‘’ tan โˆ’1 ๐‘ฆ

2 = 0 +C

1 โˆต ๐‘’0 = 1

C = 2 Putting the value of C in (๐‘–), we have

๐‘ฅ = tanโˆ’1 ๐‘ฆ โˆ’ 1 +2

๐‘’ tan โˆ’1 ๐‘ฆ

๐’™ = ๐ญ๐š๐งโˆ’๐Ÿ ๐’š โˆ’ ๐Ÿ + ๐Ÿ. ๐’†๐ญ๐š๐งโˆ’๐Ÿ ๐’š which is the particular solution of given differential equation.

Q. 24. Find the distance of the point ๐(๐Ÿ‘, ๐Ÿ’, ๐Ÿ’) from the point, where the line joining the points ๐€(๐Ÿ‘, โˆ’๐Ÿ’, โˆ’๐Ÿ“) and ๐(๐Ÿ, โˆ’๐Ÿ‘, ๐Ÿ) intersects the plane ๐Ÿ๐’™ + ๐’š + ๐’› = ๐Ÿ•. Sol. Direction ratios of line AB are ๐‘ฅ2 โˆ’ ๐‘ฅ1, ๐‘ฆ2 โˆ’ ๐‘ฆ1, ๐‘ง2 โˆ’ ๐‘ง1 2 โˆ’ 3, โˆ’3 + 4, 1 + 5 โˆ’1, 1 6 Equation of line AB is

๐‘ฅโˆ’๐‘ฅ1

๐‘Ž=

๐‘ฆโˆ’๐‘ฆ1

๐‘=

๐‘งโˆ’๐‘ง1

๐‘

๐‘ฅโˆ’3

โˆ’1=

๐‘ฆ+4

1=

๐‘ง+5

6= ๐‘š let (Using Pt. A)

Let point C โˆ’๐‘š + 3, ๐‘š โˆ’ 4, 6๐‘š โˆ’ 5 โ€ฆ (๐‘–) be the point of intersection between line AB and given plane So point C lies on the given plane 2๐‘ฅ + ๐‘ฆ + ๐‘ง = 7 2 โˆ’๐‘š + 3 + ๐‘š โˆ’ 4 + 6๐‘š โˆ’ 5 โ€ฆ (๐‘–) โˆ’2๐‘š + 6 + ๐‘š โˆ’ 4 + 6๐‘š โˆ’ 5 = 7

5๐‘š โˆ’ 3 = 7 โ‡’ 5๐‘š + 10 โ‡’ ๐‘š =10

5= 2

Putting the value of ๐‘š in (๐‘–), Coordinates of point C = โˆ’2 + 3,2 โˆ’ 4,12 โˆ’ 5 or 1, โˆ’2,7 Point P is 3,4,4, Required distance = CP

= 3 โˆ’ 1 2 + 4 + 2 2 + 4 โˆ’ 7 2

= 4 + 36 + 9 = 49 = ๐Ÿ• units

Q. 25. A company manufacturers three kinds of calculators : A, B and C in its two factories ๐ˆ and ๐ˆ๐ˆ. The company has got an order for manufacturing at least 6400 calculators of kind A, 4000 of kind B and 4800 of kind C. The daily output of factory ๐ˆ is of 50 calculators of kind A, 50 calculators of kind B, and 30 calculators of kind C. The daily output of factory ๐ˆ๐ˆ is of 40 calculators of kind A, 20 of kind B and 40 of kind C. The cost per day to run factory ๐ˆ is Rs. 12,000 and of factory ๐ˆ๐ˆ is Rs. 5,000. How many days do the two factories have to be in operation to produce the order with the minimum cost? Formulate this problem as an LPP and solve it graphically. Sol.

๐‘๐‘œ ๐‘œ๐‘“ ๐‘‘๐‘Ž๐‘ฆ๐‘ 

๐ถ๐‘Ž๐‘™๐‘๐‘ข๐‘ก๐‘Ž๐‘ก๐‘œ๐‘Ÿ๐‘  ๐ถ๐‘œ๐‘ ๐‘ก A B C

Fecories I Fecories II

๐‘ฅ ๐‘ฆ

50 40

50 20

30 40

Rs. 12,000 Rs. 15,000

6400 6400 4800

At least At least At least

Zmin = 12000๐‘ฅ + 15000๐‘ฆ Subjects to the constraints : 50๐‘ฅ + 40๐‘ฆ โ‰ฅ 6400 50๐‘ฅ + 20๐‘ฆ โ‰ฅ 4000

30๐‘ฅ + 40๐‘ฆ โ‰ฅ 4800 ๐‘ฅ, ๐‘ฆ โ‰ฅ 0 50๐‘ฅ + 40๐‘ฆ โ‰ฅ 6400 50๐‘ฅ + 20๐‘ฆ โ‰ฅ 4000 30๐‘ฅ + 40๐‘ฆ โ‰ฅ 4800 Let 50๐‘ฅ + 40๐‘ฆ โ‰ฅ 6400 Let 50๐‘ฅ + 20๐‘ฆ โ‰ฅ 4000 Let 30๐‘ฅ + 40๐‘ฆ โ‰ฅ 4800 or 5๐‘ฅ + 4๐‘ฆ = 640 or 5๐‘ฅ + 2๐‘ฆ = 400 or 3๐‘ฅ + 4๐‘ฆ = 480 โ€ฆ (๐‘–) โ€ฆ (๐‘–๐‘–) โ€ฆ (๐‘–๐‘–๐‘–)

๐‘ฅ 0 128 ๐‘ฅ 0 80 ๐‘ฅ 0 160

๐‘ฆ 160 0 ๐‘ฆ 200 0 ๐‘ฆ 120 0

Om solving (๐‘–) and ๐‘–๐‘– 5๐‘ฅ + 4๐‘ฆ = 640 โ€ฆ (๐‘–) _ 5๐‘ฅ ยฑ 2๐‘ฆ = 400 โ€ฆ (๐‘–๐‘–) 2๐‘ฆ = 240 โ‡’ ๐‘ฆ = 120

Putting the value of ๐‘ฆ in (๐‘–๐‘–), 5๐‘ฅ + 240 = 400; 5๐‘ฅ = 160 โ‡’ ๐‘ฅ = 32 โˆด Point B 32,120 Om solving (๐‘–) and ๐‘–๐‘– 5๐‘ฅ + 4๐‘ฆ = 640 โ€ฆ (๐‘–) _ 3๐‘ฅ ยฑ 4๐‘ฆ = 480 โ€ฆ (๐‘–๐‘–๐‘–) 2๐‘ฅ = 160 โ‡’ ๐‘ฅ = 80 Putting the value of ๐‘ฅ in (๐‘–), 5 80 + 4๐‘ฆ = 640 4๐‘ฆ = 640 โˆ’ 400

๐‘ฆ =240

4= 60

โˆด Point C 80,60

Corner Points

Z = 12,000๐‘ฅ + 15,000๐‘ฆ

A 0,200 15000 200 = 30,00,000 B 32,120 12000 32 + 15000 120 = 21,84,000 C 80,60 12000 80 + 15000 60 = 10,60,000 โ† Smallest D 160,0 12000 160 = 19,20,000

From, the table, we find 18,60,000 is the smallest value of Z the corner point C 80,60 Here is the feasible region is unbounded. Therefore, 18,60,000 may or may not be the minimum value of Z to decide this issue, graph the inequality 12000๐‘ฅ + 15000๐‘ฆ < 1860000 Let 12000๐‘ฅ + 15000๐‘ฆ = 1860000 or 12๐‘ฅ + 15๐‘ฆ = 1860 or 4๐‘ฅ + 5๐‘ฆ = 620 It has not common points So, Rs. 18,60,000 will be the C 80,60 Factory ๐ˆ = ๐Ÿ–๐ŸŽ Days Factory ๐ˆ๐ˆ = ๐Ÿ”๐ŸŽ Days Minimum cost = ๐‘๐ฌ. ๐Ÿ๐Ÿ–, ๐Ÿ”๐ŸŽ, ๐ŸŽ๐ŸŽ๐ŸŽ

Q. 26. In a factory which manufacturers bolts, machine A, B and C manufacture respectively 30%, 50% and 20% of the bolts. Of their outputs 3, 4 and 1 percent respectively are defective bolts. A bolt is drawn at random from the product and is found to be defective. Find the probability that this is not manufactured by machine B. Sol. Let E1 : the Bolt is manufactured by machine A Let E2 : the Bolt is manufactured by machine B Let E3 : the Bolt is manufactured by machine C

โˆด P E1 =30

100, P E2 =

50

100, P E3 =

20

100

=3

10 =

5

10 =

2

10

Let the event A be the bolt is defective

P A/E1 =3

100, P A/E2 =

4

100 , P A/E3 =

1

100

P (bolt is not manufactured by machine B) = P (bolt is manufactured by machine A or C) = P(E2

/A)

=P E1 ร—P A/E1 +P E3 ร— P A/E3

P E1 ร—P A/E1 + P E2 ร—P A/E2 + P E3 ร— P A/E3

=

3

10ร—

3

100 +

2

10ร—

1

100

3

10ร—

3

100 +

5

10ร—

4

100 +

2

10ร—

1

100

=9+2

10009+20+2

1000

=๐Ÿ๐Ÿ

๐Ÿ‘๐Ÿ