may 2003 perth, western australiadepartment of …...the case-crossover study design is an...

108
Department of Environment Research on Health and Air Pollution in Perth Morbidity and Mortality: A Case-Crossover Analysis 1992-1997 Technical Series 114 Department of Environment Perth, Western Australia May 2003

Upload: others

Post on 09-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

Department ofEnvironment

Research on Healthand Air Pollution in PerthMorbidity and Mortality:A Case-Crossover Analysis1992-1997

Technical Series 114

Department of EnvironmentPerth, Western AustraliaMay 2003

Page 2: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

Research on Healthand Air Pollution

in Perth

Morbidity and Mortality:A Case-Crossover Analysis

1992-1997

Technical Series 114

May 2003

Department ofEnvironment

Page 3: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

ISBN 1 920687-43-2

ISSN 1328-7230

Page 4: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

Morbidity and Mortality: A Case-Crossover Analysis

1992-1997

May 2003

Page 5: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

2

Program Team

Dr Jim Codde Department of Health (WA)

Dr Nick de Klerk University of Western Australia

Dr Andrea Hinwood Department of Environmental Protection

Prof Lou Landau University of Western Australia

Prof Tom Lyons Murdoch University

A/Prof Frank Murray Murdoch University

Dr Bill Musk University of Western Australia

Ms Pierina Otness Department of Health (WA)

Dr Peter Rye Department of Environmental Protection

Prof Jeff Spickett Curtin University of Technology

Mr Mark Feldwick Department of Health (WA)

Page 6: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

3

Acknowledgements

The Program Team would like to thank the Department of Health (WA) for provision of

hospitalisation data and Dr Nick de Klerk for his analysis of the data.

The Program Team would also like to thank Arthur Grieco, Tina Runnion and James Forrest for their

assistance in the collation of air quality data, results tables and literature on this topic as well as Mr

Geoff Morgan for his advice on this project. The Program Team would also like to thank Professor

Rod Simpson and Dr. Mark Goldberg for their peer review of the time series analysis results, and

Professor Damien Jolley for the review of the case-crossover analysis.

Page 7: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

4

Glossary ABS Australian Bureau of Statistics

AMA Australian Medical Association

APHEA Air Pollution and Health European Approach

AQCC Air Quality Co-ordinating Committee

AQMP Air Quality Management Plan

Bsp a coefficient with units of m-1 indicating the back scatter of light at a reference wavelength due to the presence of particles in the air. Local visual distance (in metres) can be determined from Bsp

CI confidence interval

COPD chronic obstructive pulmonary disease

CO carbon monoxide

CVD cardiovascular disease

DEP Department of Environmental Protection

Fev1 forced expiratory volume in 1 second

FVC forced vital capacity

HiVol high volume air sampler

ICD9 International Classification of Diseases version 9

NEPM National Environment Protection Measure

NO2 nitrogen dioxide

O3 ozone

PM2.5 particles each having an equivalent aerodynamic diameter of less then 2.5 microns

PM10 particles each having an aerodynamic diameter of less than 10 microns

ppm parts per million by volume

ppb parts per billion by volume

ROC reactive organic compound

RR relative risk

SO2 sulfur dioxide

TEOM tapered element oscillating microbalance

µg/m3 micrograms per cubic metre, expressed at 0oC Celsius and 1.0 atmosphere pressure (101.325 kilopascals).

WHO World Health Organisation

Page 8: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

5

Executive Summary

Studies around the world have reported significant relationships between air pollution levels and

health effects including hospitalisation, exacerbation of existing diseases and premature mortality.

Groups most susceptible to high levels of pollutants include children, the elderly and those with pre-

existing illness. There have been few studies on the effects of air pollution on health in Australia,

although recent studies in Sydney, Brisbane and Melbourne all report significant relationships between

selected air pollutants and hospitalisation, supporting the findings reported in the international

literature.

In 1998, a Western Australian Parliamentary Select Committee on Perth’s Air Quality outlined its

concerns about the potential health impacts of photochemical smog and particle haze in the Perth

metropolitan region. Both photochemical smog (measured as ozone) and particle haze (measured as

PM10) concentrations exceed national and international standards at various times through the year,

ozone in summer and particulate haze in winter. Concentrations of sulfur dioxide (SO2), nitrogen

dioxide (NO2) and carbon monoxide (CO) in Perth are all below national and international standards.

As part of the Government’s response to the Parliamentary Select Committee report, an Air Quality

Management Plan (AQMP) has been developed which, among many other issues, addresses the health

impacts of air quality in Perth. Health research is an integral part of the plan to assist in decision

making about priority areas for intervention and implementation of control and management strategies.

As a first stage in the health effects research section of the Air Quality Management Plan for Perth, the

relationship between changes in daily air quality and hospitalisation and mortality was investigated,

initially using a preliminary time series analysis protocol as recommended by the Air Pollution and

Health European Approach (APHEA) and then followed up with a case-crossover study design and

analysis. The case-crossover study design is an alternative to the traditional time series analysis and

considers the effects of transient risk factors such as changes in air pollution concentrations on acute

events such as mortality and hospitalisation.

The mortality investigation considered daily death rates between 1992 and 1997. Counts of daily

deaths were obtained from the Registrar General of WA from January 1992 to December 1997. Data

were collected for all causes of death, excluding accidental deaths, and categorised as deaths from

respiratory, cardiovascular and other causes for two age groups (all ages and ages 65 and over).

The hospitalisation investigation considered daily hospitalisation rates between 1992 and 1997.

Hospitalisation records were collected for respiratory disease, chronic obstructive pulmonary disease

(COPD), asthma, and cardiovascular disease (CVD). Data were also collected for gastrointestinal

disease as a control disease. Daily air quality data for ozone, nitrogen dioxide, carbon monoxide, and

Page 9: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

6

particulate matter measured as visibility (using a light scattering factor – Bsp) were obtained from air

monitoring stations which were operational for the study period and encompassed most of the criteria

pollutants under consideration. PM2.5 data were obtained by modelling air quality data for the study

period.

The data were analysed using case-crossover conditional logistic regression which involves comparing

all the varying exposure matrices for the day in question with daily exposures one week before and

one week after.

The case-crossover analysis found associations between changes in daily ozone concentration and

cardiovascular mortality. An association between daily carbon monoxide concentrations and ‘other’

mortality was also observed. The results of the preliminary time series regression analysis showed

associations between nitrogen dioxide and all-cause mortality, respiratory mortality and ‘other ‘ (non-

specified disease group) mortality. No other significant associations were observed.

Significant associations were observed for daily changes in particle and ozone concentrations and

hospitalisations for asthma, chronic obstructive pulmonary disease (COPD), pneumonia and

respiratory disease for all ages using the case-crossover analysis. Specific age groups were

investigated and significant results were observed for people aged over 65 years of age for CVD,

COPD, pneumonia and respiratory diseases. Significant associations were also observed for changes

in daily particle and ozone concentrations and asthma hospitalisations for children aged under 15

years, with an estimated 0.3% increase in hospitalisations with every 1 µg/m3 of modelled PM2.5

concentrations. These results were supported by those obtained by the preliminary time series

analysis, appended to this report.

These results support those reported in Sydney, Melbourne and Brisbane as well as the numerous

international studies. The results for Perth indicate that air quality is impacting on the health of

Western Australians and provide a useful basis for setting priorities for implementing the Perth Air

Quality Management Plan and evaluating the success of the associated implementation strategies.

Page 10: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

7

Contents

PROGRAM TEAM ..............................................................................................................................................2

ACKNOWLEDGEMENTS..................................................................................................................................3

GLOSSARY ..........................................................................................................................................................4

EXECUTIVE SUMMARY ..................................................................................................................................5

CONTENTS ..........................................................................................................................................................7

1. INTRODUCTION......................................................................................................................................11

1.1 BACKGROUND ON COMMON AIR POLLUTANTS IN PERTH ..........................................................................13 1.2 HEALTH EFFECTS OF AIR POLLUTANTS .....................................................................................................14 1.3 THE CASE-CROSSOVER STUDY DESIGN.....................................................................................................16

2. OBJECTIVES ............................................................................................................................................16

3. METHODS .................................................................................................................................................16

3.1 STUDY DESIGN, AREA AND POPULATION ..................................................................................................16 3.2 DATA COLLECTION ...................................................................................................................................17

3.2.1 Mortality Data...................................................................................................................................17 3.2.2 Hospital Morbidity Data ...................................................................................................................18 3.2.3 Air Quality Data................................................................................................................................18 3.2.4 Particulate (PM2.5) Dispersion Modelling.......................................................................................20

3.3 STATISTICAL ANALYSIS.............................................................................................................................21

4. RESULTS ........................................................................................................................................................22

4.1 MORTALITY...............................................................................................................................................22 4.2 HOSPITALISATIONS....................................................................................................................................26

4.2.1 Particle Concentrations ....................................................................................................................26 4.2.2 Ozone Concentrations.......................................................................................................................27 4.2.3 Nitrogen Dioxide...............................................................................................................................31 4.2.4 Carbon Monoxide..............................................................................................................................31

5. DISCUSSION .............................................................................................................................................32

6. LIMITATIONS ..........................................................................................................................................36

7. CONCLUDING REMARKS.....................................................................................................................37

8. REFERENCES...........................................................................................................................................38

Page 11: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

8

APPENDIX 1. SUMMARY OF HEALTH EFFECTS OF THE CRITERIA POLLUTANTS ..............46

1.1 PHOTOCHEMICAL OXIDANTS (MEASURED AS OZONE, O3)..........................................................................46 1.2 CARBON MONOXIDE (CO).........................................................................................................................47 1.3 NITROGEN DIOXIDE (NO2) ........................................................................................................................48 1.4 SULFUR DIOXIDE (SO2) .............................................................................................................................49 1.5 PARTICLES.................................................................................................................................................50

APPENDIX 2. PRELIMINARY TIME SERIES REGRESSION ANALYSIS........................................53

2.1 STUDY DESIGN ..........................................................................................................................................53 2.2 STUDY AREA, STUDY POPULATION AND DATA COLLECTION....................................................................54 2.3 STATISTICAL ANALYSIS.............................................................................................................................54 2.4 RESULTS ....................................................................................................................................................56 2.5 DISCUSSION...............................................................................................................................................60

APPENDIX 3. COMMENCEMENT MONTH AND YEAR OF MONITORING FOR AIR

POLLUTANTS IN THE PERTH METROPOLITAN AREA .......................................................................61

APPENDIX 4. SELECTED INTERPOLATED AND MODELLED PM2.5 CONCENTRATION

CONTOURS FOR PERTH................................................................................................................................62

APPENDIX 5. DAILY NUMBER OF DEATHS BETWEEN 1992 AND 1996........................................63

APPENDIX 6. AIR POLLUTION CONCENTRATIONS AND METEOROLOGICAL

PARAMETERS .............................................................................................................................................64

APPENDIX 7. ASSOCIATION BETWEEN METEOROLOGICAL AND

POLLUTION MEASURES ...............................................................................................................................65

APPENDIX 8. CASE-CROSSOVER ANALYSIS RESULTS – MORTALITY......................................66

8.1 CARDIOVASCULAR DISEASE MORTALITY: ODDS RATIO OF DEATH PER UNIT INCREASE IN POLLUTANT, WITH

95% CONFIDENCE INTERVALS ...........................................................................................................................66 8.2 RESPIRATORY MORTALITY: ODDS RATIO OF DEATH PER UNIT INCREASE IN POLLUTANT, WITH 95%

CONFIDENCE INTERVALS....................................................................................................................................68 8.3 ‘OTHER’ MORTALITY: ODDS RATIO OF DEATH PER UNIT INCREASE IN POLLUTANT, WITH 95% CONFIDENCE

INTERVALS ........................................................................................................................................................70

APPENDIX 9. DAILY NUMBER OF HOSPITALISATIONS BETWEEN 1992 AND 1996 ................72

APPENDIX 10. CASE-CROSSOVER ANALYSIS RESULTS - HOSPITALISATIONS....................73

10.1 CARDIOVASCULAR DISEASE HOSPITALISATIONS: ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH

95% CONFIDENCE INTERVALS ...........................................................................................................................73 10.2 CARDIOVASCULAR DISEASE HOSPITALISATIONS (65+ YEARS): ODDS RATIO PER UNIT INCREASE IN

Page 12: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

9

POLLUTANT, WITH 95% CONFIDENCE INTERVALS..............................................................................................75 10.3 RESPIRATORY HOSPITALISATIONS: ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH 95%

CONFIDENCE INTERVALS....................................................................................................................................77 10.4 RESPIRATORY HOSPITALISATIONS (65+ YEARS): ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH

95% CONFIDENCE INTERVALS ...........................................................................................................................79 10.5 ASTHMA HOSPITALISATIONS: ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH 95% CONFIDENCE

INTERVALS ........................................................................................................................................................80 10.6 ASTHMA HOSPITALISATIONS (0-14 YEARS): ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH 95%

CONFIDENCE INTERVALS....................................................................................................................................82 10.7 ASTHMA HOSPITALISATIONS (65+ YEARS): ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH 95%

CONFIDENCE INTERVALS....................................................................................................................................84

10.8 COPD HOSPITALISATIONS: ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH 95% CONFIDENCE

INTERVALS ........................................................................................................................................................86 10.9 COPD HOSPITALISATIONS (65+ YEARS): ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH 95%

CONFIDENCE INTERVALS....................................................................................................................................88 10.10 PNEUMONIA HOSPITALISATIONS: ODDS RATIO PER UNIT INCREASE IN POLLUTANT , WITH 95%

CONFIDENCE INTERVALS....................................................................................................................................90 10.11 PNEUMONIA HOSPITALISATIONS (65+ YEARS): ODDS RATIO PER UNIT INCREASE IN POLLUTANT, WITH

95% CONFIDENCE INTERVALS ...........................................................................................................................92 10.12 GASTROINTESTINAL DISEASE HOSPITALISATIONS: ODDS RATIO PER UNIT INCREASE IN POLLUTANT,

WITH 95% CONFIDENCE INTERVALS ..................................................................................................................94 10.13 GASTROINTESTINAL DISEASE HOSPITALISATIONS (65+ YEARS): ODDS RATIO PER UNIT INCREASE IN

POLLUTANT, WITH 95% CONFIDENCE INTERVALS..............................................................................................96

APPENDIX 11. COMPARISON TO OTHER STUDIES - MORTALITY ...........................................98

APPENDIX 11.1 RESPIRATORY AND CARDIOVASCULAR MORTALITY: RISK OF DEATH PER UNIT INCREASE IN O3

(WITH 95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES .........................................................................98 APPENDIX 11.2 RESPIRATORY AND CARDIOVASCULAR MORTALITY: RISK OF DEATH PER UNIT INCREASE IN

NO2 (WITH 95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES .................................................................99 APPENDIX 11.3 CARDIOVASCULAR MORTALITY: RISK OF DEATH PER UNIT INCREASE IN FINE PARTICLES (WITH

95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES ...................................................................................100

APPENDIX 12 COMPARISON TO OTHER STUDIES - HOSPITALISATIONS .................................101

APPENDIX 12.1 RESPIRATORY AND CARDIOVASCULAR HOSPITALISATIONS: RISK OF HOSPITAL ADMISSION PER

UNIT INCREASE IN O3 (WITH 95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES .......................................101 APPENDIX 12.2 RESPIRATORY AND CARDIOVASCULAR HOSPITALISATIONS: RISK OF HOSPITAL ADMISSION PER

UNIT INCREASE IN PARTICLES (WITH 95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES...........................102 APPENDIX 12.3 RESPIRATORY AND CARDIOVASCULAR HOSPITALISATIONS: RISK OF HOSPITAL ADMISSION PER

UNIT INCREASE IN NO2 (WITH 95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES ....................................103

APPENDIX 12.4 RESPIRATORY AND CARDIOVASCULAR HOSPITALISATIONS: RISK OF HOSPITAL ADMISSION PER

UNIT INCREASE IN CO (WITH 95% CONFIDENCE INTERVALS) FROM VARIOUS STUDIES......................................104

Page 13: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

10

Page 14: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

11

1. Introduction

A large number of studies that have investigated the relationship between air quality and health

effects. Air pollution is cited as the major environmental issue of concern to the community

(Australian Bureau of Statistics 1998).

In the 1950s large increases in illness and death were associated with air pollution, most notably in

London (e.g. Mazumdar et al. 1982; Schwartz and Marcus 1990; Dockery and Pope 1994). By the

1970s, the relationship between respiratory disease and air pollution (particles and SO2) was

established but there was considerable debate about the concentrations at which impacts might occur

(Dockery and Pope 1994). Since that time many studies in Europe and the USA have been conducted

which have further established the relationship between air pollution and health effects. Increases in

hospitalisation, increases in emergency room attendance and decreased lung function have been

associated with a range of common air pollutants, the so-called criteria pollutants: carbon monoxide,

nitrogen dioxide, inhalable particles (measured as PM10), photochemical oxidants (measured as

ozone) and sulfur dioxide.

In 1998, the Parliamentary Select Committee on Perth’s Air Quality outlined its concern about the

potential health impacts of air quality in Perth, in particular photochemical smog and particulate haze.

Both ozone and particulate concentrations exceed national and international standards on occasions

throughout the year. Concentrations of SO2, NO2 and CO are all below national and international

standards in Perth with elevated levels being observed in specific areas impacted by point source

emissions (Department of Environmental Protection 2000).

Given the number of exceedences of ozone and particulate ambient air quality standards, the Select

Committee recommended that the Department of Environmental Protection (DEP) and Department of

Health of Western Australia facilitate research into air quality and health effects. The Government response

to the Select Committee report supported this view and recommended an evaluation of the research

requirements into health effects of air pollution and provision of advice on attainment of funding for health

research activities.

As part of the development of the Air Quality Management Plan (AQMP) for Perth, an Air Quality

Co-ordinating Committee (AQCC) was established with eight working groups, one of which was the

Health Research Working Group. The principal purpose of this group was to obtain expert opinion

and advice on health related research needs and priorities for Western Australia in the specific area of

air quality and to develop a preliminary list of research needs and priorities for further evaluation.

Only a few Australian studies have been conducted which have investigated the relationship between

Page 15: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

12

daily ambient air quality and health indicators. These studies have used one of the most common

types of study in air pollution research, the time series study, to investigate the health effects of air

pollution. Studies conducted in Sydney and Melbourne have shown that increases in air pollution

levels are associated with increased risks for daily mortality (Morgan et al. 1998; EPA Victoria 2000).

The Melbourne mortality study showed significant associations between ozone and nitrogen dioxide

for all-cause mortality and respiratory deaths (EPA Victoria 2000). Studies in Sydney, Melbourne and

Brisbane all reported increases in hospitalisations associated with air pollutants (Simpson et al. 1997;

Petroechevsky et al. 2000; Morgan et al. 1998; EPA Victoria 2001). Such studies provide some

support for the findings reported in the international literature (Dockery and Pope 1994; Schwartz

1994a, 1994b; Department of Health (UK) 1998).

Time series studies involve the collection and analysis of air pollution and health effects data (such as

mortality data) over a specified time period. Statistical analysis determines whether there is a

relationship between changes in air pollution levels and changes in mortality for specific diseases.

The numerous international time series studies have found significant associations between the criteria

pollutants and mortality. Many have shown a consistency across studies and the range of

meteorology, topographies and lifestyles of the different study centres (Pope et al. 1995; Katsouyanni

et al. 1995, 1996; Health Effects Institute 2000a, 2000b).

In the past few years, many researchers have been utilising the case-crossover design to investigate the

health effects of air pollution. The case-crossover design measures the effects of transient risk factors

for acute disease events. Each case is its own matched control and compared at different exposure

periods. The study design controls for all measured and unmeasured variables which do not vary with

time (Bateson and Schwartz 2001).

No comprehensive outdoor air pollution studies have been undertaken in Perth and it is possible that

factors such as lifestyle, meteorology and topography may influence exposure to pollutants even

though similar levels of pollutants are observed in Perth compared with other major Australian cities.

The Health Research Working Group considered that this may make it difficult to apply the results

from overseas studies to air pollution data available for Perth.

One of the highest priorities identified by the Health Research Working Group, therefore, was the

need to investigate the relationship between air quality and daily mortality and hospitalisations. Perth

provides an excellent opportunity to investigate such associations because it has a well established air

monitoring network and an accessible mortality and hospitalisation database. It is comparatively

isolated and has a population of about 1.25 million. There are several pockets of high industrial

activity and because the population is spread out, there is a high dependency on private motor

transport compared with public transport use. The city is generally free from trans-boundary pollution

Page 16: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

13

events, being generally subject to consistent wind from the Indian Ocean where the nearest land is

thousands of kilometres away and to offshore winds from regions of very low population density. On

certain occasions however in the colder months, temperature inversions occur when levels of some

pollutants become quite high, sometimes on several consecutive days. In addition the potential health

effects of ozone and particulates can be explored in the absence of other confounding chemicals such

as SO2.

This report outlines the study conducted and the findings for available air quality data and daily

mortality and daily hospitalisations.

1.1 Background on Common Air Pollutants in Perth

The following section introduces the sources, health and environmental effects, and ambient air

quality standards or guidelines of the main air pollutants monitored in the Perth metropolitan region.

The sources of air pollution are diverse and may be the result of direct emissions to the atmosphere

(i.e. primary pollutants) or undergo chemical changes in the air (i.e. secondary pollutants). The key

pollutants of interest are considered to be carbon monoxide (CO), nitrogen dioxide (NO2), particles

(measured as PM10 and Bsp) and photochemical smog (measured as ozone). SO2 was not included in

the analysis due to the negligible SO2 concentrations in the Perth metropolitan area, most being below

the limit of detection.

Monitoring in Perth and subsequent trend analysis shows that Perth has levels of air pollution which

may present health impacts. The levels of photochemical smog (ozone) in Perth during summer

regularly exceed national standards. During the winter months, a smoke haze frequently hangs over

Perth. In most cases these episodes of unacceptable air quality are influenced by weather conditions

that prevent air pollutants from dispersing rapidly. Concentrations of these pollutants are monitored

via a network of 13 ambient air quality stations which monitor a range of air pollutants. Different

parameters are monitored at the respective stations.

A detailed analysis of the air quality in the Perth metropolitan region is contained in the DEP’s Air

Quality in Perth 1992-1999 report (DEP 2001). In summary the report shows that:

• Ozone levels in summer are tending to remain high, approaching or exceeding the acceptable standard;

• Background levels of ozone are increasing;

• Airborne particle (haze) levels in winter are relatively high, and during spring and autumn are relatively low.

Page 17: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

14

The effects of air pollutants on human health range from a mild irritation of the airway to damage of

major organs such as the heart or lungs. Some air pollutants (e.g. ozone) may also exacerbate existing

conditions such as asthma or bronchitis. The level and duration of human exposure to a particular air

pollutant are linked to the health effects observed. For example, nitrogen dioxide may cause serious

health effects after several hours or days of exposure to high ambient concentrations whereas other

effects may be induced at higher concentrations over a much shorter time frame.

Ambient air quality standards, such as the National Environment Protection Measure for Ambient Air

Quality (Air NEPM), have primarily been based on human health data and existing Australian and

international standards (National Environment Protection Council, 1998). Established in June 1998,

the Air NEPM specifies air quality standards for the six most common urban air pollutants, the

‘criteria pollutants’: carbon monoxide (CO), nitrogen dioxide (NO2), photochemical smog (ozone),

sulfur dioxide (SO2), particles (PM10) and lead.

These air pollutants have impacts on regional and local air quality, but their significance lies in their

ubiquity and their effects on human health and the environment.

The goal of the Air NEPM is to achieve compliance by June 2008 with specified standards set down in

it. All governments are required to report annually on progress towards meeting the Air NEPM goal.

Programs to improve or maintain air quality, such as those developed through policies or management

plans, are the responsibility of each State or Territory government. It is proposed to implement the Air

NEPM in WA via a Statewide Environmental Protection Policy (EPP), which is currently being

developed. Achievement of compliance in Perth will be through Perth’s Air Quality Management

Plan.

Different averaging periods have been set for pollutants based on health, economic, social,

technological and environmental data. For example, there are two Air NEPM standards for NO2: a 1-

hour average and a 1-year average. The health effects of lead are related to long-term exposure, so the

averaging periods set in goals or standards tend to be for periods in the order of a few months or one

year as in the Air NEPM. Further details can be found in Appendix 1.

1.2 Health Effects of Air Pollutants

The health effects of air pollution, chiefly from industrial and transport emissions, have been studied

worldwide for many years (Comstock 1998).

A number of reviews have outlined the associations between air quality parameters and morbidity

which have shown consistency across studies and the range of weather patterns, topographies and

lifestyles of the different study centres (Pope et al. 1995; Thurston et al. 1992).

Page 18: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

15

Over the past 30 years, numerous studies from a variety of different locations have reported

associations between increases in air pollution and increases in hospital admissions (morbidity)

(Dockery et al. 1993; Schwartz 1994a, 1994b, 1994c; HEI 2000a; Samet et al. 2000). In Europe the

collaborative effort of researchers in 15 cities has also found such associations (Katsouyanni et al.

1995, 1996). A meta-analysis of 109 time series studies from 94 geographic areas in North America,

South America, Mexico, Europe, Asia, Australia and New Zealand found an increased risk of

respiratory mortality for all pollutants other than ozone, but not for circulatory mortality (Stieb et al.

2002). The research has demonstrated clear associations between mortality from many different

causes and levels of air pollution, and also rates of hospital admissions and pollution levels for many

different diseases. The precise components of the pollution that have the greater impact on health are

still issues of debate.

More recently, long-term effects have been investigated and increased risks of lung cancer and

cardiopulmonary mortality observed with increases in fine particulate concentrations (Pope et al.

2002).

Particulate and ozone concentrations have been associated with daily mortality and hospital

admissions in Australia (Morgan et al. 1998; Simpson et al. 1997, 2000; EPA Victoria 2000, 2001).

Several other studies have examined the effects of ambient air quality on asthma and other respiratory

disorders in Australia (Rennick and Jarman 1992; Christie et al. 1992; Abramson and Voigt 1991;

Robertson et al. 1992). One study of daily hospital admissions in the La Trobe Valley, Victoria, found

significant relationships between particulates (visibility) and nitrogen dioxide and hospital admissions

for chronic obstructive airways disease (Voigt et al. 1998). Photochemical smog has also been

associated with increased hospital admissions for asthma and COPD (Abramson et al. 1994).

A summary of some of the outcomes of some studies conducted to-date, relating to specific pollutants,

is outlined in Appendix 1. The information on the principal sources and health effects of the common

air pollutants presented in this section is taken from the Final Impact Statement for the Ambient Air

Quality National Environment Protection Measure (NEPC, 1998) and selected references.

Page 19: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

16

1.3 The Case-Crossover Study Design

The case-crossover design is used to study transient effects on the risk of acute-onset diseases. This

design samples cases, comparing each subject’s exposure to disease events to the subject’s own

exposure before the occurrence of the disease. Exposures for each subject during a designated period

before the disease event are compared with the distribution of exposure from a separate time period.

The case-crossover conditional logistic regression analysis (Bateson and Schwartz 1999) is more

robust and less prone to bias and confounding than the more standard time series regression analysis.

The case-crossover design does not require modelling of all variables. All season and trend effects are

removed. Because the event is the unit of analysis, in contrast with the day as in time series, factors

such as age and sex can also be estimated much more easily.

Another advantage of the case-crossover design is its ability to control potential confounders that do

not vary with time, since each individual (or population) forms its own stratum in which those factors

are identical (Bateson and Schwartz 1999).

An important step in the design of a case-crossover study is the choice of time interval between the

day of death or hospitalisation and at the control interval. The symmetric bi-directional design, with

two control points equally spaced either side of the hazard period or event is regarded as close to

optimal (Bateson and Schwartz 1999, 2001).

2. Objectives

The objectives of this study were to investigate the relationship between daily ambient air quality and

daily hospitalisation and daily mortality in Perth.

3. Methods

3.1 Study Design, Area and Population

A case-crossover design was used in this study to investigate the relationship between daily ambient

air quality and daily hospitalisation and daily mortality in the Perth metropolitan area between 1

January 1992 and 31 December 1997. A time series regression analysis as per the APHEA (Air

Pollution and Health European Approach) protocol was originally performed, however was limited in

the extent of modelling undertaken and was superseded by the case-crossover study design. The

method and results of the time series study are presented in Appendix 2.

Page 20: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

17

The study area encompassed metropolitan Perth (the Australian Bureau of Statistics (ABS)

Statistical Division) which is the area bounded by Rockingham in the south, Quinns Rocks in the north

and Rolling Green in the east (Figure 1). The area contains 13 monitoring stations also shown on

Figure 1. The 1996 ABS census estimate for this study area was 1,244,320 persons.

Figure 1 - Map of air quality monitoring sites in Perth as at 1/1/2000. (KIC, Kwinana Industries

Council: DEP Department of Environmental Protection)

3.2 Data Collection

3.2.1 Mortality Data

Mortality data were made available by the Registrar General of Western Australia. Information

available included underlying cause of death coded to The International Classification of Diseases

version 9 (ICD9) by the Australian Bureau of Statistics, date of birth, sex, postcode of residence and

date of death. There are approximately 12,000 deaths recorded annually in Perth.

Cause of death codes are made available on an annual basis by date of registration and so deaths were

taken from the 1/1/1992 to 30/12/1997. Many deaths are registered in the month following the actual

date of death and ICD codes for 1998 deaths were not available. Therefore, deaths registered in 1998

Page 21: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

18

were also checked for the date of death in case any 1997 deaths had been missed.

Four groups of causes of death were analysed separately: all causes excluding accidents, poisoning

and violence (ICD9 codes 001 to 799), cardiovascular (ICD9 codes 390 to 459), respiratory (ICD9

codes 460 to 529), and the first group excluding cardiovascular and respiratory causes for two age

groups (all ages and age 65 and over only).

3.2.2 Hospital Morbidity Data

Hospital morbidity data for the same period for all hospitals in the Perth metropolitan area were

selected. Only non-booked admissions were selected for respiratory, cardiovascular and

gastrointestinal admissions (ICD9-CM codes 390.00 to 579.99), noting that a record is completed

following discharge, not admission. Diagnoses were based on primary discharge obtained from the

patients’ charts. Other co-morbidity conditions could not be assessed. The hospitalisation data

provides an indication of acute episodes of illness and does not account for a history of health, which

may be important in predisposing an individual to an acute episode arising from an external insult such

as air pollution. There are approximately 500,000 hospital admissions each year for Western

Australia.

Eight groups of diagnoses were analysed separately: all respiratory (all ages and 65 and over only),

asthma (all ages and under 15 only), all cardiovascular, chronic obstructive pulmonary disease

(COPD: ICD codes 490.00 to 496.99 excluding asthma), pneumonia/influenza (ICD codes 480.00 to

489.99), and all gastrointestinal diseases (ICD codes 520.00 to 579.99) as a ‘control’ group of

admissions, for which there was no reason for anticipating any effects of air pollution.

All transfers from other hospitals were subsequently excluded. Residents living outside the

metropolitan area were excluded from the analysis as were death or hospitalisation from industry

(including exposure and injury).

3.2.3 Air Quality Data

Daily ozone, PM10, NO2, CO and Bsp have been measured since 1990. PM2.5 has been monitored

since 1994 using a tapered element oscillating microbalance (TEOM). PM10 was collected every 6

days by high volume sampler (HiVol). The number and location of stations monitoring specific

pollutants has varied depending on specific projects. Appendix 3 shows the monitoring data available

in the Perth metropolitan area for this study.

The most complete data set with the highest number of days with co-located instruments was from the

Caversham, Swanbourne and Queens Buildings sites and these were used to generate the daily air

Page 22: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

19

quality data for the pollutants investigated with the exception of PM2.5 which is discussed below.

PM10 was not included in this study due to the sampling frequency. It should be noted that ozone is

not monitored at the Queens Buildings site and CO is not monitored at the Swanbourne site. While

Queens Buildings is located in the centre of Perth City, the concentrations of ozone and particulates

are not necessarily elevated at this site compared with other suburban sites. SO2 was not included in

the analysis due to the negligible SO2 concentrations in the Perth metropolitan area, most being below

the limit of detection.

Two approaches to aggregating air quality data were used to provide a daily exposure estimate for

each parameter. Data were averaged for the combined metropolitan sites and the three sites used to

generate daily data for this study. The averages for each pollutant and each method of generating a

daily estimate were comparable with no statistically significant differences, indicating that the use of

the three sites was acceptable as a surrogate for data across the entire network. The use of the three

locations was in accordance with the APHEA protocol that attempts to ensure the use of data from co-

located monitors.

The averaging times selected were based on both international and Australian standards (Table 3.1).

The averaging periods listed in Table 3.1 were used for each pollutant in subsequent analyses.

Table 3.1 - Averaging periods and units of measure for each pollutant

Pollutant Averaging Time Unit of Measure Ozone 1h, 4h, 8h ppb Nitrogen Dioxide 1h, 24h ppb CO 8h ppm PM2.5 24h* µg/m3 Bsp 1h, 24h 2.1 x 10-4 m-1

* Modelled estimates

Daily temperature, wind speed and direction, dew point temperature and relative humidity were

obtained by averaging the data from the monitoring stations. These data were compared with the

Bureau of Meteorology averages to validate the use of data collected from individual fixed air

monitoring stations.

Page 23: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

20

3.2.4 Particulate (PM2.5) Dispersion Modelling

Measurements made at a mix of locations in the Perth region have shown that in winter when high

particulate concentrations are most common, there is a strong relationship between the density of

population about each site and the particulate concentrations measured. Measurement of particles and

numerical modelling studies have confirmed that daily averages vary considerably across the region,

being largest near centres of highest population density.

Due to the limited number of particulate monitoring sites and the large variations in population density

and subsequent particle concentrations, no single site value, nor a simple average over all sites, was

considered likely to provide an accurate estimate of the average exposure of the city’s population.

Had the trend of population between the monitoring sites been uniform, a simple interpolation,

generating a map of average concentrations, would have formed a useful basis for exposure

assessment. However, given the noted variations of population density, this approach was unlikely to

provide reasonable estimates.

While a totally accurate model was not available, modelling studies had shown that it was relatively

easy to simulate the overall daily average concentration pattern. Although there remained significant

errors (probably related to the limited knowledge of meteorological conditions and of the actual

particulate emissions pattern), it was considered that the modelled concentration distribution, scaled to

match available measurements, would form a better basis for exposure assessment.

The modelling work was conducted using a Guassian plume dispersion model, with the particulate

emission rate for each location presumed proportional to population density. Each day of a winter

season was modelled separately, giving for each a grid map of estimated daily average concentrations.

From this map, modelled concentrations for each particulate measurement site were determined.

For a totally accurate model, these concentrations would have matched measurements, giving a ratio

of one at each site. In practice, the ratios differed from one, and varied across the modelled region.

However, it was possible to interpolate this set of ratios, to develop a grid map of correction factors for

the region.

The best estimate for each model grid point was then taken as the product of the modelled

concentration and the interpolated ratio of measured to modelled concentration. These estimates

matched all measurements, and also varied between measurement sites in a manner consistent with

model calculations.

Page 24: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

21

To further enhance the accuracy of dosage estimates, the relationship between particulate

concentrations and optical backscatter coefficient (Bsp) was studied. For the winter haze events, it

was found that there was a linear relationship, which for Bsp over 2 was:

[PM2.5] = 17.86 Bsp + 3.69 µg/m3

With this relationship, it was possible to use Bsp measurements to enhance the data set used in

interpolations.

Appendix 4 shows the interpolated and modelled PM2.5 concentration contours for Perth.

3.3 Statistical Analysis

This study used symmetric bi-directional design with a referent spacing interval of seven days and

conditional logistic regression to produce odds ratios. This short interval adjusts for weekly

seasonality automatically. This choice was considered to reduce bias (Bateson and Schwartz 2001).

Individual admissions were considered as cases and matched to exposure levels 7 days prior to and

post the actual day of admission or mortality, providing two control admissions. Comparisons

between cases and controls were then made using conditional logistic regression (Bateson and

Schwartz 1999). Before examining the effect of pollutants, all daily weather variables (temperature

and humidity) were examined. Variables indicating public holidays and day of the week were

included. However, only the most significant effects were included when pollutants were added to the

model. In every case, this was with the lag 1 values. Each pollutant was entered into its own

predictive model for different lag periods. For each particular pollutant, the residuals from the

adjusted model for each separate outcome were regressed on each combination of each type of lag

(0,1,2,3,0-1, 0-2, 0-3) days and each averaging period (1h, 4h, 8h, 24h).

Each category of hospitalisation and mortality data was analysed in relation to NO2, O3, particulate

(PM2.5 modelled and Bsp) and CO concentrations. Gastrointestinal hospitalisations were used as a

comparison group. Additional analyses were performed for hospitalisations for those aged over 65

years and for asthma hospitalisations for those aged under 15 years.

Days for which no measures of a particular pollutant had been made were ignored in the analysis

involving the specific pollutant. When days of missing data occur randomly—as was the case in this

data set—this method is not likely to introduce selection bias.

To explore the potential interaction of season and exposure, a binary season indicator was included

and a likelihood ratio test for its interaction with exposure was undertaken.

Page 25: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

22

In the context of case-crossover study, the odds ratios produced by the analysis are equivalent to

relative risks.

4. Results

4.1 Mortality

Between 1992 and 1996 the average number of daily deaths was 26.8 with an average of between 2.1

and 2.4 deaths attributable to respiratory disease. By comparison 11.6 deaths were attributed to

cardiovascular disease. Most of these deaths occur in the age group over 65 years (Appendix 5).

Daily pollutant concentrations and meteorological parameter measures are presented in Appendix 6.

The association between air pollutant concentrations, seasonality and meteorological parameters is

also shown in Appendix 7. As expected significant correlations between ozone and particulates and

temperature as well as CO concentrations and NO2 and particulates were found.

The odds ratio and 95% confidence intervals were plotted for each pollutant and disease category for

the case-crossover analysis. These are shown in Figures 2-10.

The results of the case-crossover analysis showed no significant associations between changes in daily

pollutant concentrations and respiratory mortality (Appendix 8.2). Significant odds ratios were

observed for changes in 4-hr and 8-hr ozone concentrations and daily cardiovascular disease (CVD)

mortality with an estimated 0.2% to 0.45% increase per ppb of ozone (Figures 6 and 7). Elevated odds

ratios were also observed for the 1-hr ozone concentration and CVD mortality, however the estimates

did not reach statistical significance.

A significant association was also observed for the relationship between changes in the 8-hour carbon

monoxide concentrations and ‘other’ mortality (Appendix 8.3).

No associations were observed for concentrations of particles, CO, O3 and NO2 and all mortality.

Page 26: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.98

0.991

1.01

1.02

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.98

0.991

1.01

1.02

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Res

pir

ato

ry M

ort

alit

y

CO

PD

Mo

rbid

ity

0.98

0.991

1.01

1.02

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

CV

D M

orb

idit

y

0.98

0.991

1.01

1.02

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Res

pir

ato

ry M

orb

idit

y

0.98

0.991

1.01

1.02

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Pn

eum

on

ia M

orb

idit

y

Oth

er M

ort

alit

y

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

Lag

CV

D M

ort

alit

y

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

Lag

GI M

orb

idit

y

Ast

hm

a M

orb

idit

y

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 2

: O

dd

s R

atio

Per

Un

it In

crea

se in

PM

2.5

(24-

hr)

g/m

3 )

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

Lag

Odds Ratio (95% CI)

0.98

0.991

1.01

1.02

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

Page 27: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.92

0.96 1

1.04

1.08

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.92

0.96 1

1.04

1.08

Lag

0.92

0.96 1

1.04

1.08

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.92

0.96 1

1.04

1.08

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.92

0.96 1

1.04

1.08

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.92

0.96 1

1.04

1.08

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.92

0.96 1

1.04

1.08

01

23

+1

+2

+3

Lag

0.92

0.96 1

1.04

1.08

01

23

+1

+2

+3

Lag

Resp

iratory M

ortality

CO

PD

Mo

rbid

ityC

VD

Mo

rbid

ity

Resp

iratory M

orb

idity

Pn

eum

on

ia Mo

rbid

ity

Oth

er Mo

rtalityC

VD

Mo

rtality

GI M

orb

idity

Asth

ma M

orb

idity

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 3: O

dd

s Ratio

Per U

nit In

crease in N

eph

(1-hr)(B

sp)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0.92

0.96 1

1.04

1.08

01

23

+1

+2

+3

Lag

0All

12

+1

+2

065+

+3

32

+1

+3

13

02

+1

13

+2

+2

+3

Page 28: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.51

1.5

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.51

1.5

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.51

1.5

01

23

+1

+2

+3

Lag

0.51

1.5

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.51

1.5

01

23

+1

+2

+3

Lag

0.51

1.5

01

23

+1

+2

+3

Lag

0.51

1.5

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.51

1.5

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.51

1.5

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Res

pir

ato

ry M

ort

alit

y

CO

PD

Mo

rbid

ity

CV

D M

orb

idit

y

Res

pir

ato

ry M

orb

idit

yP

neu

mo

nia

Mo

rbid

ity

Oth

er M

ort

alit

yC

VD

Mo

rtal

ity

GI M

orb

idit

y

Ast

hm

a M

orb

idit

y

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 4

: O

dd

s R

atio

Per

Un

it In

crea

se in

Nep

h (

24-h

r)(B

sp)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Page 29: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

26

4.2 Hospitalisations

The number of hospitalisations on an average day for respiratory disease was between 19.3 (summer)

and 31.0 (winter) with 6.9 and 10.7 respectively for asthma, with just over half of these being children

(Appendix 9).

Daily pollutant concentrations and meteorological parameter measures are presented in Appendix 6.

The association between air pollutant concentrations, seasonality and meteorological parameters is

also shown in Appendix 7. As expected significant correlations between ozone and particulates and

temperature as well as CO concentrations and NO2 and particulates were found.

The odds ratio and 95% confidence intervals were plotted for each pollutant and disease category.

These are shown in Figures 2-10.

4.2.1 Particle Concentrations

Changes in CVD hospitalisations with particle concentrations as derived from modelled PM2.5 and

nephelometry (Bsp) were examined (Figures 2-4). There were no significant associations observed,

however there were significant interactions with season in the winter direction (Appendices 10.1 and

10.2).

Changes in 24-hour PM2.5 concentrations were significantly associated with respiratory

hospitalisation, with an estimated 0.17% increase in respiratory disease hospitalisation for a change in

1 µg/m3 (Figure 2; Appendix 10.3). When respiratory hospitalisations for those aged 65 and over

were examined, a significant odds ratio was observed for changes in 1-hour maximum particle

concentrations as derived from nephelometer measurements (Bsp), with elevated odds ratios observed

for the 24-hr Bsp metric (Figures 3 and 4; Appendix 10.4).

The results for asthma hospitalisation showed a significant association with changes in 24-hour PM2.5

concentrations for all age groups and those aged under 15 years (Figure 2; Appendices 10.5 and 10.6).

An estimated 0.3% increase in asthma hospitalisation for children (0 to 14 years of age) was observed

with changes in 1 µg/m3. However, for those aged 65 years and over, no significant associations were

found between particles and asthma hospitalisation (Appendix 10.7).

The 1-hour maximum and 24-hr average particle concentrations derived from nephelometer

measurements were associated with a significant odds ratio for COPD hospitalisation for all ages and

for those over 65 years of age with estimates of between 4 and 24% per unit increase.(Figures 3 and 4;

Appendices 10.8 and 10.9). No other statistically significant results were observed, although elevated

odds ratios were evident. No significant seasonal interactions were seen.

Page 30: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

27

Pneumonia hospitalisations for all ages were associated with increases in 24-hour PM2.5 and 1-hour

maximum particle concentrations as derived from nephelometer measurements (Bsp) and for those

aged 65 years and over. Elevated, but not significant odds ratios were also observed for the

association between pneumonia hospitalisations and 24-hr particle measured by nephelometer (Figures

2-4; Appendices 10.10 and 10.11).

There were no associations observed between changes in particle concentrations and gastrointestinal

diseases.

4.2.2 Ozone Concentrations

No significant associations were seen between CVD hospitalisations and ozone (Figures 5-7).

However, there were significant interactions with season in the winter direction (Appendices 10.1 and

10.2).

Changes in daily ozone concentrations were associated with respiratory morbidity, reaching

significance at lag 0 for both the 1-hour and 4-hour maxima concentrations (Figures 5 and 6;

Appendix 10.3). There was also a significant seasonal interaction for winter. When hospitalisations

for respiratory disease for those aged over 65 were examined, no significant odds ratios were

observed, however there was a significant interaction for season in the winter direction (Appendix

10.4).

Elevated odds ratios were observed for the relationship between asthma hospitalisation and daily

ozone concentrations for all ages, reaching significance for the 1-hour ozone concentration at lag 0

with an estimated 0.3% increase in asthma hospitalisation for children aged between 0 and 14 years

(Figure 5; Appendices 10.5 and 10.6). While elevated odds ratios were seen for those over 65 years,

the results did not reach significance (Appendix 10.7). No significant seasonal interactions were seen.

A significant odds ratio was also observed for COPD morbidity in association with 4-hour ozone

concentrations with elevated estimates for all other averaging periods (Figure 6; Appendix 10.8).

Similar patterns were observed for those aged over 65 years, however the results did not reach

significance (Appendix 10.9).

No significant associations were found between ozone concentrations and pneumonia hospitalisation

for all ages and for those aged 65 years and over, however many elevated odds ratios were observed

with wide confidence intervals (Figures 5-7; Appendices 10.10 and 10.11).

There were no associations between changes in ozone concentrations and hospitalisations for

gastrointestinal diseases.

Page 31: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.98

0.99 1

1.01

01

23

+1

+2

+3

Lag

0.98

0.99 1

1.01

01

23

+1

+2

+3

Lag

0.98

0.99 1

1.01

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.98

0.99 1

1.01

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0.98

0.99 1

1.01

0.98

0.99 1

1.01

01

23

+1

+2

+3

Lag

0.98

0.99 1

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

Odds Ratio (95% CI)

0.98

0.99 1

1.01

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

0All

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Resp

iratory M

ortality

CO

PD

Mo

rbid

ityC

VD

Mo

rbid

ity

All

65+

Lag

Resp

iratory M

orb

idity

Pn

eum

on

ia Mo

rbid

ity

Oth

er Mo

rtalityC

VD

Mo

rtality

GI M

orb

idity

Asth

ma M

orb

idity

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 5: O

dd

s Ratio

Per U

nit In

crease in O

3 (1-hr)(p

pb

)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

0.98

0.99 1

1.01

Page 32: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.98

0.991

1.01

1.02

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

Lag

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

Lag

0.98

0.991

1.01

1.02

01

23

+1

+2

+3

Lag

All

65+

Lag

All

65+

Lag

Odds Ratio (95% CI)

All

65+

Lag

All

65+

Lag

Res

pir

ato

ry M

ort

alit

y

CO

PD

Mo

rbid

ity

CV

D M

orb

idit

y

All

65+

Lag

Res

pir

ato

ry M

orb

idit

yP

neu

mo

nia

Mo

rbid

ity

Oth

er M

ort

alit

yC

VD

Mo

rtal

ity

GI M

orb

idit

y

Ast

hm

a M

orb

idit

y

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 6

: O

dd

s R

atio

Per

Un

it In

crea

se in

O3

(4-h

r)(p

pb

)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

Page 33: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.97

0.99

1.01

0.97

0.99

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.97

0.99

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.97

0.99

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.97

0.99

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.97

0.99

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.97

0.99

1.01

01

23

+1

+2

+3

Lag

0.97

0.99

1.01

01

23

+1

+2

+3

Lag

0.97

0.99

1.01

01

23

+1

+2

+3

Lag

All

65+

Lag

All

65+

Lag

Odds Ratio (95% CI)

All

65+

Lag

All

65+

Lag

Resp

iratory M

ortality

CO

PD

Mo

rbid

ityC

VD

Mo

rbid

ity

All

65+

Lag

Resp

iratory M

orb

idity

Pn

eum

on

ia Mo

rbid

ity

Oth

er Mo

rtalityC

VD

Mo

rtality

GI M

orb

idity

Asth

ma M

orb

idity

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 7: O

dd

s Ratio

Per U

nit In

crease in O

3 (8-hr)(p

pb

)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

Page 34: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

31

4.2.3 Nitrogen Dioxide

For the all ages and 65+ years age groups, a significant association was observed between changes in

24-hr NO2 concentrations and CVD hospitalisations (Figure 9; Appendices 10.1 and 10.2). A

significant association between 1-hr NO2 concentrations and CVD hospitalisations was also observed

for those aged 65 years and over (Figure 8).

No associations were observed between changes in daily NO2 concentrations and asthma

hospitalisations (Figures 8 and 9; Appendices 10.3 and 10.5-10.7). A significant association was

observed between 24-hr NO2 concentrations and respiratory disease hospitalisations for the 65+ years

age group for lag 1 with elevated odds ratios observed for other lags (Appendix 10.4). This estimate

has a wide confidence interval.

No associations were observed between changes in daily NO2 concentrations and COPD and

pneumonia hospitalisations although, as with other disease categories, elevated odds ratios with wide

confidence intervals were observed (Figures 8 and 9; Appendices 10.8-10.11).

No associations were seen between nitrogen dioxide concentrations and gastrointestinal

diseases.

4.2.4 Carbon Monoxide

No associations were observed between changes in daily CO concentrations and respiratory, asthma,

COPD, pneumonia or CVD hospitalisations (Figure 10). Where elevated estimates were observed,

these were associated with very wide confidence intervals.

No significant associations were observed between daily CO concentrations and the control disease

group of gastrointestinal diseases (Figure 10; Appendices 10.12 and 10.13). Some significant

interactions for winter were observed for those aged over 65 years (Appendix 10.13).

Page 35: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

32

5. Discussion

The results of this study showed that changes in air quality in Perth may increase the risks of

cardiovascular mortality. The significant finding for ozone concentrations provides estimates of

between 2 and 4% increase in mortality with every 10 ppb change in ozone concentration. Elevated

odds ratios for cardiovascular mortality in relation to NO2 concentrations were also observed,

however none of the results reached statistical significance. Similar findings have been reported for

Brisbane and Sydney as well as for other cities around the world (Appendix 11)(Morgan et al. 1998;

Simpson et al. 1997; Dockery et al. 1993).

The significant finding for carbon monoxide and ‘other mortality’ is difficult to interpret as ‘other’

mortality consists of many diseases which may not be associated with air pollution and CO

concentrations are considered relatively low in Perth. The finding may be a spurious one, particularly

in view of the generally low point estimates for the different lags tested.

No other significant relationships between daily mortality and daily changes in pollutant

concentrations were detected.

Changes in daily 1-hour and 4-hour ozone concentrations were also associated with increased

hospitalisation for respiratory diseases (all ages), asthma (0-14 years of age) and COPD (all ages).

Studies in Brisbane and Melbourne have also found similar associations (Appendix 12)

(Petroeschevsky et al. 2001; EPA Victoria 2001). They were not associated with CVD

hospitalisations despite changes in ozone concentration being associated with CVD mortality.

Daily NO2 concentrations were found to be significantly associated with respiratory disease

hospitalisation in the 65 years and above age group, with elevated non-significant estimates also

observed. NO2 concentrations were also associated with significant CVD hospitalisations for the all

age category and those aged over 65, supporting the findings of studies in Sydney and Melbourne.

This result is surprising given the low, NO2 levels in Perth, however the result pertains to changes in

pollutant levels and not concentration ranges per se. Other Australian studies have shown mixed

results for associations between daily nitrogen dioxide concentrations and hospitalisations (Appendix

12). No significant relationships between nitrogen dioxide and respiratory or cardiovascular hospital

admissions were found in Brisbane, while strong significant associations between nitrogen dioxide and

hospital admissions for asthma in the 0-14 years age group as well as for heart disease have been

reported for Sydney (Petroeschevsky et al. 2001; Morgan et al. 1998).

In this study, no associations were observed between changes in daily CO concentrations and

respiratory, asthma, COPD, pneumonia or CVD hospitalisations, unlike other Australian and

Page 36: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.98

0.991

1.01

0.98

0.991

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

01

23

+1

+2

+3

01

23

+1

+2

+3

0.98

0.991

1.01

01

23

+1

+2

+3

Lag

0.98

0.991

1.01

01

23

+1

+2

+3

Lag

0.98

0.991

1.01

01

23

+1

+2

+3

Lag

All

65+

Lag

All

65+

Lag

Odds Ratio (95% CI)

All

65+

Lag

All

65+

Lag

Res

pir

ato

ry M

ort

alit

y

CO

PD

Mo

rbid

ity

CV

D M

orb

idit

y

All

65+

Lag

Res

pir

ato

ry M

orb

idit

yP

neu

mo

nia

Mo

rbid

ity

Oth

er M

ort

alit

yC

VD

Mo

rtal

ity

GI M

orb

idit

y

Ast

hm

a M

orb

idit

y

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 8

: O

dd

s R

atio

Per

Un

it In

crea

se in

NO

2 (1

-hr)

(pp

b)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

Page 37: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.96

0.98 1

1.02

01

23

+1

+2

+3

Lag

0.96

0.98 1

1.02

01

23

+1

+2

+3

Lag

0.96

0.98 1

1.02

01

23

+1

+2

+3

Lag

0.96

0.98 1

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.96

0.98 1

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.96

0.98 1

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.96

0.98 1

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.96

0.98 1

1.02

01

23

+1

+2

+3

01

23

+1

+2

+3

0.96

0.98 1

1.02

All

65+

Lag

All

65+

Lag

Odds Ratio (95% CI)

All

65+

Lag

All

65+

Lag

Resp

iratory M

ortality

CO

PD

Mo

rbid

ityC

VD

Mo

rbid

ity

All

65+

Lag

Resp

iratory M

orb

idity

Pn

eum

on

ia Mo

rbid

ity

Oth

er Mo

rtalityC

VD

Mo

rtality

GI M

orb

idity

Asth

ma M

orb

idity

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 9: O

dd

s Ratio

Per U

nit In

crease in N

O2 (24-h

r)(pp

b)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0All

12

3+1

+2

+3

00-14

12

3+1

+2

+3

065+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

Page 38: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

0.88

0.941

1.06

1.12

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

01

23

+1

+2

+3

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

01

23

+1

+2

+3

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

01

23

+1

+2

+3

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

01

23

+1

+2

+3

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

01

23

+1

+2

+3

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

Lag

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

Lag

0.88

0.941

1.06

1.12

01

23

+1

+2

+3

Lag

All

65+

Lag

All

65+

Lag

Odds Ratio (95% CI)

All

65+

Lag

All

65+

Lag

Res

pir

ato

ry M

ort

alit

y

CO

PD

Mo

rbid

ity

CV

D M

orb

idit

y

All

65+

Lag

Res

pir

ato

ry M

orb

idit

yP

neu

mo

nia

Mo

rbid

ity

Oth

er M

ort

alit

yC

VD

Mo

rtal

ity

GI M

orb

idit

y

Ast

hm

a M

orb

idit

y

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

FIG

UR

E 1

0: O

dd

s R

atio

Per

Un

it In

crea

se in

CO

(8-

hr)

(pp

m)

Odds Ratio (95% CI)

Odds Ratio (95% CI)

0

All

12

3+1

+2

+3

0

0-14

12

3+1

+2

+3

0

65+

12

3+1

+2

+3

Lag

Odds Ratio (95% CI)

Page 39: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

36

international studies (EPA Victoria 2001; Burnett et al. 1997). This may be explained by the

relatively low CO concentrations experienced in Perth and a decreasing trend in carbon monoxide

concentrations.

Changes in daily PM2.5 concentrations were found to be significantly associated with

respiratory disease and asthma hospitalisation. Similar findings have been reported for

Brisbane, Melbourne and Sydney (Petroeschevsky et al. 2001; EPA Victoria 2001; Morgan et

al. 1998). Strong associations between particles and hospital admissions for respiratory

diseases as well as cardiovascular disease have been found in many international studies (e.g.

Schwartz, 1994a, 1994b, 1994c, 1996; Samet et al. 2000).

While there are differences in the statistical analysis methodology, the significant associations

found in the case-crossover study were comparable to those found in other Australian studies

and the time series analysis reported in Appendix 2.The time series analysis of the same data

as that used in the case-crossover study showed similar associations with the exception of the

mortality results (Appendix 2). The time series study design used and analysis method may

not have been the optimal model for Perth. As some pollutants may be sensitive to the type of

temporal filter used, different temporal filters need to be tested on the Perth data to determine

the robustness of the results. Nevertheless, the use of two analysis methods has yielded

similar results confirming subsequent conclusions. The significant effects noted for

gastrointestinal (GI) disease in the time series study (Appendix 2) can be explained by chance

as effects were only observed for one lag period and GI admissions did follow a markedly

seasonal pattern with many more admissions in summer. Curiously, GI admissions showed

an almost 100% increase from 1996 to 1997 which indicates coding changes or some other

error that requires follow up with the Health Department. The APHEA approach may have

resulted in mis-specification of the time series model inducing a spurious association.

6. Limitations

The limitations of this study are similar to those of time series studies: its inability to distinguish

between mixtures of pollutants; its difficulty in determining independent effects from a range of

interrelated, correlated factors; and the confounding of co-pollutant effects. One of the most

significant problems is the limited exposure data available. The exposure data were taken from only

Page 40: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

37

three monitoring stations in the network and therefore may not be representative of the study

population.

The case-crossover study design can allow selection bias and confounding by factors that vary with

time (Bateson and Schwartz 2001). Selection bias occurs when the reference periods are selected on

days that are not in the study base that produced the cases. All days in our study served as hazard and

reference days, hence selection bias does not occur.

7. Concluding Remarks

Air quality in Perth has been associated with increased risks of hospitalisation for cardiovascular and

respiratory diseases including asthma and increased risks of cardiovascular mortality. Particulate

concentrations were significantly associated with increased respiratory disease hospitalisations for the

elderly and those aged under 14 years. These findings are robust with the application of different

analysis techniques and are consistent with the findings of other researchers reported in the national

and international literature.

For the first time we have population level data for Perth which suggests emissions to the airshed are

having impacts on the health of Western Australians. These data will aid the further development and

implementation of the Air Quality Management Plan for Perth, and development of a targetted

research program to confirm the impact of Perth’s air quality on the health of Western Australians and

to measure the success of air quality programs into the future.

Page 41: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

38

8. References

Abbey, DE, Petersen, F, Mills, PK, & Beeson, WL (1993a) ‘Long-term ambient concentration of total

suspended particulates, ozone and sulfur dioxide and respiratory symptoms in a non-smoking

population’, Arch. Env. Health, 48(1): 33-46.

Abbey, DE et al. (1993b) ‘Chronic disease associated with long term concentration of nitrogen

dioxide’, J. Anal. Environ. Epidemiol, 3: 181.

Abbey, DE, Ostro, BE, Petersen, F, & Burchette, RJ (1995) ‘Chronic respiratory symptoms associated

with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in

aerodynamic diameter (PM2.5) and other air pollutants’, Journal of Exposure Analysis and

Environmental Epidemiology, 5(2): 137–159.

Abramson, M, & Voigt, T (1991) ‘Ambient air pollution and respiratory disease’, Med. J. Aust.,

154(8): 543.

Abramson, M, Pearson, L, Kutin, J (1994) ‘Allergies, upper respiratory tract infections and asthma’,

J. Asthma, 31(5): 367.

Australian Bureau of Statistics (1998) Environmental Issues: People’s Views and Practices, Canberra,

ACT.

Australian Academy of Technological Sciences and Engineering (1997) Inquiry into Urban Air

Pollution in Australia, Canberra, ACT.

Bascom, R, Bromberg, PA, Costa, DA, Devlin, R, Dockery, DW, Frampton, MW, Lambert, W, Samet,

JM, Speizer, FE, & Utell, M (1996) ‘Health effects of outdoor air pollution: Part 1’, Am. J. Respir.

Crit. Care Med., 153: 477-498.

Bates et al (1995) ‘Adverse health impacts of air pollution – continuing problems’, Scandinavian

Journal of Work, Environment and Health, 21(6): 405.

Bateson, TF, & Schwartz, J (1999) ‘Control for seasonal variation and time trend in case-crossover

studies of acute effects of environmental exposures’ Epidemiology, 10: 539-544.

Bateson, TF, & Schwartz J (2001) ‘Selection bias and confounding in case-crossover analyses of

environmental time-series data’, Epidemiology, 12: 654-661.

Page 42: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

39

Burnett, RT, Brook, JR, Yung, WT, Dales, RE, & Krewski, D (1997) ‘Association between ozone

and hospitalisation for respiratory diseases in 16 Canadian cities’, Env. Res., 72: 24.

Castillejos, M, Gold, D, & Dockery, D (1992) ‘Effects of ambient ozone on respiratory function and

symptoms in Mexico City school children’ Am Rev. Respir. Disease, 145(2): 1.

Chen, PC, Lai, YM, Wang, JD, Yang, CY, Hwang, JS, Kuo, HW, Huang, SL, & Chuan, CC (1998)

‘Adverse effects of air pollution on respiratory health of primary school children in Taiwan’,

Environmental Health Perspectives, 106(6): 331-335.

Christie, D, Spencer, L, & Senthilselvan, A (1992) ‘Air quality and respiratory disease in Newcastle,

New South Wales’, Medical Journal of Australia, 156: 841.

Comstock, ML (1998) ‘Diesel exhaust in the occupational setting. Current understanding of

pulmonary health effects’, Clinical Lab. Medicine, 18(4): 767-79.

Delfino, RJ, Becklake, MR, & Hanley, JA (1994) ‘The relationship of urgent hospital admissions for

respiratory illnesses to photochemical air pollution levels in Montreal’ Environmental Research, 67: 1-

19.

Department of Environmental Protection (2000) Perth’s Air Quality – State of Knowledge, Perth, WA.

Department of Environmental Protection (2001) Air Quality in Perth 1992-1999, Perth, WA.

Department of Health (UK) (1998) Quantification of the Effects of Air Pollution on Health in the

United Kingdom, Committee on the Medical Effects of Air Pollutants, Her Majesty’s Stationery

Office.

Dockery, D, Schwartz, J, & Spengler, J (1992) ‘Air pollution and daily mortality in St Louis and

Eastern Tennessee, Ohio’ Environmental Research, 59: 216.

Dockery, DW, Pope, C, Xu, X, Spengler, JD, Ware, JH, Fay, ME, Ferris, BG, & Speizer, FE (1993)

‘An association between air pollution and mortality in six U.S. cities’, The New England Journal of

Medicine, 329(24): 1753–1759.

Dockery, DW and Pope, III, CA (1994) ‘Acute respiratory effects of particulate air pollution’, Ann.

Rev. Public Health, 15: 107–132.

Environmental Protection Authority (Vic) (2000), Melbourne Mortality Study – Effects of Ambient Air

Pollution on Daily Mortality in Melbourne 1991 –1996, Melbourne, Victoria.

Environmental Protection Authority (Vic) (2001), Ambient Air Pollution and Daily Hospital

Page 43: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

40

Admissions in Melbourne 1994-1997, Melbourne, Victoria.

Hall, JV (1996) ‘Assessing health effects of air pollution’, Atmospheric Environment, 30: 743.

Health Effects Institute (HEI) (2000a), Association of Particulate Matter Components with Daily

Mortality and Morbidity in Urban Populations, Report No. 95, HEI.

Health Effects Institute (2000b), National Morbidity, Mortality and Air Pollution Study, Parts 1 and 2,

Report No. 94, HEI.

Ito, K, and Thurston, GD (1996) ‘Daily PM10/mortality associations: an investigation of at-risk

subpopulations’, Journal of Exposure Analysis and Environmental Epidemiology, 6(1): 79-95.

Katsouyanni, K, Zimirou, D, Spix, C, Sunyer, J, Schounten, JP, Pönkä, A, Anderson, HR, Le Moullec,

Y, Wojtyniak, B, Vigotti, MA, & Bacharova, L (1995) ‘Short term effects of air pollution on health: a

European approach using epidemiological time-series data. The APHEA project: background,

objectives, design’, Eur. Resp. J., 8: 1030-1038.

Katsouyanni, K, Schwartz, J, Spix, C, Touloumi, G, Zmirou, D, Zanobetti, A, Wojtyniak, B, Vonk,

JM, Tobias, A, Pönkä, A, Medina, S, Bacharova, L, & Anderson, R (1996), ‘Short-term effects of air

pollution on health: a European approach using epidemiological time series data. The APHEA

protocol’, J. Epidemiol. Community Health, 50(Suppl. 1): S12-S18.

Katsouyanni, K, Touloumi, G, Spix, C, Schwartz, J, Balducci, F, Medina, S, Rossi, G, Wojtyniak, B,

Sunyer, J, & Bacharova, L (1997) ‘Short term health effects of ambient sulfur dioxide and particulate

matter on mortality in 12 European cities : results from time series data from the APHEA project. Air

Pollution and Health: a European Approach’, British Medical Journal, 314: 1658-1663.

Laden, F, Neas, LM, Dockery, DW, & Schwartz, J (2000) ‘Association of fine particulate matter from

different sources with daily mortality in six U.S. cities’. Environ. Health Perspectives 108: 941-947.

Lebowitz, MD (1996) ‘Epidemiological studies of the respiratory effects of air pollution’, The

European Respiratory Journal, 9(5): 1029.

Leuenberger, P (1995) ‘Air pollution in Switzerland and respiratory diseases in adults. Results of a

preliminary study of the cross-sectional part of the Sapaldia study’, Schweiz Rundsch. Med. Prax,

84(40): 1096.

Loomis, D (2000) ‘Sizing up air pollution research’, Epidemiology, 11(1): 2.

Page 44: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

41

Loomis, DP, Borja-Aburto, VH, Bangidiwala, SI, & Shy, CM (1996) ‘Ozone exposure and daily

mortality in Mexico City: a time-series analysis’, Health Effects Institute Research Report No. 75,

Cambridge, MA.

Mar, TF, Norris, GA, Koenig, JQ, and Larson, TV (2000) ‘Associations between air pollution and

mortality in Phoenix, 1995-1997’. Environ. Health Perspectives, 108: 347-353.

Mazumdar, S, Schimmel, H, & Higgins, ITT (1982) ‘Relation of daily mortality to air pollution: an

analysis of 14 London winters, 1958/59-1971/1972’, Archives of Environmental Health, 37: 213-20.

Morgan, G, Corbett, S, & Wlodarczyk, J (1998) ‘Air pollution and hospital admissions in Sydney,

Australia, 1990 to 1994’, American Journal of Public Health, 88(12): 1761-6.

Morris, RD, Naumova, EN, & Munensinghe, RL (1995) ‘Ambient air pollution and hospitalisation for

congestive heart failure among elderly people in 7 large U.S. cities’, Am. J. Public Health, 85: 1362.

Moseholm, T, Taudorf, E, & Frosig, A (1993) ‘Pulmonary function changes in asthmatics associated

with low level SO2 and NO2 air pollution, weather and medicine intake. An 8 month prospective study

analysed by neural networks’, Allergy, 48(5): 334.

National Environment Protection Council (1998) Final Impact Statement for the Ambient Air Quality

National Environment Protection Measure, 26 June 1998. NEPC Service Corporation, Adelaide, SA.

Ostro, B, & Rothschild, S (1989) ‘Air pollution and acute respiratory morbidity: an observational

study of multiple pollutants’, Env. Res., 50: 238.

Ostro, B, Sanchez, JM, Aranda, C, & Esekeland, GS (1996) ‘Air pollution and mortality: results from

a study of Santiago, Chile’, Journal of Exposure Analysis and Environmental Epidemiology, 6(1): 97-

114.

Ozawa, K, Miyao, M, & Yamaola, S (1994) ‘Medical consultation rate of allergic rhinitis and

pollinosis surveillance in Aichi, Japan’, Nagoya Journal of Medical Science, 57(1/4): 51.

Ozkaynak, H & Thurston, GD (1987) ‘Associations between 1980 U.S. mortality rates and alternative

measures of airborne particle concentration’. Risk Anal., 7: 449-461.

Petroeschevsky, A, Simpson, R, Thalib, L, & Rutherford, S (2001) ‘Associations between outdoor air

Page 45: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

42

pollution and hospital admissions in Brisbane, Australia’, Archives of Environmental Health, 56(1):

37-52.

Polloniecki, JD, Aktinson, RW, Ponce de Leon, A, & Anderson, HR (1997) “Daily time series for

cardiovascular admissions and previous day’s air pollution in London, UK’, Occup. Environ. Med.,

54: 535-540.

Pönkä A, Savela M, & Virtanen, M (1998) ‘Mortality and air pollution in Helsinki’, Archives of

Environmental Health, 53(4): 281-286.

Pope, CA, Dockery, D, Spengler, J, & Raizenne, M (1991) ‘Respiratory health and PM10 pollution : a

daily time series analysis’, Am. Rev. Respir. Dis. , 144: 668.

Pope, CA, Dockery, DW, & Schwartz, J (1995) ‘Review of epidemiological evidence of health effects

of particulate air pollution’, Inhalation Toxicology, 7: 1-18.

Pope, CA (1996) ‘Adverse health effects of air pollutants in a non-smoking population’, Toxicology,

III (1/3): 149.

Pope, III, CA, Hill, RW, & Villegas, GM (1999) ‘Particulate air pollution and daily mortality in

Utah’s Wasatch Front’. Environ. Health Perspectives 107: 567-573.

Pope, III, CA, Burnett, RT, Thun, MJ, Calle, EE, Krewski, D, Ito, K, & Thurston, GD (2002) ‘Lung

cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution’ Journal of

American Medical Association, 287(9): 1132-1141.

Ransom, MR, & Pope, CA (1992) ‘Elementary school absences and PM10 pollution in the Utah

Valley’, Environ. Res., 58: 204.

Rennick, GJ, & Jarman, FC (1992) ‘Are children with asthma affected by smog?’, Medical Journal of

Australia, 156(12): 837.

Robertson, CF, Bishop, J, Dalton, M et al (1992) ‘Prevalence of asthma in regional Victorian school

children’, Med. J. Austr., 156(12): 831.

Roemer, W, Hoek, G, & Brunekreef, B (1993) ‘Effect of ambient winter air pollution on respiratory

health of children with chronic respiratory symptoms’, Am. Rev. Respir. Dis., 147: 118.

Rossi, OV, Kihnula, VL, Tienari, J, & Hunti, E (1993) ‘Association of severe asthma attacks with

weather, pollen and air pollutants’, Thorax, 48(3): 244.

Page 46: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

43

Roy, A, & Georgopoulos, PG (1998) ‘Reconstructing week-long exposures to volatile organic

compounds using physiologically based pharmacokinetic models’, Journal of Exposure Analysis and

Environmental Epidemiology, 8(3): 407–421.

Samet, J, Zeger, SL, Dominici, F, Curriero, F, Coursac, I, Dockery, DW, Schwartz, J, & Zanobetti, A

(2000) The National Morbidity, Mortality, and Air Pollution Study Part II: Morbidity, Mortality, and

Air Pollution in the United States. Health Effects Institute: Cambridge, MA, USA.

Schindler, C, Ackermann-Liebrich, U, Leuenberger, P et al (1998) ‘Associations between lung

function and estimated average exposure to NO2 in eight areas of Switzerland’, Epidemiology , 9(4):

405–411.

Schwartz, J (1993) ‘Air pollution and daily mortality in Birmingham, Alabama’, Am. J. Epidemiology,

137: 1136.

Schwartz, J (1994a) ‘Air pollution and hospital admissions for the elderly in Birmingham, Alabama’,

American Journal of Epidemiology, 139(6): 589-598.

Schwartz, J (1994b) ‘Air pollution and hospital admissions for the elderly in Detroit, Michigan’, Am.

J. Crit. Care Med., 150: 648-655.

Schwartz, J (1994c) ‘PM10, ozone and hospital admissions for the elderly in Minneapolis-St. Paul,

Minnesota’, Archives of Environmental Health, 49(5): 366–374.

Schwartz, J, & Marcus, A (1990) ‘Mortality and air pollution in London: a time series analysis’,

American Journal of Epidemiology, 131: 185-194.

Schwartz J, & Morris R, (1995) ‘Air pollution and hospital admissions for cardiovascular disease in

Detroit, Michigan’, American Journal of Epidemiology, 142(1): 23-35.

Schwartz, J (1996) ‘Air pollution and hospital admissions for respiratory disease’, Epidemiology,

7(1): 20-29.

Schwartz, J (1997) ‘Air pollution and hospital admissions for cardiovascular disease in Tucson’,

Epidemiology, 8(4): 371-377.

Schwartz, J, Spix, C, Touloumi, G, Bacharova, L, Barumamdzadeh, T, le Tertre, A, Piekarksi, T,

Ponce de Leon, A, Pönkä, A, Rossi, G, Saez, M, & Schounten, JP (1996) ‘Methodological issues in

studies of air pollution and daily counts of deaths or hospital admissions’, Journal of Epidemiology

and Community Health, 50 (Suppl. 1): S3-S11.

Page 47: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

44

Schwartz, J, Norris, G, Larson, T, Sheppard, L, Claiborne, C & Koenig, J (1999) ‘Episodes of high

coarse particle concentrations are not associated with increased mortality’, Environ. Health

Perspectives, 107: 339-342.

Simpson, R, Williams, G, Petroeschevsky, A, Morgan, G, & Rutherford, S (1997) ‘Associations

between outdoor air pollution and daily mortality in Brisbane, Australia’, Arch. Environ. Health,

52(6): 442-454.

Simpson, RW, Denison, L, Petroeschevsky, A, Williams, G, & Thalib, L (2000) ‘Effects of ambient

particle pollution on daily mortality in Melbourne 1991-1996’, Int. J. Expos. Anal. Environ.

Epidemiol., 10(5): 488-496.

Stata Corporation (1999) Intercooled STATA 6.0 for Windows, Texas.

Stieb, DM, Judek, S & Burnett, RT (2002) ‘Meta-analysis of time-series studies of air pollution and

mortality: effects of gases and particles and the influence of cause of death, age, and season’. J. Air &

Waste Manage. Assoc., 52: 470-484.

Sunyer, J, Castellsagué, J, Sáez, M, Tobias, A, & Antó, J (1996) ‘Air pollution and mortality in

Barcelona’, Journal of Epidemiology and Community Health, 50 (Suppl. 1): S76-S80.

Thurston, GD (1996) ‘A critical review of PM10 mortality time series studies’, Journal of Exposure

Analysis and Environmental Epidemiology, 6(1): 3-21.

Thurston, GD, Ito, K, Kinney, PL, & Lippmann, M (1992) ‘A multi-year study of air pollution and

respiratory hospital admissions in three New York state metropolitan areas; results for 1988 and 1989

summers’, Journal of Exposure Analysis and Environmental Epidemiology, 4: 415-418.

Thurston, GD, Ito, K, Hayes, CG, Bates, DV, & Lippmann, M (1994) ‘Respiratory hospital

admissions and summertime haze air pollution in Toronto, Ontario: consideration of the role of acid

aerosols’, Environmental Research, 65: 271-290.

Timonen, KL & Pekkanen, J (1997) ‘Air pollution and respiratory health among children with

asthmatic or cough symptoms’, Am. J. Respir. Crit. Care Med., 156: 546-552.

Tobias, A, & Campbell, MJ (1998) ‘Arpois: time-series regression for counts allowing for

autocorrelation’, STS 13, Stata Tech. Bull. 46.

Touloumi, G, Katsouyanni, K, Zmirou, D, Schwartz, D, Spix, C, Ponce de Leon, A, Tobias, A,

Quenel, P, Rabczenko, D, Bacharova, L, Bisanti, L, Vonk. JM, & Pönkä, A (1997) ‘Short term effects

Page 48: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

45

of ambient oxidant exposure on mortality: a combined analysis within the APHEA Project’, Am. J.

Epidemiol., 146(2): 177-85.

Tunnicliffe, WS, Burge, PS, & Ayres, JG (1994) ‘Effect of domestic concentrations of nitrogen

dioxide on airway responses to inhaled allergen in asthmatic patients’, The Lancet, 344 (8939/8940),

pg 1733.

Voigt, T, Bailey, M, & Abramson, M (1998) ‘Air pollution in the Latrobe Valley and its impact on

upper respiratory morbidity’, Australian and New Zealand Journal of Public Health, 22(5): 556-561.

Walters, S, Griffiths, RK, & Ayres, J (1994) ‘Temporal association between hospital admissions for

asthma in Birmingham and ambient levels of sulfur dioxide and smoke’, Thorax, 49: 133.

Walters, S, Phupinyokol, M, & Ayres J, (1995) ‘Hospital admissions rates for asthma and respiratory

disease in the West Midlands : their relationship to air pollution levels’, Thorax, 50: 948.

Wang, JH, Devalia, JL, & Duddle, J (1995) ‘Effect of six-hour exposure to nitrogen dioxide on early-

phase nasal response to allergen challenge in patients with a history of a seasonal allergic rhinitis’, J.

Allergy Clin. Immunol., 96: 669.

Watts, RR, Wallingford, KM, Williams, RW et al (1998) ‘Airborne exposures to PAH and PM2.5

particles for road paving workers applying conventional asphalt and crumb rubber modified asphalt’,

Journal of Exposure Analysis and Environmental Epidemiology, 8(2): 213–229.

Wong, C-M, Ma, S, Hedley, AJ & Lam, T-H (2001) ‘Effect of air pollution on daily mortality in Hong

Kong’. Environ. Health Perspectives, 109: 335-340.

Wordley, J, Walters, S, & Ayres, JG (1997) ‘Short term variations in hospital admissions and

mortality and particulate air pollution’, Occupational and Environmental Medicine, 54: 108–116.

Yang, W, Jennison, BL, & Omaye, ST (1998) ‘Cardiovascular disease hospitalisation and ambient

levels of carbon monoxide’, J. Toxicol. Environ. Health, 55: 185-196.

Ye, F, Piver, WT, Ando, M and Portier, CJ (2001) ‘Effects of temperature and air pollutants on

cardiovascular and respiratory diseases for males and females older than 65 years of age in Tokyo,

July and August 1980-1995’. Environ. Health Perspectives, 109: 355-359.

Page 49: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

46

Appendix 1. Summary of Health Effects of the Criteria

Pollutants

1.1 Photochemical Oxidants (measured as ozone, O3)

The concentration of ozone in a polluted atmosphere is usually taken as an indicator of the amount of

photochemical smog, because ozone usually comprises about 85 per cent of the total photochemical

smog concentration. The rate of production of photochemical smog is limited by the amount of

sunlight and reactive organic compounds (ROCs) available, and the quantity produced is generally

limited by the amount of NOx available. Ambient concentrations of ozone vary from season to season

and year to year. Ozone and its precursors can be transported long distances, and thus weather

conditions principally influence their dispersal.

Ozone in the troposphere as a pollutant should not be confused with its presence in the stratosphere,

where it serves the essential function of screening out a large proportion of the sun’s harmful ultra-

violet rays.

Sources

Ozone (O3) is a colourless, highly reactive gas with a distinct odour. The reactions between nitrogen

oxides (NOx) and (ROCs) form ozone, in the presence of heat and light. The principal sources of these

precursors are motor vehicles (for both), combustion processes (for NOx), and refining, petrochemical

and solvent-based industries (for ROCs).

Air NEPM Standard

The Air NEPM standards for ozone are 0.10 ppm for a 1-hour average and 0.08 ppm for a 4-hour

average. These levels are not to be exceeded more than one day per calendar year. Prior to the

implementation of the Air NEPM standards, the World Health Organisation (WHO) goals were used

for air quality management of the criteria air pollutants in WA. The WHO goal for ozone was 0.08

ppm for a 1-hour average.

Symptoms of exposure to ozone include irritation of the airways and minor lung function changes in

both healthy and susceptible individuals. Ozone concentrations have been associated with increased

hospital admissions, specifically with respiratory disease, lung function impairment and cardiovascular

disease in those 65 years of age or older (Schwartz et al. 1996; Ostro and Rothschild 1989; Castillejos

et al. 1992; Sunyer et al. 1996). The available Australian hospitalisation studies conducted in

Page 50: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

47

Brisbane and Sydney show ozone concentrations are also associated with asthma and respiratory

disease (Petroeschevsky et al. 2001; Morgan et al. 1998).

Laden and co-workers (2000) identified several distinct source-related fractions of fine particles and

examined the association of these fractions with daily mortality for each city of the Harvard Six Cities

Studies using Poisson regression in a generalised additive model. In their meta-analysis of the six

cities, a 10 µg/m3 increase in PM2.5 from mobile sources accounted for a 3.4% increase in daily

mortality (CI: 1.7-5.2%) and from coal combustion sources, a 1.1% increase (CI: 0.3-2.0%). No

association was found for PM2.5 from crustal particles and daily mortality.

Based on analyses using 1980 U.S. Vital Statistics data and ambient air pollution data, Ozkaynak and

Thurston (1987) concluded the particles from iron and steel emissions and coal combustion were more

significant contributors to mortality than soil-derived particles. Recent studies of days dominated by

windblown dust and of dust storms support these conclusions (e.g. Schwartz et al. 1999; Pope et al.

1999).

1.2 Carbon Monoxide (CO)

Sources

Carbon monoxide (CO) is a colourless and odourless gas produced by the incomplete combustion of

any carbon-based fuel (e.g. petrol, diesel, oil, gas, wood or coal). In urban areas, motor vehicles are

the principal source of CO. In Perth, up to 80% of all CO emissions are a result of motor vehicle

exhaust (Australian Academy of Technological Sciences and Engineering 1997).

Power generation, domestic solid fuel heaters and burning vegetation are other significant sources.

CO may also be formed in the atmosphere by the oxidation of methane.

Air NEPM Standard

The Air NEPM standard for ambient CO is 9.0 ppm for an 8-hour averaging period. This

concentration may not be exceeded on more than one day per calendar year.

Carbon monoxide is absorbed via the lungs, enters the bloodstream and reduces the blood’s ability to

deliver oxygen to organs and tissues. CO is poisonous to humans at high exposure levels.

Exposure to high levels of CO may result in increased incidence and duration of angina pectoris (chest

pain sometimes leading to heart attack), visual impairment, reduced motor skills, poor learning ability,

difficulty in performing complex tasks, and low birth weight.

Page 51: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

48

In people with ischaemic heart disease, whose cardiovascular system may already be under

considerable stress, exposure to carbon monoxide may increase the risk of adverse health effects.

Results from numerous scientific studies indicate that even moderately raised levels of CO can trigger

or worsen cardiovascular problems (Morris et al. 1995; Burnett et al. 1997; Yang et al. 1998).

A recent study in London (Poloniecki et al. 1997) found significant relationships between average

daily CO concentrations and hospital admissions. A rise of 10 ppm in average daily CO corresponded

to 23% more admissions for acute myocardial infarction, 6.9% more admissions for heart failure and

23% more admissions for circulatory diseases. Studies elsewhere have found similar results (Morris et

al. 1995; Burnett et al. 1997; Schwartz 1997). Studies in Los Angeles have found a rise in deaths

overall as well as a rise in deaths from cardiovascular disease in relation to increases in CO levels after

taking into account other pollutants and temperature.

Total mortality was significantly associated with CO and NO2 (p<0.05) in Phoenix (an arid city),

while cardiovascular mortality was significantly associated with CO, NO2, SO2, PM2.5 and PM10

(Mar et al. 2000).

1.3 Nitrogen Dioxide (NO2)

Sources

Nitrogen dioxide (NO2), a light brown gas, is a precursor of photochemical smog. The majority of air

emissions are in the form of nitric oxide (NO), which can be transformed to NO2.

At high temperatures, atmospheric nitrogen combines with oxygen to form a mixture of nitric oxide

(NO) and nitrogen dioxide (NO2), referred to as oxides of nitrogen (NOx). Both gases are emitted by

motor vehicle engines, industrial and commercial boilers, in power generation and from other

industrial combustion processes. In urban areas motor vehicle emissions are a major source of NO2.

Indoor sources of NO2 include unflued gas appliances and other combustion devices. Biogenic

sources of NO2 are lightning and the oxidation of ammonia—a very small component of the total NO2

emissions in urban areas.

Page 52: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

49

Air NEPM Standard

The Air NEPM standards for NO2 are 0.12 ppm for a 1-hour average and 0.03 ppm for a 1-year

average. The 1-hour average is not to be exceeded more than one day per calendar year. There are no

allowable exceedences for the 1-year average.

Nitrogen dioxide irritates the lungs and may lower immunity to respiratory infections. Exposure to

high levels of NO2 causes severe lung injury. NO2 has been demonstrated to increase the effects of

exposure to other pollutants such as ozone, sulfur dioxide and inhalable particles.

Although there have been many studies which have investigated the health effects of nitrogen dioxide,

no consistent impacts have been demonstrated. Increases in nitrogen dioxide concentration have been

associated with increases in respiratory hospital admissions for all age groups in the UK (Walters et al.

1995). A Swiss study (SAPALDIA) group has also reported increases in rhinitis, dyspnoea, wheeze,

increase in sputum and chronic cough associated with increases in nitrogen dioxide concentrations in

air (Leuenberger 1995).

High numbers of medical consultations for hay fever have been observed in areas with high nitrogen

dioxide concentrations and low pollen count in Aichi, Japan (Ozawa et al. 1994). It is hypothesised

that NO2 may intensify the allergic response, often in combination with SO2 (Moseholm et al. 1993;

Tunnicliffe et al. 1994; Wang et al. 1995). The Swiss SAPALDIA study has also reported decreases

in lung function with increases in nitrogen dioxide concentrations (Schindler et al. 1998). In Hong

Kong (a sub-tropical city), Wong et al. (2001) found significant effects on all the mortality outcomes

in the study for NO2, SO2 and O3 during the cool season. Concentrations of NO2 were associated with

daily hospital emergency transports for angina, cardiac insufficiency, myocardial infarction, asthma,

acute and chronic bronchitis, and pneumonia.

1.4 Sulfur Dioxide (SO2)

Sources

Sulfur dioxide (SO2) is a colourless gas with a sharp irritating odour. It is produced in the combustion

of coal and oil, and in the smelting of metallic sulfide ores. Ambient SO2 concentrations vary

seasonally, with higher levels occurring in the winter.

Page 53: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

50

Air NEPM and EPP Standards and Limits

The Air NEPM standards for SO2 are 0.20 ppm for a 1-hour average, 0.08 ppm for a 24-hour average,

and 0.02 ppm for a 1-year average. The 1-hour and 1-day averages are not to be exceeded more than

one day per calendar year. There are no allowable exceedences for the 1-year average.

Sulfur dioxide acts directly on the respiratory system, triggering rapid responses within minutes. The

maximum effect occurs within 10 to 15 minutes, particularly in those individuals with sensitive

airways, such as asthmatics. The most common symptoms are coughing, wheezing, and shortness of

breath. Asthmatics are most sensitive to SO2, usually suffering an acute response associated with a

sharp short-term decrease in lung function. However, repeated exposure does not appear to induce a

worsening of symptoms. Exercise has been shown to exacerbate the effect of sulfur dioxide on lung

function (Bascom et al. 1996).

A number of studies report a range of health effects associated with small increases in SO2

(Petroeschevsky et al. 2001; Chen et al. 1998; Bascom et al. 1996). However, it is often difficult to

separate SO2 from particulate matter when investigating such issues. The secondary formation of

sulfate particles from sulfur dioxide may also have an additional impact.

Several studies have investigated the relationship between SO2 concentrations in air and lung function,

hospital admissions and mortality (Katsouyanni et al. 1997; Roemer et al. 1993; Lebowitz 1996). One

study in Spain reported an increase in emergency room admissions of 6% in summer for an increase of

25 µg/m3 of SO2 (Sunyer et al. 1996). A similar association with respiratory hospital admissions for

asthma have also been found in Birmingham, UK, and Oulu, Finland (Walters et al. 1994; Rossi et al.

1993).

1.5 Particles

Airborne particles are a broad class of diverse substances that may be solid or liquid (liquid particles

are often called aerosols) and are produced by a wide range of natural and human activities.

Airborne particles are commonly classified by their size as total suspended particles (TSP), visibility-

reducing particles (PM2), and inhalable particles (coarse fraction PM10 and fine fraction PM2.5).

Total suspended particles are taken to be particles of an equivalent aerodynamic diameter of less than

50 µm. Inhalable particles are grouped into two size categories: those with a diameter of up to 10 µm

(PM10) and those with a diameter of up to 2.5 µm (PM2.5). Visibility-reducing particles are small

airborne particles ranging from 0.1 to 2.0 µm in size, reducing our ability to see objects at a distance

Page 54: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

51

by scattering light.

Sources

Human activity sources include combustion processes in motor vehicles (particularly diesel-fuelled

vehicles), industrial and commercial boilers and incinerators, power generating plants, solid fuel

domestic heating, domestic incineration and the burning of vegetation (e.g. for bushfire prevention or

clearing of agricultural stubble). Natural sources of airborne particles include fine soil particles and

smoke particles from bushfires.

PM10

Inhalable particles are associated with increases in respiratory illnesses such as asthma, bronchitis and

emphysema, with an increase in risk related to their size, chemical composition and concentration.

Particles in the PM10 size fraction have been strongly associated with increases in the daily

prevalence of respiratory symptoms, hospital admissions and mortality.

There is some evidence to suggest that particles within the PM10 fraction, such as PM2.5 and PM1.0,

might be more deleterious to health than other size fractions.

Air NEPM Standard

The Air NEPM standard for PM10 is 50 µg/m3 for a 24-hour averaging period, which may not be exceeded more than 5 days per year.

Research to date suggests that particles less than 10 µm in aerodynamic diameter (PM10) are of a

health concern. These small irritant particles easily enter into the lungs and aggravate the lung tissue,

the degree to which is determined by their chemical composition (Dockery et al. 1992; Ransom and

Pope 1992).

Many studies have reported positive relationships between airborne particles and hospitalisation

and/or emergency room visits for respiratory illness (Pope et al. 1991; Schwartz 1994a; Wordley et al.

1997; Thurston 1996; Pope 1996).

For changes of 10 µg/m3 in daily PM10, an increase in mortality of 1% has been reported (Ostro et al.

1996). Several of these studies have reported these associations with concentrations below current air

quality standards for particulate matter. Specifically, increases in daily PM10 concentrations have

been found to increase the risk of hospital admissions for pneumonia and COPD for individuals aged

65 years or older (Schwartz 1994a, 1994b, 1994c). A similar study found an association between

daily PM10 concentrations and ischaemic heart disease admissions (Schwartz and Morris 1995).

Results from the Adventist Health and Smog study suggest that long-term concentrations of airborne

Page 55: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

52

particulate matter have a greater effect on respiratory disease than other air pollutants (Abbey et al.

1993a, 1993b, 1995). Associations between particulate air pollution and poor respiratory health in

asthmatic children have been reported (Dockery and Pope 1994; Bates et al. 1995; Timonen and

Pekkanen 1997). These associations have been found at relatively low concentrations of particulate

matter (13 to 18 µg/m3).

No lower limit for the onset of adverse health effects has yet been observed (Schwartz 1994b;

Wordley et al. 1997).

PM2.5

Increasing evidence suggests that PM2.5 may be strongly implicated as the major influence on the

health effects associated with PM10. Particles in the PM2.5 size fraction can be inhaled more deeply

into the lungs than PM10, and have been associated with health effects similar to those of PM10. No

lower limit for the onset of adverse health effects has yet been observed.

Currently, an Australian air quality standard or guideline for PM2.5 has not been developed. The US

EPA standard is 65 µg/m3 (24-hour average).

PM2.5 (estimated from visibility data) has been positively associated with the development of chronic

bronchitis (Abbey et al. 1995).

Visibility Reducing Particles (Bsp)

Fine particles, mainly in the PM2 size range, cause a reduction in visibility and hence adversely

impact visual amenity through the presence of haze.

Visibility reduction may persist for short or quite long periods but, because haze is readily noticeable,

a short averaging period of one hour is usually adopted. The Victorian EPA standard for visibility is a

local visual distance of 20 kilometres which is equivalent a Bsp value of 2.10 x 10-4 m-1 (Bsp is the

light scattering coefficient for particles as measured by an integrating nephelometer). This same

standard is used as a guideline for visibility in Western Australia.

Page 56: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

53

Appendix 2. Preliminary Time Series Regression

Analysis

Previous studies of air pollution and health have used Poisson regression time series analyses. In this

study, we followed the APHEA (Air Pollution and Health European Approach) protocol (Katsouyanni

et al. 1996; Schwartz et al. 1996) so that our results could be compared with similar studies elsewhere.

2.1 Study Design

The study design was an ecological time series analysis as utilised by the Air Pollution and Health

European Approach (APHEA) group (Katsouyanni et al. 1995). It was used to investigate the

relationship between daily mortality and daily hospitalisation in the Perth metropolitan area between 1

January 1992 and 31 December 1997.

Time series studies of morbidity are ecological epidemiological studies that look at daily emergency

attendance or hospital admissions data over a specified period of time. In the context of air pollution,

these studies involve the analysis of daily air pollution data in relation to daily emergency attendance

or hospital admissions data. Due to the low number of daily hospital admissions as well as the minor

contribution of air pollution to the day-to-day variation of such hospital admissions, these studies

require data from large populations over a number of years. The data used in these time series studies

consist of routinely collected records of hospital admissions and air pollution from defined

geographical areas, thereby eliminating the need for accessing information on individuals per se.

The advantages of time series studies are that they are non-invasive, use routinely collected data, and

reduce confounding, since factors such as smoking, blood pressure, diet, socioeconomic factors and

genetic predisposition do not vary from day to day and are not correlated with air pollution. As a

result, time series studies are relatively inexpensive.

However, time series studies do suffer from a number of limitations. Confounding from variables

such as meteorology and temperature may occur, but these factors can be taken into account by the

analytical method used, unlike other ecological study designs. Other limitations include:

• The inability to distinguish between mixtures of pollutants in ambient air;

• The use of selected fixed monitoring sites for measuring pollutant levels of ambient air which may

not be representative of the study area;

• The inability to differentiate between acute and chronic effects;

Page 57: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

54

• The difficulty in determining independent effects from a range of interrelated, correlated factors;

• The confounding co-pollutant effects;

• The use of ambient data as opposed to the use of personal measures of exposure (Hall 1996).

Time series studies are used to explore correlations between environmental exposures and daily

morbidity over time. However, they cannot ascertain direct causal relationships between health status

and a pollutant or combined pollutants. Different chemical species within pollutants can interact,

causing additive or synergistic effects and it is not possible to include such effects in this type of study

design.

Despite these limitations, there have been numerous international studies, using different analytical

methods, which have shown remarkably consistent results in regards to the relationship of air pollution

and increased morbidity. These studies are consistent with other studies of air pollution using case-

control and cohort designs, indicating that the observed associations are relatively robust and are not

simply an artefact of confounding.

2.2 Study Area, Study Population and Data Collection

The study area, study population and data collection were as per the case-crossover study and are

described in detail in Sections 3.1 and 3.2.

2.3 Statistical Analysis

The APHEA protocol includes a parametric method of analysing epidemiological time series data to

detect the short-term health effects of air pollutants. As parts of the protocol may be open to different

interpretations, the procedures undertaken in this study are described below.

The basic model fitted was a Gaussian linear regression model for the log of the number of deaths.

For all groups, except ‘all age-all causes’, 1 was added to each day’s deaths before log transformation.

At each stage of the modelling process, residuals from the fitted model were plotted against time and

examined for trends, cyclic variation, outliers, and partial auto-correlation.

Page 58: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

55

Seasonality was controlled by inclusion of the functions:

α sin(2πkt/365.25) + β cos(2πkt/365.25)

for k = 0.5,1,2,3,4,5,6 and t = 1 to 2161 (the number of days of study)

The calculations cover all possible variations in seasonality.

Long-term trends were controlled by the inclusion of the day number in the time series as a variable

(t=1 to 2161) and its square. Further dummy variables for year were also tested.

This process of de-trending and de-seasonalising was carried out first for the event data, second for

temperature and humidity, and finally for the pollutants themselves. Residuals from each of the

processes were plotted against each other to examine the form of the dose-response curve. For each

particular pollutant, the residuals from the adjusted model for each separate outcome were regressed

on each combination of each type of lag (0, 1, 2, 3, 0-1, 0-2, 0-3) days and each averaging time (1-hr,

4-hr, 8-hr, 24-hr) individually. Only the most statistically significant positive effect was included in

the final model as specified in the APHEA protocol. Any significant or large single pollutant effects

were subsequently modelled together in pairs.

Exploratory analyses were carried out as described in the APHEA protocol. The computer routine

Arpois (Tobias and Campbell 1998) in the statistical computer package STATA (Stata Corporation

1999) was used for the sets of time series analyses. Arpois estimates a Poisson model allowing for

auto-correlation and overdispersion (Schwartz et al. 1996). This model was developed for the

APHEA project (Katsouyanni et al. 1996), and has been extensively used to analyse time series

regression for counts. The models used were second order auto-regressive models.

Variables indicating public holidays and day of week were included. Influenza epidemics were

accounted for by numbers of virus isolates reported by the State Health Laboratories. These were only

available for the middle 4 years of the study period and were provided as aggregated monthly figures.

There were very few days for which there were no data available to generate a distribution of air

quality concentrations. Days for which no measures of any particular pollutants had been made were

ignored in the analyses involving the particular pollutant. When days of missing data occur

randomly—as appeared to be the case in this study—this method is not likely to introduce selection

bias.

Analyses were also carried out separately for ‘summer’ (November to April) and ‘winter’ (May to

October). In addition to the day of the week variables, a separate dummy variable that indicated

Page 59: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

56

public holidays (whose dates vary from year to year) was included. Daily meteorological variables

were included with lags applied in the same manner as for the air pollutants. Influenza epidemics

were accounted for by numbers of virus isolates reported by the State Health Laboratories. These

were only available for the middle 4 years of the study period and were provided as aggregated

monthly figures.

2.4 Results

Day-of-the-week effects were not significant for the mortality models, but there were significant non-

linear effects of both temperature and humidity. Plots of pollutant effects against residuals from the

de-trended de-seasonalised temperature and humidity model did not show any obvious non-linearity

for any of the pollutants. The results of the mortality study showed a significant association between

nitrogen dioxide and all-cause, respiratory and ‘other’ (non-specified disease group) mortality in

summer. No other significant associations were observed.

The morbidity models used a sixth order model. Day-of-the-week effects were highly significant in

the morbidity models. There were also significant non-linear effects of both temperature and humidity

in these models. Plots of pollutant effects against residuals from the de-trended de-seasonalised

temperature and humidity model did not show any obvious non-linearity for any of the pollutants.

Effect sizes and 95% confidence intervals were generated and are expressed in terms of the percent

change in rate of a particular response for an increase of either 1 unit (CO and Bsp) or 10 units (NO2,

O3 and PM2.5). These are of the same order as the amount of variability of each pollutant. They

therefore represent the percentage increase in numbers of deaths or numbers of hospitalisations that

are predicted to occur when the level of CO increases by 1 part per million, the visibility level

increases by 1 bscat/104, the NO2 level increases by 10 parts per billion, the O3 levels increases by 10

parts per billion, and the modelled PM2.5 levels increase by 10 µg/m3. They all therefore predict

linear increases (or decreases) on the percentage or logarithmic scale.

The associations were generated for two seasons: summer (November to April) and winter (May to

October) as well as all year.

The results of the hospitalisation study showed positive significant relationships between daily

hospitalisation for respiratory disease, cardiovascular disease and asthma with daily ambient ozone

concentrations in summer with risk estimates per 10 ppb of ozone between 3 and 13% (Table 2.1).

Ozone concentration was associated with a 13% increase in risk of hospitalisations of children with

asthma. Increases in the risk of daily hospitalisation for all respiratory, asthma, COPD and

pneumonia/flu were associated with daily particulate concentrations (Bsp and PM2.5 modelled), with

a significant increase of 3.9% in respiratory hospitalisation for the elderly for every 10 µg/m3 increase

Page 60: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

57

in concentration.

Increases in risk were also observed for nitrogen dioxide and cardiovascular disease hospitalisation

and ozone and gastrointestinal disease hospitalisation.

No significant associations were observed for carbon monoxide and hospitalisation, although positive

non-significant relationships were observed for cardiovascular, pneumonia and respiratory disease (>

65 years of age).

Page 61: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

58

Table 2.1 - Hospitalisation and Pollutants (% Change in Risk and 95%CI)

Averaging Time

Lag Summer p Winter p AllYear p

All respiratory #NO2 1h 3 0.8

-0.9,2.5 .36 1.1

-0.6,2.7 .20 1.0

-0.1,2.2 .08

#O3 4h 0-3 5.0 1.3,8.8

.007 -1.6 -5.9,3.0

.49 2.7 -0.1,5.5

.05

#PM2.5 24h 1 2.9 -1.5,6.9

.20 1.1 -0.2,1.9

.09 1.2 -0.1,1.8

.06

†BSP 1h 0-3 1.5 -1.9,4.9

.39 1.2 -0.0,2.4

.06 1.4 0.4,2.5

.008

‡CO 8h 0 0.4 -1.2,2.5

.61 -0.5 -1.9,2.1

.45 0.0 -1.1,1.0

.99

Asthma NO2 24h 0 5.3

-1.9,11.3 .15 -2.1

-6.6,7.3 .37 2.0

-1.8,6.0 .30

O3 4h 0-3 8.6 2.4,15.2

.006 -1.9 -8.9,5.6

.60 4.8 0.2,9.6

.04

PM2.5 24h 0-3 5.4 -6.4,19.6

.39 3.7 0.3,5.2

.03 3.6 0.4,4.9

.03

BSP 24h 3 -6.1 -21.9,32.1

.51 11.2 1.2,22.2

.03 7.3 -1.4,16.8

.10

CO 8h 0 0.3 -2.4,3.0

.85 -0.6 -2.8,1.6

.57 -0.3 -1.9,1.4

.72

Cardiovascular NO2 24h 0-2 9.4

4.4,14.6 <.001 0.5

-2.8,3.9 .78 3.7

1.0,6.3 .006

O3 4h 0-3 3.1 0.0,6.4

.05 2.9 -1.5,7.5

.20 2.8 0.4,5.3

.02

PM2.5 24h 0-3 3.9 -2.3,10.4

.22 0.9 -1.2,3.0

.43 1.3 -0.6,3.2

.19

BSP 1h 3 0.2 -1.3,1.7

.80 0.4 -0.4,1.2

.28 0.6 -0.1,1.2

.11

CO 8h 2 -0.2 -1.7,1.3

.79 0.9 -0.5,2.4

.21 0.7 -0.3,1.8

.17

COPD NO2 1h 2 0.9

-4.1,6.1 .74 -3.4

-7.6,1.0 .13 -1.1

-4.2,2.1 .49

O3 1h 2 1.3 -3.4,6.2

.61 -3.9 -10.7,3.3

.28 0.5 -3.3,4.4

.80

PM2.5 24h 1 15.6 3.4,29.4

.01 -0.7 -4.3,3.0

.62 0.7 -2.5,4.0

.67

BSP 24h 3 17.2 -13.6,58.9

.31 17.2 0.5,36.5

.04 17.7 3.1,34.3

.02

CO 8h 0 0.1 -4.2,4.5

.98 -0.9 -4.4,2.8

.62 -0.1 -2.8,2.7

.94

Page 62: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

59

Averaging Time

Lag Summer p Winter p All Year p

Pneumonia/flu #NO2 1h 3 2.9

-0.9,6.9 .14 -1.6

-5.2,2.1 .39 1.3

-1.2,3.9 .32

#O3 8h 3 4.5 -1.1,10.3

.11 1.4 -5.5,8.7

.70 4.2 0.0,8.7

.05

#PM2.5 24h 2 -0.9 -10.5,9.7

.86 3.6 0.8,6.5

.01 3.3 0.7,6.0

.01

†BSP 1h 0-3 5.1 -2.5,13.1

.19 1.6 -1.1,4.4

.24 3.0 0.6,5.4

.02

‡CO 8h 0-1 1.7 -2.6,6.3

.44 3.2 -0.7,7.2

.11 2.7 -0.1,5.7

.06

Asthma < 15y NO2 24h 0 5.3

-3.5,14.9 .25 -3.6

-9.3,2.4 .24 1.2

-3.6,6.2 .65

O3 4h 0-3 13.0 5.1,21.6

.001 -5.7 -14.3,3.8

.23 5.3 -0.5,11.4

.08

PM2.5 24h 1 6.3 -2.7,16.2

.17 2.3 -0.1,4.8

.06 2.6 0.2,5.0

.03

BSP 24h 3 .5 -19.5,25.5

.97 13.1 0.0,27.9

.05 10.9 -0.5,23.5

.06

CO 8h 0 0.6 -2.6,3.9

.71 -1.6 -4.4,1.2

.26 -0.7 -2.8,1.4

.51

Respiratory > 64y NO2 1h 3 2.3

-0.8,5.4 .15 -0.1

-2.9,2.8 .95 1.5

-0.5,3.5 .15

O3 4h 0-3 0.6 -5.7,7.3

.86 -4.7 -11.9,3.1

.23 -0.7 -5.4,4.1

.77

PM2.5 24h 1 7.1 -0.9,15.7

.08 0.3 -2.1,2.7

.83 1.0 -1.2,3.2

.39

BSP 1h 0-3 5.3 -0.7,11.7

.09 3.2 1.1,5.4

.003 3.9 2.0,5.8

<.001

CO 8h 0 2.1 -0.8,5.2

.16 0.2 -2.2,2.7

.88 1.4 -0.5,3.3

.16

Gastrointestinal NO2 24h 2 2.2

-2.4,6.9 .35 5.3

1.2,9.6 .01 3.1

0.2,6.1 .04

O3 4h 0-3 4.1 0.3,8.0

.03 11.3 5.0,18.0

<.001 4.9 1.8,8.1

.002

PM2.5 24h 1 3.8 -0.8,8.6

.11 1.1 -0.6,2.8

.21 1.5 -0.1,3.0

.06

BSP 1h 1 1.3 -0.6,3.2

.18 0.5 -0.6,1.6

.35 0.8 -0.1,1.7

.08

CO 8h 3 -1.9 -3.6,-0.2

.03 2.2 0.3,4.1

.03 0.1 -1.1,1.4

.84

#ppb; †bscat/104; ‡ppm

Page 63: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

60

2.5 Discussion

Time series studies conducted around the world indicate ambient air quality is associated with

increases in morbidity, the most common associations being the effect of particulate and ozone

concentrations and respiratory and cardiovascular disease outcomes (Loomis 2000).

The results of this study support these findings. The preliminary time series analysis demonstrated a

significant association between NO2, O3, and particulate (PM2.5 and Bsp) concentrations and

respiratory, asthma, COPD, pneumonia, and cardiovascular hospitalisations. These results are

consistent with a number of international studies (Appendix 12)(Schwartz 1994a, 1994b, 1994c, 1996;

Department of Health 1998). They are also consistent with those obtained in both the Brisbane and

Sydney studies (Petroeschevsky et al. 2001).

In particular, ozone was associated with the risk of hospitalisation for all respiratory diseases,

cardiovascular diseases and asthma. The effect estimate was higher for asthma patients under 15 years

of age. Particulate concentrations were significantly associated with respiratory conditions (all ages

and >64 years of age), asthma (all ages and <15 years of age), COPD and pneumonia/flu. The effects

estimate was higher for those over 64 years. Again, these results are consistent with the Brisbane and

Sydney studies among others (Schwartz 1994a, 1994b; Petroeschevsky et al. 2001; Morgan et al.

1998).

The Perth results show that when modelled PM2.5 concentrations were used in the analysis as

compared to Bsp, similar associations were observed. However, the 95% confidence intervals for

PM2.5 were much smaller, indicating a higher level of confidence in the results. The results from this

modelled PM2.5 analysis are consistent with the international literature (Loomis 2000).

The significant effects noted for gastrointestinal (GI) disease admissions are difficult to explain,

however GI admissions did follow a markedly seasonal pattern (many more admissions in summer)

and curiously showed an almost 100% increase from 1996 to 1997 which indicates coding changes or

some other error that requires follow up with the Department of Health. The APHEA approach could

have resulted in mis-specification of the time series model inducing a spurious association.

Page 64: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

61

Appendix 3. Commencement Month and Year of Monitoring for Air Pollutants in the Perth Metropolitan Area

Station SO2 O3 NO2 CO PM10* PM2.5 Bsp Caversham 1/90 9/90 1/92 1/94 1/94 1/90 Duncraig 8/95 8/95 9/94 1/94 1/94 Hope Valley 1/89 1/90 1/90 Leeming 1/97 10/96 1/97 10/96 Queens Buildings 1/90 1/89 1/82 1/90 Quinns Rock 1/93 1/93 1/96 Rolling Green 1/93 1/93 Rockingham 1/90 1/96 1/96 1/90 Swanbourne 10/92 10/92 3/94 1/93 Cullucabardee** 93-95 93-95 Jandakot** 94-95 94-95 Kenwick** 92-95 92-95 Rottnest** 93-95 93-95 Two Rocks** 92-94 92-94 *Sample taken by HIVOL every 6 days (not included in the analysis and not marked on network map in Fig 1)

** Samples taken for the photochemical smog study conducted between 1992 and 1995

Page 65: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

62

Appendix 4. Selected Interpolated and Modelled PM2.5

Concentration Contours for Perth

CA 9.6

DU14.9

LE18.1

SW 4.6QB 6.5

QR 3.5

HV 5.1

CA 9.6

DU14.9

LE18.1

SW 4.6QB 6.5

QR 3.5

HV 5.1

Interpolated average PM2.5 concentrations(µg m-3), for the period June-July 1997

Average PM2.5 concentrations (µg m-3) for thePerth region, modelled for the period June-July1997, and adjusted to match measured andestimated PM2.5 values at all monitoring sites.

Page 66: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

63

App

endi

x 5.

D

aily

Num

ber

of D

eath

s bet

wee

n 19

92 a

nd 1

996

N

ovem

ber-

Apr

il M

ay-O

ctob

er

All

year

M

ean

SD

10th

ce

ntile

90

th

cent

ile

Mea

n SD

10

th

cent

ile

90th

ce

ntile

M

ean

SD

10th

ce

ntile

90

th

cent

ile

All

deat

hs

24.2

5.

4 18

31

29

.2

6.2

21

37

26.8

6.

3 19

35

All

deat

hs 6

5 ye

ars a

nd o

ver

18.8

4.

7 13

25

23

.4

5.6

17

31

21.1

5.

7 14

29

CV

D d

eath

s 10

.2

3.4

6 15

12

.9

3.8

8 18

11

.6

3.9

7 17

CV

D d

eath

s 65

and

over

3.

1 5

13

11.4

3.

6 7

16

10.1

3.

6 6

15

Res

pira

tory

dea

ths

1.8

1.4

0 4

2.9

2.0

1 5

2.4

1.8

0 5

Res

pira

tory

dea

ths >

65

1.

5 1.

3 0

3 2.

6 1.

9 0

5 2.

1 1.

7 0

4

Page 67: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

64

App

endi

x 6.

A

ir P

ollu

tion

Con

cent

ratio

ns a

nd M

eteo

rolo

gica

l Par

amet

ers

N

ovem

ber-

Apr

il M

ay-O

ctob

er

All

year

Mea

n SD

10

th

cent

ile

90th

ce

ntile

M

ean

SD

10th

ce

ntile

90

th

cent

ile

Mea

n SD

10

th

cent

ile

90th

ce

ntile

N

O2 -

24h

ave

(ppb

) 9.

6 4.

8 4.

3 15

.7

11.1

5.

1 4.

8 18

.0

10.3

5.

0 4.

4 17

.1

NO

2 - 1

h m

ax (p

pb)

24.7

11

.1

12.4

39

.2

24.9

8.

9 14

.4

35.7

24

.8

10.1

13

.3

37.5

O3 -

8h

max

(ppb

) 27

.7

7.4

19.5

38

.3

24.2

4.

9 18

.4

30.5

25

.9

6.5

18.9

34

.1

O3 -

4h

max

(ppb

) 31

.1

9.4

20.8

45

.0

26.6

5.

0 21

.1

32.3

28

.8

7.8

21

39.5

O3 -

1h

max

(ppb

) 35

.0

12.4

22

.1

53.7

28

.3

5.6

22.4

34

.0

31.6

10

.2

22.2

46

.1

Bsp

- 24

h av

e (b

scat

/104 )

0.20

0.

13

0.09

0.

33

0.30

0.

23

0.12

0.

57

0.25

0.

20

0.10

0.

47

Bsp

- 1h

max

(bsc

at/1

04 ) 0.

74

0.87

0.

25

1.39

1.

61

1.70

0.

39

3.73

1.

2 1.

4 0.

3 2.

6

CO

- 8h

max

(ppm

) 2.

2 1.

3 0.

8 4.

2 2.

4 1.

2 1.

1 4.

2 2.

3 1.

3 0.

9 4.

2

*PM

10 -

24h

ave

(ppb

) 20

.6

7.7

12.6

29

.7

18.8

7.

8 10

.7

29.0

19

.6

7.8

11.3

29

.5

**PM

2.5 –

24h

ave

(ppb

) 8.

6 3.

8 4.

9 13

.1

9.7

4.7

5.1

16.2

9.

2 4.

3 5.

0 14

.5

Tem

pera

ture

- 24

h av

e 21

.8

3.4

17.8

26

.7

15.1

2.

5 12

.0

18.2

18

.4

4.5

13.0

24

.7

Hum

idity

– 2

4h a

ve

56.2

15

.3

35

75.5

71

.4

12.2

53

.5

85.0

64

.0

15.8

40

.5

82.5

* A

vaila

ble

only

wee

kly

** M

odel

led

PM2.

5 dat

a

Page 68: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

65

Appendix 7. Association between Meteorological and Pollution Measures

CORRELATION COEFFICIENTS BETWEEN POLLUTION MEASURES

NO2 24-hr O3 8-hr Bsp CO 24-hr O3 All year -0.06

Warm 0.35 Cool -0.11

Bsp All year 0.39 0.01 Warm 0.26 0.28 Cool 0.42 0.02

CO All year 0.57 0.00 0.35 Warm 0.57 0.16 0.24 Cool 0.55 0.00 0.37

Temp All year -0.12 0.20 -0.27 Warm 0.22 0.51 0.04 0.04 Cool -0.19 0.04 -0.31 -0.11

Humidity All year 0.18 -0.12 0.25 Warm 0.01 -0.31 0.18 0.26 Cool 0.15 0.00 0.11 0.33

CORRELATION COEFFICIENTS BETWEEN POLLUTION MEASURES AFTER ADJUSTMENT FOR TREND,

SEASONALITY AND METEOROLOGICAL VARIABLES

NO2 O3 BSP O3 All year 0.08

Summer 0.42 Winter 0.04

BSP All year 0.41 0.07 Summer 0.31 0.32 Winter 0.47 0.04

CO All year 0.42 0.15 0.34 Summer 0.25 0.31 0.25 Winter 0.43 0.15 0.43

Note: Summer is defined as months between November and April, and winter, May to October.

Page 69: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

66

App

endi

x 8.

C

ase-

Cro

ssov

er A

naly

sis R

esul

ts –

Mor

talit

y 8.

1 C

ardi

ovas

cula

r D

isea

se M

orta

lity:

Odd

s rat

io o

f dea

th p

er u

nit i

ncre

ase

in p

ollu

tant

, with

95%

con

fiden

ce in

terv

als

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

90 (0

.997

1,1.

0009

) 0.

07

n.s.

PM2.

5 (µ

g/m

3 ) la

g 1

0.99

86 (0

.996

7,1.

0005

) 0.

13

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

0.99

88 (0

.996

8,1.

0007

) 0.

18

n.s.

PM2.

5 (µ

g/m

3 ) la

g 3

1.00

07 (0

.998

8,1.

0026

) 0.

93

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

82 (0

.995

9,1.

0005

) 0.

05

Sum

mer

(+)

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

76 (0

.994

9,1.

0003

) 0.

05

Sum

mer

(+)

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

82 (0

.995

2,1.

0012

) 0.

12

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9949

(0.9

834,

1.00

65)

0.60

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

1.00

04 (0

.988

8,1.

0122

) 0.

44

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 1.

0017

(0.9

902,

1.01

33)

0.07

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

1.00

20 (0

.990

6,1.

0136

) 0.

36

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9966

(0.9

829,

1.01

06)

0.44

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

82 (0

.982

7,1.

0140

) 0.

13

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

30.

9996

(0.9

825,

1.01

70)

0.37

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 1.

0009

(0.9

197,

1.08

94)

0.20

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

9622

(0.8

837,

1.04

78)

0.67

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 0.

9597

(0.8

820,

1.04

43)

0.23

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 0.

9586

(0.8

805,

1.04

35)

0.76

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9778

(0.8

868,

1.07

81)

0.35

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9615

(0.8

622,

1.07

23)

0.26

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

30.

9442

(0.8

379,

1.06

41)

0.46

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

0 0.

9946

(0.9

781,

1.01

15)

0.32

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

1 1.

0025

(0.9

861,

1.01

91)

0.68

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

2 1.

0008

(0.9

844,

1.01

75)

0.85

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9967

(0.9

804,

1.01

33)

0.64

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9993

(0.9

802,

1.01

88)

0.65

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 0.

9980

(0.9

767,

1.01

99)

0.93

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

30.

9939

(0.9

705,

1.01

80)

0.58

n.

s.

Page 70: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

67

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

O3,

1-hr

max

(ppb

) la

g 0

1.00

18 (0

.999

9,1.

0036

) 0.

93

n.s.

O3,

1-hr

max

(ppb

) la

g 1

1.00

12 (0

.999

2,1.

0031

) 0.

59

n.s.

O3,

1-hr

max

(ppb

) la

g 2

1.00

03 (0

.998

5,1.

0021

) 0.

40

n.s.

O3,

1-hr

max

(ppb

) la

g 3

0.99

97 (0

.997

9,1.

0015

) 0.

31

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

23 (0

.999

9,1.

0046

) 0.

69

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

20 (0

.999

2,1.

0049

) 0.

96

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

15 (0

.998

4,1.

0047

) 0.

89

n.s.

O3,

4-hr

max

(ppb

) la

g 0

1.00

26 (1

.000

3,1.

0049

) 0.

88

n.s.

O3,

4-hr

max

(ppb

) la

g 1

1.00

18 (0

.999

3,1.

0042

) 0.

66

n.s.

O3,

4-hr

max

(ppb

) la

g 2

1.00

07 (0

.998

3,1.

0030

) 0.

51

n.s.

O3,

4-hr

max

(ppb

) la

g 3

0.99

96 (0

.997

3,1.

0018

) 0.

49

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

33 (1

.000

3,1.

0063

) 0.

67

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

29 (0

.999

4,1.

0065

) 0.

85

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

20 (0

.998

1,1.

0060

) 0.

94

n.s.

O3,

8-hr

max

(ppb

) la

g 0

1.00

34 (1

.000

5,1.

0063

) 0.

81

n.s.

O3,

8-hr

max

(ppb

) la

g 1

1.00

25 (0

.999

5,1.

0055

) 0.

92

n.s.

O3,

8-hr

max

(ppb

) la

g 2

1.00

10 (0

.998

1,1.

0038

) 0.

55

n.s.

O3,

8-hr

max

(ppb

) la

g 3

1.00

00 (0

.997

3,1.

0028

) 0.

70

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

42 (1

.000

6,1.

0079

) 0.

77

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

35 (0

.999

3,1.

0078

) 0.

85

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

27 (0

.998

0,1.

0073

) 0.

87

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

lag

0 1.

0015

(0.9

973,

1.00

57)

0.16

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

20 (0

.997

8,1.

0062

) 0.

19

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

lag

2 1.

0027

(0.9

985,

1.00

69)

0.14

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

92 (0

.995

0,1.

0034

) 0.

71

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 1.

0025

(0.9

977,

1.00

73)

0.15

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

37 (0

.998

3,1.

0091

) 0.

11

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0030

(0.9

972,

1.00

90)

0.17

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

1.00

08 (0

.999

0,1.

0026

) 0.

12

n.s.

NO

2, 1-

hr m

ax (p

pb)

lag

1 1.

0011

(0.9

992,

1.00

29)

0.09

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

1.00

09 (0

.999

1,1.

0027

) 0.

06

n.s.

NO

2, 1-

hr m

ax (p

pb)

lag

3 1.

0001

(0.9

983,

1.00

19)

0.45

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

13 (0

.999

2,1.

0034

) 0.

09

n.s.

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0017

(0.9

993,

1.00

41)

0.05

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

17 (0

.999

1,1.

0043

) 0.

08

n.s.

Page 71: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

68

8.2

Res

pira

tory

Mor

talit

y: O

dds r

atio

of d

eath

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

36 (0

.989

2,0.

9981

) 0.

59

n.s.

PM2.

5 (µ

g/m

3 ) la

g 1

0.99

62 (0

.991

7,1.

0007

) 0.

39

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

1.00

02 (0

.996

2,1.

0042

) 0.

28

n.s.

PM2.

5 (µ

g/m

3 ) la

g 3

1.00

04 (0

.996

3,1.

0046

) 0.

61

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

23 (0

.986

9,0.

9977

) 0.

85

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

37 (0

.987

7,0.

9997

) 0.

56

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

43 (0

.987

6,1.

0011

) 0.

53

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9733

(0.9

487,

0.99

86)

0.38

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

0.97

47 (0

.949

6,1.

0005

) 0.

72

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 0.

9909

(0.9

663,

1.01

62)

0.96

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

0.98

68 (0

.962

5,1.

0117

) 0.

30

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9643

(0.9

355,

0.99

41)

0.34

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.96

38 (0

.931

2,0.

9976

) 0.

45

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9591

(0.9

232,

0.99

65)

0.82

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

7678

(0.6

340,

0.92

99)

0.40

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

8334

(0.6

870,

1.01

11)

0.49

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 0.

9697

(0.8

052,

1.16

79)

0.22

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 0.

9267

(0.7

681,

1.11

81)

0.37

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

7466

(0.5

987,

0.93

11)

0.83

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

7744

(0.6

064,

0.98

90)

0.74

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

7614

(0.5

818,

0.99

63)

0.58

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

0 0.

9903

(0.9

526,

1.02

94)

0.46

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

1 0.

9892

(0.9

527,

1.02

70)

0.61

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9709

(0.9

348,

1.00

83)

0.86

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9862

(0.9

495,

1.02

44)

0.93

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9906

(0.9

475,

1.03

55)

0.89

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 0.

9735

(0.9

264,

1.02

31)

0.94

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9595

(0.9

081,

1.01

38)

0.81

n.

s.

Page 72: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

69

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

O3,

1-hr

max

(ppb

) la

g 0

0.99

95 (0

.995

1,1.

0039

) 0.

92

n.s.

O3,

1-hr

max

(ppb

) la

g 1

0.99

90 (0

.994

5,1.

0034

) 0.

77

n.s.

O3,

1-hr

max

(ppb

) la

g 2

1.00

10 (0

.996

8,1.

0052

) 0.

27

n.s.

O3,

1-hr

max

(ppb

) la

g 3

1.00

21 (0

.997

8,1.

0063

) 0.

78

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

91 (0

.993

5,1.

0046

) 0.

79

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

01 (0

.993

6,1.

0066

) 0.

57

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

10 (0

.993

8,1.

0084

) 0.

67

n.s.

O3,

4-hr

max

(ppb

) la

g 0

1.00

01 (0

.994

6,1.

0057

) 0.

92

n.s.

O3,

4-hr

max

(ppb

) la

g 1

1.00

04 (0

.994

8,1.

0060

) 0.

82

n.s.

O3,

4-hr

max

(ppb

) la

g 2

1.00

16 (0

.996

3,1.

0070

) 0.

37

n.s.

O3,

4-hr

max

(ppb

) la

g 3

1.00

35 (0

.998

1,1.

0088

) 0.

86

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

09 (0

.993

9,1.

0078

) 0.

82

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

22 (0

.994

2,1.

0103

) 0.

65

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

36 (0

.994

5,1.

0127

) 0.

75

n.s.

O3,

8-hr

max

(ppb

) la

g 0

1.00

26 (0

.995

8,1.

0093

) 0.

91

n.s.

O3,

8-hr

max

(ppb

) la

g 1

1.00

28 (0

.996

0,1.

0095

) 0.

92

n.s.

O3,

8-hr

max

(ppb

) la

g 2

1.00

42 (0

.997

8,1.

0106

) 0.

42

n.s.

O3,

8-hr

max

(ppb

) la

g 3

1.00

62 (0

.999

8,1.

0127

) 0.

88

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

45 (0

.996

3,1.

0129

) 0.

87

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

71 (0

.997

7,1.

0167

) 0.

69

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

93 (0

.998

8,1.

0199

) 0.

79

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

lag

0 0.

9937

(0.9

844,

1.00

31)

0.43

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

0.99

49 (0

.985

7,1.

0042

) 1.

00

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

lag

2 0.

9952

(0.9

860,

1.00

46)

0.65

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

99 (0

.990

5,1.

0096

) 0.

22

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 0.

9923

(0.9

817,

1.00

31)

0.64

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

09 (0

.979

1,1.

0028

) 0.

59

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9918

(0.9

787,

1.00

51)

0.41

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

0.99

83 (0

.994

2,1.

0024

) 0.

48

n.s.

NO

2, 1-

hr m

ax (p

pb)

lag

1 0.

9968

(0.9

927,

1.00

08)

0.49

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

0.99

80 (0

.994

0,1.

0021

) 0.

45

n.s.

NO

2, 1-

hr m

ax (p

pb)

lag

3 1.

0018

(0.9

976,

1.00

60)

0.19

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

65 (0

.991

7,1.

0013

) 0.

94

n.s.

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9958

(0.9

904,

1.00

12)

0.71

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

73 (0

.991

3,1.

0032

) 0.

46

n.s.

Page 73: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

70

8.3

‘O

ther

’ Mor

talit

y: O

dds r

atio

of d

eath

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

99 (0

.998

1,1.

0019

) 0.

87

n.s.

PM2.

5 (µ

g/m

3 ) la

g 1

0.99

89 (0

.997

0,1.

0008

) 0.

94

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

0.99

91 (0

.997

1,1.

0010

) 0.

34

n.s.

PM2.

5 (µ

g/m

3 ) la

g 3

0.99

89 (0

.996

9,1.

0009

) 0.

21

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

92 (0

.996

9,1.

0015

) 0.

97

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

87 (0

.996

0,1.

0013

) 0.

66

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

80 (0

.995

0,1.

0011

) 0.

45

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

0 1.

0033

(0.9

921,

1.01

47)

0.89

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

0.99

59 (0

.984

6,1.

0073

) 0.

64

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 0.

9952

(0.9

839,

1.00

66)

0.20

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

0.99

64 (0

.985

3,1.

0075

) 0.

72

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9995

(0.9

861,

1.01

31)

0.71

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

66 (0

.981

5,1.

0121

) 0.

39

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9949

(0.9

783,

1.01

19)

0.42

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 1.

0063

(0.9

265,

1.09

31)

0.87

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

9299

(0.8

550,

1.01

13)

0.62

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 0.

9452

(0.8

696,

1.02

74)

0.18

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 0.

9604

(0.8

843,

1.04

32)

0.39

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9594

(0.8

714,

1.05

63)

0.91

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9358

(0.8

402,

1.04

22)

0.55

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9255

(0.8

229,

1.04

10)

0.49

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

0 1.

0176

(1.0

013,

1.03

42)

0.69

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

1 1.

0106

(0.9

948,

1.02

67)

0.35

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9998

(0.9

840,

1.01

57)

0.22

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9916

(0.9

760,

1.00

76)

0.30

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 1.

0187

(1.0

000,

1.03

78)

0.51

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 1.

0135

(0.9

927,

1.03

47)

0.53

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0033

(0.9

807,

1.02

64)

0.55

n.

s.

Page 74: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

71

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

O3,

1-hr

max

(ppb

) la

g 0

0.99

84 (0

.996

9,1.

0000

) 0.

13

n.s.

O3,

1-hr

max

(ppb

) la

g 1

0.99

80 (0

.996

2,0.

9997

) 0.

07

n.s.

O3,

1-hr

max

(ppb

) la

g 2

0.99

91 (0

.997

4,1.

0008

) 0.

10

n.s.

O3,

1-hr

max

(ppb

) la

g 3

0.99

94 (0

.997

8,1.

0010

) 0.

04

Sum

mer

(+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

66 (0

.994

4,0.

9988

) 0.

13

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

59 (0

.993

3,0.

9985

) 0.

17

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

52 (0

.992

4,0.

9981

) 0.

13

n.s.

O3,

4-hr

max

(ppb

) la

g 0

0.99

78 (0

.995

6,0.

9999

) 0.

14

n.s.

O3,

4-hr

max

(ppb

) la

g 1

0.99

73 (0

.995

1,0.

9996

) 0.

12

n.s.

O3,

4-hr

max

(ppb

) la

g 2

0.99

87 (0

.996

5,1.

0009

) 0.

12

n.s.

O3,

4-hr

max

(ppb

) la

g 3

0.99

92 (0

.997

1,1.

0013

) 0.

08

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

57 (0

.993

0,0.

9985

) 0.

16

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

46 (0

.991

4,0.

9979

) 0.

20

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

37 (0

.990

1,0.

9973

) 0.

19

n.s.

O3,

8-hr

max

(ppb

) la

g 0

0.99

74 (0

.994

8,1.

0001

) 0.

19

n.s.

O3,

8-hr

max

(ppb

) la

g 1

0.99

73 (0

.994

5,1.

0001

) 0.

12

n.s.

O3,

8-hr

max

(ppb

) la

g 2

0.99

84 (0

.995

7,1.

0010

) 0.

07

n.s.

O3,

8-hr

max

(ppb

) la

g 3

0.99

98 (0

.997

3,1.

0024

) 0.

16

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

54 (0

.992

0,0.

9988

) 0.

19

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

40 (0

.990

1,0.

9980

) 0.

20

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

36 (0

.989

3,0.

9979

) 0.

23

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

lag

0 1.

0001

(0.9

961,

1.00

41)

0.10

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

0.99

97 (0

.995

8,1.

0037

) 0.

12

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

lag

2 1.

0012

(0.9

973,

1.00

52)

0.15

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

89 (0

.995

0,1.

0029

) 0.

01

Sum

mer

(+)

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 0.

9999

(0.9

954,

1.00

46)

0.08

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

07 (0

.995

5,1.

0058

) 0.

07

n.s.

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0000

(0.9

945,

1.00

57)

0.03

Su

mm

er (+

) N

O2,

1-hr

max

(ppb

) la

g 0

0.99

94 (0

.997

7,1.

0011

) 0.

15

n.s.

NO

2, 1-

hr m

ax (p

pb)

lag

1 0.

9995

(0.9

977,

1.00

12)

0.07

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

0.99

97 (0

.998

0,1.

0014

) 0.

04

Sum

mer

(+)

NO

2, 1-

hr m

ax (p

pb)

lag

3 0.

9997

(0.9

980,

1.00

14)

0.01

Su

mm

er (+

) N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

92 (0

.997

2,1.

0012

) 0.

08

n.s.

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9991

(0.9

968,

1.00

14)

0.04

Su

mm

er (+

) N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

90 (0

.996

5,1.

0016

) 0.

02

Sum

mer

(+)

Page 75: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

72

App

endi

x 9.

D

aily

Num

ber

of H

ospi

talis

atio

ns b

etw

een

1992

and

199

6

Nov

embe

r-A

pril

May

-Oct

ober

A

ll ye

ar

M

ean

SD

10th

cent

ile

90th

cent

ile

Mea

n SD

10

th

cent

ile

90th

cent

ile

Mea

n SD

10

th

cent

ile

90th

cent

ile

All

resp

irato

ry

19.3

6.

0 12

27

31

.0

8.7

20

42

25.3

9.

5 14

38

Ast

hma

6.9

3.7

3 12

10

.7

4.1

6 16

8.

8 4.

3 4

15

Oth

er C

OPD

2.

4 1.

7 0

5 4.

1 2.

3 1

7 3.

3 2.

2 1

6

All

card

iova

scul

ar

24.9

6.

4 17

33

28

.1

6.4

20

36

26.5

6.

6 19

35

Pneu

mon

ia &

'flu

3.

6 2.

1 1

6 5.

7 3.

1 2

10

4.6

2.9

1 8

Ast

hma

unde

r 15y

ears

of a

ge

4.7

3.1

1 9

6.6

3.4

3 11

5.

6 3.

4 2

10

Gas

troin

test

inal

17

.2

5.0

11

24

16.3

4.

8 10

22

16

.8

4.9

11

23

Page 76: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

73

App

endi

x 10

. Cas

e-C

ross

over

Ana

lysi

s Res

ults

- H

ospi

talis

atio

ns

10.1

Car

diov

ascu

lar

Dis

ease

Hos

pita

lisat

ions

: Odd

s rat

io p

er u

nit i

ncre

ase

in p

ollu

tant

, with

95%

con

fiden

ce in

terv

als

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9994

(0.9

982,

1.00

07)

0.04

9 W

inte

r (+)

PM

2.5

(µg/

m3 )

lag

1 1.

0002

(0.9

989,

1.00

14)

0.26

ns

PM

2.5

(µg/

m3 )

lag

2 0.

9995

(0.9

982,

1.00

07)

0.00

98

Win

ter (

+)

PM2.

5 (µ

g/m

3 ) la

g 3

1.00

01 (0

.998

8,1.

0013

) 0.

0000

1 W

inte

r (+)

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9997

(0.9

982,

1.00

12)

0.07

3 ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 0.

9994

(0.9

976,

1.00

12)

0.01

7 W

inte

r (+)

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9995

(0.9

975,

1.00

15)

0.00

1 W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) la

g 0

0.99

69 (0

.989

5,1.

0043

) 0.

0292

W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) la

g 1

0.99

88 (0

.991

5,1.

0061

) 0.

2449

ns

N

eph,

1-h

r max

(Bsp

) la

g 2

0.99

43 (0

.986

9,1.

0016

) 0.

2467

ns

N

eph,

1-h

r max

(Bsp

) la

g 3

0.99

93 (0

.991

9,1.

0066

) 0.

0001

W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

0.99

70 (0

.988

3,1.

0058

) 0.

0294

W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

41 (0

.984

3,1.

0040

) 0.

0188

W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

43 (0

.983

4,1.

0052

) 0.

0005

W

inte

r (+)

N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

9662

(0.9

153,

1.01

99)

0.12

16

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

1.02

25 (0

.968

5,1.

0796

) 0.

44

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

0.97

64 (0

.924

2,1.

0315

) 0.

017

Win

ter (

+)

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

0.98

78 (0

.938

3,1.

0428

) 0.

0001

W

inte

r (+)

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9933

(0.9

331,

1.05

75)

0.16

8 ns

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9827

(0.9

158,

1.05

44)

0.04

02

Win

ter (

+)

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.97

93 (0

.906

6,1.

0578

) 0.

0028

W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

lag

0 0.

9951

(0.9

843,

1.00

61)

0.00

58

Win

ter (

+)

CO

, 8-h

r max

(ppm

) la

g 1

1.00

87 (0

.996

0,1.

0195

) 0.

0579

ns

C

O, 8

-hr m

ax (p

pm)

lag

2 1.

0022

(0.9

909,

1.01

36)

0.01

80

Win

ter (

+)

CO

, 8-h

r max

(ppm

) la

g 3

1.00

07 (0

.990

1,1.

0115

) 0.

0002

W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 1.

0010

(0.9

878,

1.01

44)

0.00

41

Win

ter (

+)

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

11 (0

.985

9,1.

0165

) 0.

0012

W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0012

(0.9

847,

1.01

80)

0.00

01

Win

ter (

+)

Page 77: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

74

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

)

Seas

onal

Dir

ectio

n O

3, 1-

hr m

ax (p

pb)

lag

0 0.

9995

(0.9

983,

1.00

06)

0.00

20

Win

ter (

+)

O3,

1-hr

max

(ppb

) la

g 1

1.00

07 (0

.999

5,1.

0019

) 0.

0006

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

2 0.

9999

(0.9

989,

1.00

11)

0.00

13

Win

ter (

+)

O3,

1-hr

max

(ppb

) la

g 3

1.00

01 (0

.999

0,1.

0012

) 0.

0002

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9996

(0.9

980,

1.00

12)

0.00

02

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

94 (0

.997

6,1.

0013

) 0.

0001

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9995

(0.9

975,

1.00

16)

0.00

00

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 0

0.99

92 (0

.997

7,1.

0007

) 0.

0015

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

1 1.

0008

(0.9

992,

1.00

23)

0.00

06

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 2

0.99

99 (0

.998

5,1.

0014

) 0.

0010

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

3 1.

0002

(0.9

988,

1.00

16)

0.00

02

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

93 (0

.997

3,1.

0013

) 0.

0002

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9992

(0.9

968,

1.00

15)

0.00

01

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

92 (0

.996

6,1.

0018

) 0.

0000

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

0 0.

9993

(0.9

975,

1.00

12)

0.00

04

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 1

1.00

05 (0

.998

7,1.

0024

) 0.

0006

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

2 0.

9999

(0.9

982,

1.00

17)

0.00

06

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 3

1.00

03 (0

.998

6,1.

0020

) 0.

0002

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9992

(0.9

968,

1.00

16)

0.00

01

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

91 (0

.996

4,1.

0018

) 0.

0000

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9992

(0.9

963,

1.00

22)

0.00

00

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

lag

0 0.

9993

(0.9

966,

1.00

19)

0.00

44

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

lag

1 1.

0029

(1.0

002,

1.00

56)

0.05

00

ns

NO

2, 24

-hr a

vera

ge (p

pb)

lag

2 1.

0012

(0.9

984,

1.00

39)

0.01

06

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

lag

3 1.

0005

(0.9

978,

1.00

31)

0.00

09

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 1.

0015

(0.9

984,

1.00

46)

0.00

87

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0019

(0.9

984,

1.00

54)

0.00

68

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0020

(0.9

982,

1.00

58)

0.00

23

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

lag

0 0.

9998

(0.9

986,

1.00

09)

0.01

17

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

lag

1 1.

0010

(0.9

998,

1.00

21)

0.01

35

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

lag

2 1.

0003

(0.9

991,

1.00

15)

0.00

25

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

lag

3 0.

9999

(0.9

988,

1.00

10)

0.00

35

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0005

(0.9

992,

1.00

19)

0.00

58

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0006

(0.9

991,

1.00

22)

0.00

31

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0005

(0.9

988,

1.00

22)

0.00

16

Win

ter (

+)

Page 78: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

75

10.2

C

ardi

ovas

cula

r D

isea

se H

ospi

talis

atio

ns (

65+

Yea

rs):

Odd

s ra

tio p

er u

nit

incr

ease

in

pollu

tant

, w

ith 9

5% c

onfid

ence

inte

rval

s

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9993

(0.9

977,

1.00

08)

0.14

n.

s. PM

2.5

(µg/

m3 )

lag

1 1.

0002

(0.9

987,

1.00

17)

0.15

n.

s. PM

2.5

(µg/

m3 )

lag

2 1.

0002

(0.9

986,

1.00

17)

0.16

n.

s. PM

2.5

(µg/

m3 )

lag

3 1.

0007

(0.9

992,

1.00

22)

0.03

W

inte

r (+)

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9996

(0.9

977,

1.00

15)

0.09

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 0.

9997

(0.9

976,

1.00

19)

0.07

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +l

ag 2

+la

g 3

1.00

02 (0

.997

8,1.

0026

) 0.

03

Win

ter (

+)

Nep

h, 1

-hr m

ax (B

sp)

lag

0 1.

0008

(0.9

918,

1.00

99)

0.21

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

0.99

51 (0

.986

2,1.

0040

) 0.

15

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 0.

9997

(0.9

908,

1.00

88)

0.52

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

1.00

63 (0

.997

4,1.

0153

) 0.

003

Win

ter (

+)

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9971

(0.9

865,

1.00

78)

0.08

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

75 (0

.985

5,1.

0096

) 0.

10

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +l

ag 2

+la

g 3

1.00

13 (0

.988

0,1.

0147

) 0.

01

Win

ter (

+)

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 0

0.96

91 (0

.907

0,1.

0354

) 0.

25

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

1.00

77 (0

.942

4,1.

0774

) 0.

38

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

1.02

88 (0

.961

8,1.

1005

) 0.

23

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

1.03

91 (0

.971

9,1.

1109

) 0.

03

Win

ter (

+)

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

0.98

57 (0

.912

9,1.

0642

) 0.

23

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

43 (0

.921

3,1.

0948

) 0.

18

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.02

42 (0

.931

9,1.

1256

) 0.

07

n.s.

CO

, 8-h

r max

(ppm

) la

g 0

0.98

91 (0

.975

8,1.

0026

) 0.

007

Win

ter (

+)

CO

, 8-h

r max

(ppm

) la

g 1

1.00

80 (0

.993

6,1.

0227

) 0.

13

n.s.

CO

, 8-h

r max

(ppm

) la

g 2

1.00

62 (0

.992

2,1.

0205

) 0.

008

Win

ter (

+)

CO

, 8-h

r max

(ppm

) la

g 3

1.00

53 (0

.992

1,1.

0187

) 0.

0009

W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9969

(0.9

806,

1.01

33)

0.01

W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 0.

9989

(0.9

802,

1.01

79)

0.00

2 W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0011

(0.9

808,

1.02

19)

0.00

3 W

inte

r (+)

Page 79: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

76

Pollu

tant

L

ag

All

Yea

r O

R (9

5 %

CI)

Se

ason

al D

iffer

ence

(p-v

alue

) Se

ason

al D

irec

tion

O3,

1-hr

max

(ppb

) la

g 0

0.99

97 (0

.998

3,1.

0011

) 0.

11

n.s.

O3,

1-hr

max

(ppb

) la

g 1

1.00

03 (0

.998

8,1.

0018

) 0.

008

Win

ter (

+)

O3,

1-hr

max

(ppb

) la

g 2

1.00

01 (0

.998

7,1.

0015

) 0.

04

Win

ter (

+)

O3,

1-hr

max

(ppb

) la

g 3

1.00

02 (0

.998

9,1.

0016

) 0.

004

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

95 (0

.997

5,1.

0015

) 0.

01

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

96 (0

.997

2,1.

0019

) 0.

01

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

98 (0

.997

2,1.

0023

) 0.

004

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 0

0.99

94 (0

.997

6,1.

0013

) 0.

09

n.s.

O3,

4-hr

max

(ppb

) la

g 1

1.00

01 (0

.998

2,1.

0020

) 0.

008

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 2

1.00

01 (0

.998

3,1.

0019

) 0.

03

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 3

1.00

02 (0

.998

5,1.

0020

) 0.

006

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

90 (0

.996

5,1.

0015

) 0.

01

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

92 (0

.996

3,1.

0021

) 0.

008

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

93 (0

.996

2,1.

0025

) 0.

004

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 0

0.99

95 (0

.997

2,1.

0017

) 0.

05

n.s.

O3,

8-hr

max

(ppb

) la

g 1

0.99

95 (0

.997

3,1.

0018

) 0.

01

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 2

0.99

98 (0

.997

6,1.

0019

) 0.

02

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 3

1.00

03 (0

.998

1,1.

0024

) 0.

007

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

86 (0

.995

7,1.

0016

) 0.

01

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

86 (0

.995

2,1.

0019

) 0.

005

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

89 (0

.995

3,1.

0026

) 0.

003

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

lag

0 0.

9999

5 (0

.996

7,1.

0033

) 0.

04

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

lag

1 1.

0047

(1.0

013,

1.00

81)

0.05

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 2

1.00

23 (0

.998

9,1.

0056

) 0.

01

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

lag

3 1.

0020

(0.9

987,

1.00

53)

0.00

3 W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

31 (0

.999

3,1.

0070

) 0.

03

Win

ter (

+)

NO

2, 24

-hr a

vera

ge (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0039

(0.9

996,

1.00

83)

0.02

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

46 (0

.999

9,1.

0093

) 0.

007

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

lag

0 1.

0001

(0.9

987,

1.00

16)

0.09

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

16 (1

.000

1, 1

.003

1)

0.02

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) la

g 2

1.00

09 (0

.999

5,1.

0024

) 0.

003

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

lag

3 1.

0005

(0.9

991,

1.00

19)

0.01

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

12 (0

.999

5,1.

0029

) 0.

03

Win

ter (

+)

NO

2, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0016

(0.9

996,

1.00

35)

0.01

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

18 (0

.999

6,1.

0039

) 0.

007

Win

ter (

+)

Page 80: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

77

10.3

R

espi

rato

ry H

ospi

talis

atio

ns: O

dds r

atio

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

92 (0

.998

0,1.

0005

) 0.

2402

ns

PM

2.5

(µg/

m3 )

lag

1 0.

9995

(0.9

982,

1.00

07)

0.20

66

ns

PM2.

5 (µ

g/m

3 ) la

g 2

1.00

11 (0

.999

8,1.

0024

) 0.

7151

ns

PM

2.5

(µg/

m3 )

lag

3 1.

0017

(1.0

004,

1.00

29)

0.28

66

ns

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

90 (0

.997

5,1.

0005

) 0.

1521

ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 0.

9998

(0.9

980,

1.00

16)

0.23

62

ns

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

09 (0

.998

9,1.

0030

) 0.

2066

ns

N

eph,

1-h

r max

(Bsp

) la

g 0

0.99

12 (0

.983

8,0.

9986

) 0.

9450

ns

N

eph,

1-h

r max

(Bsp

) la

g 1

0.99

84 (0

.990

8,1.

0060

) 0.

2230

ns

N

eph,

1-h

r max

(Bsp

) la

g 2

1.00

35 (0

.995

7,1.

0114

) 0.

5076

ns

N

eph,

1-h

r max

(Bsp

) la

g 3

1.00

21 (0

.994

6,1.

0098

) 0.

2146

ns

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

0.99

24 (0

.983

6,1.

0013

) 0.

3342

ns

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

54 (0

.985

1,1.

0058

) 0.

6982

ns

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

71 (0

.985

6,1.

0088

) 0.

4333

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

9501

(0.8

990,

1.00

42)

0.44

62

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

0.96

51 (0

.911

9,1.

0214

) 0.

6781

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 1.

0140

(0.9

565,

1.07

49)

0.47

84

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

1.03

73 (0

.980

6,1.

0972

) 0.

3753

ns

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9446

(0.8

857,

1.00

76)

0.42

05

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.96

18 (0

.893

7,1.

0353

) 0.

7679

ns

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9840

(0.9

075,

1.06

70)

0.62

57

ns

CO

, 8-h

r max

(ppm

) la

g 0

1.00

55 (0

.993

7,1.

0174

) 0.

4654

ns

C

O, 8

-hr m

ax (p

pm)

lag

1 0.

9940

(0.9

826,

1.00

54)

0.66

95

ns

CO

, 8-h

r max

(ppm

) la

g 2

0.98

63 (0

.975

2,0.

9975

) 0.

6412

ns

C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9918

(0.9

808,

1.00

28)

0.06

92

ns

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

0.99

87 (0

.985

0,1.

0125

) 0.

2570

ns

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 0.

9901

(0.9

750,

1.00

54)

0.11

75

ns

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.98

45 (0

.968

2,1.

0011

) 0.

0392

W

inte

r (+)

Page 81: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

78

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

15 (1

.000

2,1.

0028

) 0.

0118

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9996

(0.9

983,

1.00

10)

0.14

77

ns

O3,

1-hr

max

(ppb

) la

g 2

0.99

95 (0

.998

1,1.

0008

) 0.

1366

ns

O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0009

(0.9

997,

1.00

22)

0.39

39

ns

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

10 (0

.999

3,1.

0027

) 0.

0241

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0004

(0.9

984,

1.00

25)

0.02

71

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

13 (0

.999

0,1.

0035

) 0.

0461

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0016

(1.0

000,

1.00

33)

0.01

24

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 1

0.99

97 (0

.998

0,1.

0014

) 0.

1631

ns

O

3, 4-

hr m

ax (p

pb)

lag

2 0.

9997

(0.9

980,

1.00

14)

0.13

06

ns

O3,

4-hr

max

(ppb

) la

g 3

1.00

12 (0

.999

6,1.

0028

) 0.

3128

ns

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0011

(0.9

990,

1.00

32)

0.02

85

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

07 (0

.998

2,1.

0032

) 0.

0301

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0016

(0.9

988,

1.00

44)

0.04

30

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 0

1.00

18 (0

.999

8,1.

0038

) 0.

0140

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9995

(0.9

974,

1.00

15)

0.17

27

ns

O3,

8-hr

max

(ppb

) la

g 2

1.00

07 (0

.998

7,1.

0027

) 0.

1437

ns

O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0013

(0.9

993,

1.00

32)

0.45

54

ns

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

10 (0

.998

5,1.

0035

) 0.

0308

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0012

(0.9

983,

1.00

41)

0.03

22

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

19 (0

.998

7,1.

0051

) 0.

0496

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 0

1.00

09 (0

.998

1,1.

0038

) 0.

8043

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

11 (0

.998

3,1.

0040

) 0.

2323

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

90 (0

.995

9,1.

0021

) 0.

3074

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

91 (0

.996

2,1.

0020

) 0.

3132

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

14 (0

.998

1,1.

0047

) 0.

4436

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

06 (0

.996

8,1.

0044

) 0.

3660

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

00 (0

.995

8,1.

0042

) 0.

3266

ns

N

O2,

1-hr

max

(ppb

) la

g 0

1.00

03 (0

.999

1,1.

0015

) 0.

4612

ns

N

O2,

1-hr

max

(ppb

) la

g 1

1.00

00 (0

.998

7,1.

0012

) 0.

1750

ns

N

O2,

1-hr

max

(ppb

) la

g 2

1.00

00 (0

.998

2,1.

0009

) 0.

0662

ns

N

O2,

1-hr

max

(ppb

) la

g 3

0.99

99 (0

.998

6,1.

0012

) 0.

3643

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

02 (0

.998

7,1.

0016

) 0.

2711

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

99 (0

.998

2,1.

0016

) 0.

1479

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

98 (0

.997

9,1.

0018

) 0.

1740

ns

Page 82: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

79

10.4

R

espi

rato

ry H

ospi

talis

atio

ns (6

5+ Y

ears

): O

dds r

atio

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

99 (0

.997

6,1.

0022

) 0.

4142

n.

s. PM

2.5

(µg/

m3 )

lag

1 0.

9992

(0.9

967,

1.00

16)

0.24

76

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

0.99

98 (0

.997

4,1.

0022

) 0.

9228

n.

s. PM

2.5

(µg/

m3 )

lag

3 1.

0011

(0.9

985,

1.00

36)

0.27

85

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

93 (0

.996

4,1.

0023

) 0.

2515

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 0.

9992

(0.9

958,

1.00

27)

0.42

85

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

99 (0

.995

9,1.

0038

) 0.

3295

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 0

0.98

94 (0

.975

6,1.

0035

) 0.

5466

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

1.00

36 (0

.989

4,1.

0179

) 0.

1550

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 2

1.01

96 (1

.004

8,1.

0347

) 0.

7535

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

1.00

03 (0

.986

3,1.

0145

) 0.

0789

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

0.99

48 (0

.978

2,1.

0117

) 0.

1821

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

70 (0

.987

4,1.

0269

) 0.

5026

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

69 (0

.985

0,1.

0293

) 0.

2080

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

9363

(0.8

426,

1.04

04)

0.54

68

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

0.96

84 (0

.869

4,1.

0787

) 0.

6357

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 1.

1008

(0.9

866,

1.22

84)

0.52

02

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

1.02

54 (0

.922

5,1.

1399

) 0.

1463

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9378

(0.8

298,

1.06

00)

0.48

98

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

85 (0

.869

1,1.

1472

) 0.

8833

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0116

(0.8

686,

1.17

83)

0.54

26

n.s.

CO

, 8-h

r max

(ppm

) la

g 0

1.00

46 (0

.981

7,1.

0281

) 0.

0704

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

1 1.

0113

(0.9

888,

1.03

42)

0.72

69

n.s.

CO

, 8-h

r max

(ppm

) la

g 2

0.98

41 (0

.962

6,1.

0062

) 0.

4363

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9903

(0.9

690,

1.01

22)

0.10

71

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

1.01

25 (0

.985

6,1.

0401

) 0.

2197

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 1.

0000

(0.9

703,

1.03

08)

0.09

92

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

26 (0

.960

2,1.

0260

) 0.

0388

W

inte

r (+)

Page 83: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

80

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

14 (0

.998

9,1.

0039

) 0.

0136

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9989

(0.9

964,

1.00

15)

0.03

60

Win

ter (

+)

O3,

1-hr

max

(ppb

) la

g 2

0.99

83 (0

.995

7,1.

0009

) 0.

0093

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0004

(0.9

980,

1.00

29)

0.04

74

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

03 (0

.997

1,1.

0035

) 0.

0150

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9989

(0.9

951,

1.00

28)

0.00

65

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

96 (0

.995

3,1.

0038

) 0.

0077

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0013

(0.9

981,

1.00

44)

0.01

41

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 1

0.99

87 (0

.995

5,1.

0020

) 0.

0364

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

2 0.

9986

(0.9

954,

1.00

18)

0.00

96

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 3

1.00

07 (0

.997

7,1.

0038

) 0.

0342

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0000

(0.9

961,

1.00

41)

0.01

66

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

90 (0

.994

2,1.

0037

) 0.

0075

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9998

(0.9

945,

1.00

50)

0.00

75

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 0

1.00

22 (0

.998

4,1.

0060

) 0.

0145

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9973

(0.9

934,

1.00

12)

0.04

87

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 2

0.99

94 (0

.995

6,1.

0031

) 0.

0079

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0012

(0.9

975,

1.00

49)

0.03

20

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

97 (0

.995

0,1.

0045

) 0.

0206

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9992

(0.9

938,

1.00

46)

0.00

83

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

02 (0

.994

2,1.

0062

) 0.

0076

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 0

0.99

91 (0

.993

8,1.

0045

) 0.

3731

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

58 (1

.000

3,1.

0113

) 0.

2215

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

99 (0

.994

0,1.

0059

) 0.

1137

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

68 (0

.991

2,1.

0024

) 0.

1335

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

32 (0

.997

0,1.

0094

) 0.

2548

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

26 (0

.995

4,1.

0099

) 0.

1646

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

07 (0

.992

7,1.

0087

) 0.

1298

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

0.99

97 (0

.997

4,1.

0021

) 0.

0557

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

17 (0

.999

3,1.

0041

) 0.

0587

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

0.99

98 (0

.997

1,1.

0024

) 0.

0056

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) la

g 3

0.99

83 (0

.995

9,1.

0008

) 0.

1237

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

09 (0

.998

2,1.

0037

) 0.

0397

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

06 (0

.997

4,1.

0039

) 0.

0125

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

97 (0

.996

0,1.

0033

) 0.

0166

W

inte

r (+)

Page 84: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

80

10.5

A

sthm

a H

ospi

talis

atio

ns: O

dds r

atio

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9994

(0.9

974,

1.00

15)

0.52

49

ns

PM2.

5 (µ

g/m

3 ) la

g 1

0999

3 (0

.997

2,1.

0013

) 0.

2888

ns

PM

2.5

(µg/

m3 )

lag

2 1.

0024

(1.0

004,

1.00

44)

0.86

11

ns

PM2.

5 (µ

g/m

3 ) la

g 3

1.00

10 (0

.999

1,1.

0030

) 0.

5903

ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9990

(0.9

965,

1.00

16)

0.31

73

ns

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

08 (0

.997

8,1.

0037

) 0.

5302

ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0015

(0.9

982,

1.00

48)

0.50

19

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9923

(0.9

798,

1.00

50)

0.69

05

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

1 0.

9989

(0.9

859,

1.01

21)

0.37

87

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

2 0.

9957

(0.9

823,

1.00

93)

0.87

90

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

3 1.

0031

(0.9

900,

1.01

64)

0.99

27

ns

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9935

(0.9

783,

1.00

89)

0.71

04

ns

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9918

(0.9

743,

1.00

97)

0.77

10

ns

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9943

(0.9

746,

1.01

45)

0.86

28

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 0

1.01

45 (0

.924

2,1.

1136

) 0.

8294

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

9876

(0.8

978,

1.08

64)

0.73

84

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

0.97

61 (0

.883

9,1.

0779

) 0.

6529

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 1.

0274

(0.9

345,

1.12

95)

0.57

98

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

1.00

21 (0

.898

8,1.

1172

) 0.

7373

ns

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9929

(0.8

764,

1.12

51)

0.92

06

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

86 (0

.878

6,1.

1579

) 0.

8011

ns

C

O, 8

-hr m

ax (p

pm)

lag

0 1.

0130

(0.9

936,

1.03

27)

0.28

97

ns

CO

, 8-h

r max

(ppm

) la

g 1

0.98

30 (0

.964

7,1.

0017

) 0.

9264

ns

C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9785

(0.9

606,

0.99

67)

0.41

78

ns

CO

, 8-h

r max

(ppm

) la

g 3

0.98

45 (0

.966

7,1.

0026

) 0.

2892

ns

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9936

(0.9

715,

1.01

63)

0.80

22

ns

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

0.98

11 (0

.956

8,1.

0060

) 0.

8612

ns

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9722

(0.9

459,

0.99

92)

0.66

02

ns

Page 85: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

81

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

15 (0

.999

3,1.

0037

) 0.

3366

ns

O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9988

(0.9

965,

1.00

11)

0.97

49

ns

O3,

1-hr

max

(ppb

) la

g 2

0.99

88 (0

.996

4,1.

0011

) 0.

7446

ns

O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0015

(0.9

937,

1.00

37)

0.82

69

ns

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

02 (0

.997

4,1.

0030

) 0.

5831

ns

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9992

(0.9

958,

1.00

26)

0.73

46

ns

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

07 (0

.996

9,1.

0045

) 0.

6794

ns

O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0017

(0.9

990,

1.00

45)

0.47

76

ns

O3,

4-hr

max

(ppb

) la

g 1

0.99

87 (0

.995

8,1.

0015

) 0.

8131

ns

O

3, 4-

hr m

ax (p

pb)

lag

2 0.

9985

(0.9

956,

1.00

15)

0.75

19

ns

O3,

4-hr

max

(ppb

) la

g 3

1.00

22 (0

.999

5,1.

0050

) 0.

7901

ns

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0002

(0.9

967,

1.00

38)

0.58

59

ns

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

91 (0

.994

9,1.

0034

) 0.

7460

ns

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0008

(0.9

961,

1.00

55)

0.68

54

ns

O3,

8-hr

max

(ppb

) la

g 0

1.00

19 (0

.998

5,1.

0053

) 0.

5278

ns

O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9984

(0.9

950,

1.00

19)

0.54

30

ns

O3,

8-hr

max

(ppb

) la

g 2

0.99

94 (0

.995

9,1.

0028

) 0.

9401

ns

O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0023

(0.9

990,

1.00

56)

0.91

84

ns

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

02 (0

.995

9,1.

0044

) 0.

4566

ns

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9997

(0.9

947,

1.00

46)

0.58

72

ns

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

10 (0

.995

6,1.

0065

) 0.

6234

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 0

1.00

32 (0

.998

5,1.

0080

) 0.

3913

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 1

0.99

89 (0

.994

1,1.

0037

) 0.

6263

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

50 (0

.989

9,1.

0002

) 0.

9719

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

89 (0

.994

1,1.

0038

) 0.

9919

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

15 (0

.996

0,1.

0070

) 0.

8243

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

87 (0

.992

4,1.

0050

) 0.

8803

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

82 (0

.991

3,1.

0052

) 0.

8832

ns

N

O2,

1-hr

max

(ppb

) la

g 0

1.00

06 (0

.998

6,1.

0027

) 0.

3078

ns

N

O2,

1-hr

max

(ppb

) la

g 1

0.99

89 (0

.996

8,1.

0010

) 0.

8512

ns

N

O2,

1-hr

max

(ppb

) la

g 2

0.99

78 (0

.995

5,1.

0001

) 0.

7224

ns

N

O2,

1-hr

max

(ppb

) la

g 3

0.99

96 (0

.997

4,1.

0017

) 0.

6988

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

97 (0

.997

3,1.

0021

) 0.

6127

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

85 (0

.995

7,1.

0014

) 0.

8212

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

84 (0

.995

3,1.

0016

) 0.

7395

ns

Page 86: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

82

10.6

A

sthm

a H

ospi

talis

atio

ns (0

-14

Yea

rs):

Odd

s rat

io p

er u

nit i

ncre

ase

in p

ollu

tant

, with

95%

con

fiden

ce in

terv

als

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9986

(0.9

961,

1.00

13)

0.64

61

ns

PM2.

5 (µ

g/m

3 ) la

g 1

0.99

90 (0

.996

4,1.

0016

) 0.

5987

ns

PM

2.5

(µg/

m3 )

lag

2 1.

0034

(1.0

008,

1.00

60)

0.49

26

ns

PM2.

5 (µ

g/m

3 ) la

g 3

1.00

06 (0

.998

2,1.

0029

) 0.

9724

ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9982

(0.9

950,

1.00

14)

0.55

42

ns

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

07 (0

.997

0,1.

0045

) 0.

9193

ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0011

(0.9

969,

1.00

53)

0.93

00

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9882

(0.9

722,

1.00

45)

0.75

10

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

1 0.

9932

(0.9

765,

1.01

01)

0.74

42

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

2 0.

9970

(0.9

801,

1.01

42)

0.55

88

ns

Nep

h, 1

-hr m

ax (B

sp)

lag

3 1.

0101

(0.9

931,

1.02

74)

0.53

33

ns

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9863

(0.9

669,

1.00

61)

0.60

08

ns

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9863

(0.9

640,

1.00

91)

0.85

84

ns

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9930

(0.9

678,

1.01

88)

0.82

49

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 0

0.98

32 (0

.973

5,1.

1067

) 0.

8200

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

9786

(0.8

674,

1.10

41)

0.82

58

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

1.04

10 (0

.918

5,1.

1790

) 0.

4779

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 1.

0675

(0.9

460,

1.20

45)

0.76

81

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

0.97

31 (0

.847

3,1.

1177

) 0.

9741

ns

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 1.

0024

(0.8

555,

1.17

47)

0.76

62

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.03

73 (0

.870

4,1.

2362

) 0.

6970

ns

C

O, 8

-hr m

ax (p

pm)

lag

0 1.

0109

(0.9

869,

1.03

55)

0.10

45

ns

CO

, 8-h

r max

(ppm

) la

g 1

0.97

66 (0

.954

0,0.

9997

) 0.

7998

ns

C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9796

(0.9

574,

1.00

23)

0.15

70

ns

CO

, 8-h

r max

(ppm

) la

g 3

0.98

65 (0

.964

3,1.

0092

) 0.

8217

ns

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9857

(0.9

584,

1.01

39)

0.51

76

ns

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

0.97

45 (0

.944

5,1.

0054

) 0.

4536

ns

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9683

(0.9

358,

1.00

20)

0.78

21

ns

Page 87: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

83

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

31 (1

.000

3,1.

0058

) 0.

7416

ns

O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9993

(0.9

965,

1.00

22)

0.40

32

ns

O3,

1-hr

max

(ppb

) la

g 2

1.00

01 (0

.997

2,1.

0031

) 0.

1861

ns

O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0022

(0.9

995,

1.00

49)

0.58

22

ns

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

17 (0

.998

2,1.

0052

) 0.

8044

ns

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0015

(0.9

973,

1.00

58)

0.51

95

ns

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

35 (0

.998

8,1.

0082

) 0.

6036

ns

O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0031

(0.9

997,

1.00

66)

0.97

11

ns

O3,

4-hr

max

(ppb

) la

g 1

0.99

97 (0

.996

1,1.

0033

) 0.

4504

ns

O

3, 4-

hr m

ax (p

pb)

lag

2 1.

0001

(0.9

964,

1.00

38)

0.13

70

ns

O3,

4-hr

max

(ppb

) la

g 3

1.00

25 (0

.999

1,1.

0060

) 0.

5224

ns

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0020

(0.9

976,

1.00

64)

0.71

37

ns

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

17 (0

.996

4,1.

0070

) 0.

4410

ns

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0037

(0.9

978,

1.00

97)

0.51

86

ns

O3,

8-hr

max

(ppb

) la

g 0

1.00

29 (0

.998

7,1.

0072

) 0.

9152

ns

O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9996

(0.9

952,

1.00

40)

0.67

81

ns

O3,

8-hr

max

(ppb

) la

g 2

1.00

09 (0

.996

5,1.

0053

) 0.

1359

ns

O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0019

(0.9

978,

1.00

61)

0.23

08

ns

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

16 (0

.996

3,1.

0070

) 0.

8610

ns

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0019

(0.9

957,

1.00

82)

0.53

01

ns

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

30 (0

.996

1,1.

0098

) 0.

5053

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 0

1.00

30 (0

.997

1,1.

0090

) 0.

1632

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 1

0.99

75 (0

.991

5,1.

0036

) 0.

8954

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

72 (0

.990

7,1.

0036

) 0.

5975

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 3

1.00

16 (0

.995

5,1.

0077

) 0.

6352

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

04 (0

.993

5,1.

0073

) 0.

3888

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

87 (0

.990

8,1.

0067

) 0.

4165

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

97 (0

.991

0,1.

0085

) 0.

4236

ns

N

O2,

1-hr

max

(ppb

) la

g 0

1.00

12 (0

.998

7,1.

0038

) 0.

0843

ns

N

O2,

1-hr

max

(ppb

) la

g 1

0.99

87 (0

.996

1,1.

0013

) 0.

6786

ns

N

O2,

1-hr

max

(ppb

) la

g 2

0.99

80 (0

.995

1,1.

0009

) 0.

5197

ns

N

O2,

1-hr

max

(ppb

) la

g 3

1.00

09 (0

.998

2,1.

0036

) 0.

5434

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

99 (0

.996

9,1.

0029

) 0.

2111

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

88 (0

.995

3,1.

0024

) 0.

2613

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

95 (0

.995

5,1.

0035

) 0.

2707

ns

Page 88: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

84

10.7

A

sthm

a H

ospi

talis

atio

ns (6

5+ Y

ears

): O

dds r

atio

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

1.00

26 (0

.996

3,1.

0090

) 0.

4528

n.

s. PM

2.5

(µg/

m3 )

lag

1 0.

9971

(0.9

902,

1.00

41)

0.33

50

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

0.99

94 (0

.992

3,1.

0066

) 0.

8306

n.

s. PM

2.5

(µg/

m3 )

lag

3 0.

9985

(0.9

903,

1.00

68)

0.46

51

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

1.00

01 (0

.992

0,1.

0082

) 0.

3078

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 0.

9997

(0.9

900,

1.00

95)

0.40

45

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

90 (0

.987

6,1.

0105

) 0.

3542

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 0

0.99

96 (0

.961

2,1.

0395

) 0.

3845

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

1.02

25 (0

.981

1,1.

0656

) 0.

0676

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 2

1.02

13 (0

.977

3,1.

0673

) 0.

9525

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

0.97

60 (0

.935

9,1.

0179

) 0.

9384

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

1.01

49 (0

.967

3,1.

0649

) 0.

0883

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

1.02

65 (0

.969

3,1.

0869

) 0.

2320

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.01

07 (0

.946

7,1.

0791

) 0.

2669

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 1.

0645

(0.7

852,

1.44

32)

0.25

07

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

1.06

09 (0

.776

5,1.

4495

) 0.

1273

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 0.

9972

(0.7

130,

1.39

47)

0.70

48

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

0.84

54 (0

.619

3,1.

1540

) 0.

4393

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 1.

0872

(0.7

632,

1.54

88)

0.11

84

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

1.07

39 (0

.711

4,1.

6211

) 0.

1984

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9768

(0.6

174,

1.54

55)

0.16

85

n.s.

CO

, 8-h

r max

(ppm

) la

g 0

1.03

56 (0

.965

4,1.

1109

) 0.

9300

n.

s C

O, 8

-hr m

ax (p

pm)

lag

1 1.

0139

(0.9

477,

1.08

46)

0.67

59

n.s

CO

, 8-h

r max

(ppm

) la

g 2

1.00

50 (0

.940

9,1.

0734

) 0.

0524

n.

s C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9439

(0.8

841,

1.00

77)

0.01

60

Win

ter (

+)

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

1.03

71 (0

.956

1,1.

1250

) 0.

8212

n.

s C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 1.

0368

(0.9

458,

1.13

66)

0.22

92

n.s

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

29 (0

.897

5,1.

0984

) 0.

0846

n.

s

Page 89: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

85

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

0.99

65 (0

.988

8,1.

0043

) 0.

2824

n.

s O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9979

(0.9

903,

1.00

55)

0.16

63

n.s

O3,

1-hr

max

(ppb

) la

g 2

0.99

51 (0

.987

4,1.

0029

) 0.

0184

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

3 0.

9994

(0.9

921,

1.00

67)

0.13

82

n.s

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

65 (0

.987

0,1.

0061

) 0.

1692

n.

s O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9948

(0.9

833,

1.00

64)

0.05

86

n.s

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

55 (0

.982

9,1.

0084

) 0.

0831

n.

s O

3, 4-

hr m

ax (p

pb)

lag

0 0.

9967

(0.9

870,

1.00

65)

0.24

58

n.s

O3,

4-hr

max

(ppb

) la

g 1

0.99

63 (0

.987

0,1.

0058

) 0.

1214

n.

s O

3, 4-

hr m

ax (p

pb)

lag

2 0.

9958

(0.9

863,

1.00

55)

0.02

26

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 3

1.00

03 (0

.991

1,1.

0096

) 0.

0787

n.

s O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9959

(0.9

841,

1.00

78)

0.14

47

n.s

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

49 (0

.980

9,1.

0091

) 0.

0614

n.

s O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9967

(0.9

812,

1.01

24)

0.07

04

n.s

O3,

8-hr

max

(ppb

) la

g 0

0.99

80 (0

.986

4,1.

0097

) 0.

2591

n.

s O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9921

(0.9

809,

1.00

33)

0.10

88

n.s

O3,

8-hr

max

(ppb

) la

g 2

0.99

75 (0

.986

5,1.

0087

) 0.

0173

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0022

(0.9

913,

1.01

32)

0.05

33

n.s

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

40 (0

.980

2,1.

0080

) 0.

1615

n.

s O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9951

(0.9

792,

1.01

13)

0.06

61

n.s

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

85 (0

.981

0,1.

0163

) 0.

0681

n.

s N

O2,

24-h

r ave

rage

(ppb

) la

g 0

0.99

44 (0

.978

8,1.

0102

) 0.

5554

n.

s N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

36 (0

.987

6,1.

0198

) 0.

0521

n.

s N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

74 (0

.980

0,1.

0150

) 0.

0554

n.

s N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.98

45 (0

.968

3,1.

0010

) 0.

3281

n.

s N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

0.99

91 (0

.981

1,1.

0174

) 0.

1667

n.

s N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

75 (0

.976

6,1.

0188

) 0.

0904

n.

s N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.98

93 (0

.966

2,1.

0129

) 0.

1147

n.

s N

O2,

1-hr

max

(ppb

) la

g 0

0.99

50 (0

.988

1,1.

0019

) 0.

4268

n.

s N

O2,

1-hr

max

(ppb

) la

g 1

0.99

94 (0

.992

4,1.

0065

) 0.

0160

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) la

g 2

0.99

79 (0

.990

3,1.

0056

) 0.

0123

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) la

g 3

0.99

40 (0

.986

7,1.

0014

) 0.

3728

n.

s N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

63 (0

.988

3,1.

0045

) 0.

0783

n.

s N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

54 (0

.986

0,1.

0049

) 0.

0278

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

23 (0

.981

8,1.

0030

) 0.

0523

n.

s

Page 90: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

86

10.8

C

OPD

Hos

pita

lisat

ions

: Odd

s rat

io p

er u

nit i

ncre

ase

in p

ollu

tant

, with

95%

con

fiden

ce in

terv

als

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9981

(0.9

946,

1.00

16)

0.71

16

n.s.

PM2.

5 (µ

g/m

3 ) la

g 1

0.99

79 (0

.994

4,1.

0015

) 0.

9437

n.

s. PM

2.5

(µg/

m3 )

lag

2 1.

0007

(0.9

972,

1.00

41)

0.17

98

n.s.

PM2.

5 (µ

g/m

3 ) la

g 3

0.99

88 (0

.995

2,1.

0023

) 0.

4420

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9970

(0.9

927,

1.00

13)

0.86

59

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

78 (0

.992

8,1.

0027

) 0.

4966

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9970

(0.9

914,

1.00

27)

0.42

80

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9933

(0.9

723,

1.01

47)

0.16

62

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

1 1.

0012

(0.9

801,

1.02

27)

0.45

28

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 1.

0347

(1.0

125,

1.05

73)

0.25

91

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

3 1.

0051

(0.9

846,

1.02

60)

0.61

00

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9961

(0.9

711,

1.02

18)

0.69

76

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 1.

0178

(0.9

883,

1.04

82)

0.27

22

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0203

(0.9

873,

1.05

45)

0.25

68

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 0

0.91

15 (0

.781

0,1.

0637

) 0.

5900

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

9644

(0.8

214,

1.13

24)

0.97

60

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

1.16

56 (0

.993

1,1.

3681

) 0.

0462

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 0.

9810

(0.8

385,

1.14

78)

0.61

74

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

0.91

81 (0

.765

6,1.

1010

) 0.

7966

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 1.

0139

(0.8

244,

1.24

70)

0.25

18

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

41 (0

.799

6,1.

2609

) 0.

2862

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

0 0.

9945

(0.9

621,

1.02

81)

0.10

38

n.s.

CO

, 8-h

r max

(ppm

) la

g 1

1.00

08 (0

.968

8,1.

0038

) 0.

7623

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9857

(0.9

545,

1.01

79)

0.84

97

n.s.

CO

, 8-h

r max

(ppm

) la

g 3

0.99

84 (0

.967

7,1.

0302

) 0.

7079

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9955

(0.9

576,

1.03

48)

0.26

37

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

0.98

54 (0

.943

3,1.

0294

) 0.

2923

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9901

(0.9

441,

1.03

83)

0.33

17

n.s.

Page 91: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

87

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

03 (0

.996

7,1.

0039

) 0.

1645

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9958

(0.9

919,

0.99

97)

0.80

20

n.s.

O3,

1-hr

max

(ppb

) la

g 2

0.99

97 (0

.995

9,1.

0035

) 0.

2354

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0035

(0.9

999,

1.00

70)

0.77

84

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

69 (0

.992

2,1.

0016

) 0.

4078

n.

s. O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9964

(0.9

907,

1.00

21)

0.26

84

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

00 (0

.993

7,1.

0064

) 0.

3410

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0001

(0.9

956,

1.00

47)

0.15

36

n.s.

O3,

4-hr

max

(ppb

) la

g 1

0.99

55 (0

.990

7,1.

0004

) 0.

6264

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

2 1.

0002

(0.9

954,

1.00

50)

0.21

28

n.s.

O3,

4-hr

max

(ppb

) la

g 3

1.00

47 (1

.000

2,1.

0092

) 0.

6208

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9966

(0.9

907,

1.00

25)

0.31

54

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

61 (0

.989

2,1.

0031

) 0.

2154

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0006

(0.9

928,

1.00

84)

0.27

00

n.s.

O3,

8-hr

max

(ppb

) la

g 0

1.00

20 (0

.996

5,1.

0076

) 0.

1554

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9937

(0.9

879,

0.99

95)

0.58

39

n.s.

O3,

8-hr

max

(ppb

) la

g 2

1.00

08 (0

.995

2,1.

0063

) 0.

2662

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0054

(0.9

999,

1.01

09)

0.55

26

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

67 (0

.989

7,1.

0037

) 0.

2790

n.

s. O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9967

(0.9

887,

1.00

47)

0.21

05

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

12 (0

.992

3,1.

0101

) 0.

2540

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 0

0.99

79 (0

.990

1,1.

0059

) 0.

1208

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

20 (0

.994

1,1.

0100

) 0.

4864

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 2

1.00

10 (0

.992

4,1.

0097

) 0.

2104

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

79 (0

.989

6,1.

0062

) 0.

7456

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

01 (0

.991

0,1.

0092

) 0.

2237

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

05 (0

.990

0,1.

0111

) 0.

1803

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

94 (0

.987

6,1.

0113

) 0.

2576

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

0.99

99 (0

.996

4,1.

0033

) 0.

1017

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

11 (0

.997

6,1.

0045

) 0.

3149

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

1.00

03 (0

.996

5,1.

0041

) 0.

0533

n.

s. N

O2,

1-hr

max

(ppb

) la

g 3

1.00

01 (0

.996

5,1.

0038

) 0.

8696

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

07 (0

.996

7,1.

0047

) 0.

1511

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

07 (0

.996

0,1.

0055

) 0.

0791

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

08 (0

.995

4,1.

0062

) 0.

1931

n.

s.

Page 92: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

88

10.9

C

OPD

Hos

pita

lisat

ions

(65+

yea

rs):

Odd

s rat

io p

er u

nit i

ncre

ase

in p

ollu

tant

, with

95%

con

fiden

ce in

terv

als

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9984

(0.9

945,

1.00

23)

0.88

02

n.s.

PM2.

5 (µ

g/m

3 ) la

g 1

0.99

78 (0

.993

7,1.

0020

) 0.

9516

n.

s. PM

2.5

(µg/

m3 )

lag

2 0.

9994

(0.9

954,

1.00

34)

0.05

74

n.s.

PM2.

5 (µ

g/m

3 ) la

g 3

0.99

90 (0

.994

9,1.

0030

) 0.

8585

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9971

(0.9

922,

1.00

21)

0.95

72

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

70 (0

.991

3,1.

0028

) 0.

4036

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9965

(0.9

900,

1.00

30)

0.47

35

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9958

(0.9

720,

1.02

01)

0.40

73

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

1 1.

0069

(0.9

831,

1.03

13)

0.43

90

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 1.

0492

(1.0

239,

1.07

52)

0.17

64

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

3 1.

0054

(0.9

822,

1.02

92)

0.51

71

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 1.

0019

(0.9

736,

1.03

11)

0.96

05

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 1.

0318

(0.9

982,

1.06

66)

0.29

85

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0337

(0.9

960,

1.07

29)

0.55

97

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 0

0.91

16 (0

.764

6,1.

0868

) 0.

8822

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

9970

(0.8

316,

1.19

53)

0.89

01

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

1.24

31 (1

.037

7,1.

4892

) 0.

0402

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 1.

0098

(0.8

463,

1.20

51)

0.70

56

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

0.93

89 (0

.764

7,1.

1527

) 0.

9204

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 1.

0701

(0.8

480,

1.35

03)

0.27

49

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.07

26 (0

.830

4,1.

3854

) 0.

4685

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

0 0.

9828

(0.9

461,

1.02

10)

0.07

68

n.s.

CO

, 8-h

r max

(ppm

) la

g 1

1.00

17 (0

.965

0,1.

0398

) 0.

9678

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9859

(0.9

502,

1.02

29)

0.64

52

n.s.

CO

, 8-h

r max

(ppm

) la

g 3

0.98

81 (0

.953

2,1.

0243

) 0.

6785

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 0.

9888

(0.9

458,

1.03

38)

0.31

58

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

0.98

23 (0

.934

2,1.

0329

) 0.

4442

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9793

(0.9

271,

1.03

44)

0.45

75

n.s.

Page 93: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

89

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

O

3, 1-

hr m

ax (p

pb)

lag

0 1.

0008

(0.9

968,

1.00

49)

0.17

04

n.s.

O3,

1-hr

max

(ppb

) la

g 1

0.99

44 (0

.989

9,0.

9988

) 0.

5337

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

2 1.

0015

(0.9

971,

1.00

58)

0.16

06

n.s.

O3,

1-hr

max

(ppb

) la

g 3

1.00

31 (0

.999

0,1.

0072

) 0.

2942

n.

s. O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0

.996

3 (0

.990

9,1.

0017

) 0.

3198

n.

s. O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9968

(0.9

904,

1.00

33)

0.19

22

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

99 (0

.992

8,1.

0072

) 0.

1985

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0007

(0.9

955,

1.00

59)

0.15

94

n.s.

O3,

4-hr

max

(ppb

) la

g 1

0.99

40 (0

.988

4,0.

9995

) 0.

3543

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

2 1.

0022

(0.9

968,

1.00

76)

0.17

08

n.s.

O3,

4-hr

max

(ppb

) la

g 3

1.00

43 (0

.999

2,1.

0095

) 0.

2222

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9958

(0.9

891,

1.00

25)

0.22

54

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

66 (0

.988

7,1.

0046

) 0.

1532

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0007

(0.9

919,

1.00

95)

0.15

25

n.s.

O3,

8-hr

max

(ppb

) la

g 0

1.00

33 (0

.997

0,1.

0096

) 0.

1365

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9922

(0.9

856,

0.99

88)

0.34

84

n.s.

O3,

8-hr

max

(ppb

) la

g 2

1.00

23 (0

.996

1,1.

0086

) 0.

2076

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0051

(0.9

989,

1.01

13)

0.24

88

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

63 (0

.988

4,1.

0042

) 0.

1861

n.

s. O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9973

(0.9

883,

1.00

64)

0.14

37

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

16 (0

.991

6,1.

0116

) 0.

1503

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 0

0.99

73 (0

.988

4,1.

0063

) 0.

2032

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

72 (0

.998

1,1.

0163

) 0.

7959

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 2

1.00

35 (0

.993

7,1.

0134

) 0.

5095

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

85 (0

.989

0,1.

0080

) 0.

4785

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

31 (0

.992

8,1.

0135

) 0.

3975

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

45 (0

.992

6,1.

0166

) 0.

3868

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

34 (0

.990

0,1.

0169

) 0.

3809

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

1.00

03 (0

.996

5,1.

0042

) 0.

1344

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

24 (0

.998

5,1.

0063

) 0.

3755

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

1.00

27 (0

.998

4,1.

0071

) 0.

0618

n.

s. N

O2,

1-hr

max

(ppb

) la

g 3

0.99

99 (0

.995

8,1.

0041

) 0.

6959

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

19 (0

.997

4,1.

0065

) 0.

1884

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

32 (0

.997

8,1.

0086

) 0.

0980

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

30 (0

.996

9,1.

0092

) 0.

1617

n.

s.

Page 94: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

90

10.1

0 P

neum

onia

Hos

pita

lisat

ions

: Odd

s rat

io p

er u

nit i

ncre

ase

in p

ollu

tant

, w

ith 9

5% c

onfid

ence

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

87 (0

.995

8,1.

0017

) 0.

2591

n.

s. PM

2.5

(µg/

m3 )

lag

1 1.

0027

(0.9

998,

1.00

55)

0.22

60

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

1.00

17 (0

.998

7,1.

0048

) 0.

9184

n.

s. PM

2.5

(µg/

m3 )

lag

3 1.

0045

(1.0

014,

1.00

76)

0.63

24

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

1.00

11 (0

.997

5,1.

0046

) 0.

1712

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 1.

0021

(0.9

978,

1.00

63)

0.30

77

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

48 (0

.999

9,1.

0097

) 0.

3547

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 0

0.98

24 (0

.965

4,0.

9997

) 0.

3028

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

1.00

56 (0

.988

1,1.

0234

) 0.

6382

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 2

1.01

88 (1

.000

5,1.

0376

) 0.

8316

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

1.01

34 (0

.995

7,1.

0313

) 0.

3334

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

0.99

12 (0

.970

8,1.

0120

) 0.

7251

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

29 (0

.979

0,1.

0273

) 0.

9357

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.01

05 (0

.983

7,1.

0380

) 0.

7061

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

8833

(0.7

745,

1.00

74)

0.42

73

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

1.00

95 (0

.883

8,1.

1532

) 0.

5092

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 1.

1050

(0.9

659,

1.26

40)

0.70

04

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

1.11

22 (0

.977

4,1.

2657

) 0.

7289

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9267

(0.7

962,

1.07

85)

0.89

97

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.98

98 (0

.834

9,1.

1734

) 0.

9041

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0451

(0.8

677,

1.25

86)

0.96

31

n.s.

CO

, 8-h

r max

(ppm

) la

g 0

0.99

71 (0

.969

3,1.

0258

) 0.

2787

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

1 1.

0081

(0.9

808,

1.03

62)

0.18

56

n.s.

CO

, 8-h

r max

(ppm

) la

g 2

1.00

27 (0

.975

8,1.

0303

) 0.

4218

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

3 1.

0160

(0.9

892,

1.04

35)

0.57

58

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

1.00

58 (0

.973

4,1.

0394

) 0.

1259

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 1.

0082

(0.9

718,

1.04

59)

0.06

76

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

84 (0

.968

6,1.

0499

) 0.

0601

n.

s.

Page 95: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

91

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

12 (0

.998

3,1.

0043

) 0.

2765

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

1 1.

0011

(0.9

980,

1.00

43)

0.19

12

n.s.

O3,

1-hr

max

(ppb

) la

g 2

0.99

91 (0

.996

0,1.

0023

) 0.

3802

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0006

(0.9

977,

1.00

35)

0.45

01

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

21 (0

.998

2,1.

0060

) 0.

1602

n.

s. O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0013

(0.9

966,

1.00

60)

0.20

94

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

14 (0

.996

3,1.

0066

) 0.

2305

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0020

(0.9

982,

1.00

58)

0.16

50

n.s.

O3,

4-hr

max

(ppb

) la

g 1

1.00

08 (0

.996

9,1.

0048

) 0.

3461

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

2 0.

9985

(0.9

946,

1.00

25)

0.38

99

n.s.

O3,

4-hr

max

(ppb

) la

g 3

1.00

05 (0

.996

9,1.

0042

) 0.

4846

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0025

(0.9

976,

1.00

74)

0.18

79

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

13 (0

.995

6,1.

0071

) 0.

2156

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0013

(0.9

950,

1.00

76)

0.23

87

n.s.

O3,

8-hr

max

(ppb

) la

g 0

1.00

23 (0

.997

7,1.

0069

) 0.

2132

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

1 1.

0003

(0.9

956,

1.00

51)

0.52

79

n.s.

O3,

8-hr

max

(ppb

) la

g 2

0.99

77 (0

.993

2,1.

0023

) 0.

4444

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0006

(0.9

962,

1.00

50)

0.58

00

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

24 (0

.996

6,1.

0082

) 0.

3039

n.

s. O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0004

(0.9

938,

1.00

71)

0.29

10

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

04 (0

.993

3,1.

0077

) 0.

3142

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 0

0.99

86 (0

.992

0,1.

0053

) 0.

9083

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

45 (0

.997

7,1.

0113

) 0.

1415

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 2

1.00

20 (0

.994

8,1.

0093

) 0.

2166

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

1.00

39 (0

.997

0,1.

0108

) 0.

3334

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

20 (0

.994

3,1.

0097

) 0.

3950

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

27 (0

.993

9,1.

0117

) 0.

2876

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

41 (0

.994

2,1.

0140

) 0.

2840

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

0.99

99 (0

.997

0,1.

0028

) 0.

6553

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

10 (0

.998

1,1.

0039

) 0.

1642

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

0.99

93 (0

.996

1,1.

0025

) 0.

1680

n.

s. N

O2,

1-hr

max

(ppb

) la

g 3

1.00

18 (0

.998

8,1.

0048

) 0.

2547

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

06 (0

.997

2,1.

0040

) 0.

3226

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

01 (0

.996

2,1.

0041

) 0.

2186

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

09 (0

.996

5,1.

0054

) 0.

2202

n.

s.

Page 96: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

92

10.1

1 P

neum

onia

Hos

pita

lisat

ions

(65+

Yea

rs):

Odd

s rat

io p

er u

nit i

ncre

ase

in p

ollu

tant

, with

95%

con

fiden

ce in

terv

als

Po

lluta

nt

L

ag

All

Yea

r O

R (9

5% C

I)

Seas

onal

Diff

eren

ce

(p-v

alue

) Se

ason

al D

irec

tion

PM

2.5

(µg/

m3 )

lag

0 0.

9978

(0.9

934,

1.00

23)

0.85

53

n.s.

PM2.

5 (µ

g/m

3 ) la

g 1

1.00

19 (0

.997

7,1.

0061

) 0.

8061

n.

s. PM

2.5

(µg/

m3 )

lag

2 1.

0005

(0.9

961,

1.00

49)

0.67

14

n.s.

PM2.

5 (µ

g/m

3 ) la

g 3

1.00

48 (1

.000

1,1.

0097

) 0.

8475

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 0.

9999

(0.9

946,

1.00

53)

0.95

41

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

02 (0

.994

0,1.

0065

) 0.

8255

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0030

(0.9

958,

1.01

02)

0.84

55

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

0 0.

9676

(0.9

427,

0.99

32)

0.29

91

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

1 0.

9879

(0.9

627,

1.01

37)

0.52

16

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

2 0.

9996

(0.9

730,

1.02

69)

0.48

40

n.s.

Nep

h, 1

-hr m

ax (B

sp)

lag

3 1.

0007

(0.9

753,

1.02

67)

0.84

66

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 0.

9688

(0.9

395,

0.99

91)

0.75

02

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

9718

(0.9

377,

1.00

71)

0.93

47

n.s.

Nep

h, 1

-hr m

ax (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9744

(0.9

365,

1.01

38)

0.97

90

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 0

0.85

31 (0

.702

9,1.

0355

) 0.

4738

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

1 0.

8804

(0.7

228,

1.07

24)

0.19

25

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 2

0.98

30 (0

.805

2,1.

2000

) 0.

8037

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

3 1.

0730

(0.8

879,

1.29

67)

0.88

44

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

0.82

96 (0

.663

0,1.

0381

) 0.

2827

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 0.

8481

(0.6

593,

1.09

08)

0.39

19

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.89

48 (0

.680

3,1.

1770

) 0.

4558

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

0 1.

0057

(0.9

645,

1.04

87)

0.64

14

n.s.

CO

, 8-h

r max

(ppm

) la

g 1

1.02

34 (0

.982

9,1.

0657

) 0.

4923

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

2 0.

9831

(0.9

445,

1.02

33)

0.55

93

n.s.

CO

, 8-h

r max

(ppm

) la

g 3

1.01

14 (0

.972

0,1.

0523

) 0.

9580

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 1.

0215

(0.9

731,

1.07

24)

0.47

30

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

76 (0

.954

3,1.

0638

) 0.

2176

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0066

(0.9

481,

1.06

88)

0.14

63

n.s.

Page 97: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

93

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

31 (0

.998

7,1.

0075

) 0.

1508

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

1 1.

0032

(0.9

986,

1.00

79)

0.33

97

n.s.

O3,

1-hr

max

(ppb

) la

g 2

0.99

90 (0

.994

4,1.

0036

) 0.

4384

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

3 1.

0009

(0.9

966,

1.00

51)

0.30

33

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

52 (0

.969

9,1.

0110

) 0.

1906

n.

s. O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0040

(0.9

970,

1.01

10)

0.23

41

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

41 (0

.996

5,1.

0118

) 0.

2191

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0043

(0.9

987,

1.00

99)

0.12

72

n.s.

O3,

4-hr

max

(ppb

) la

g 1

1.00

40 (0

.998

1,1.

0099

) 0.

5245

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

2 0.

9981

(0.9

923,

1.00

39)

0.41

73

n.s.

O3,

4-hr

max

(ppb

) la

g 3

1.00

13 (0

.995

9,1.

0067

) 0.

3314

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 1.

0067

(0.9

995,

1.01

40)

0.25

20

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

48 (0

.996

1,1.

0134

) 0.

2769

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 1.

0050

(0.9

956,

1.01

45)

0.25

06

n.s.

O3,

8-hr

max

(ppb

) la

g 0

1.00

54 (0

.998

6,1.

0123

) 0.

1401

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

1 1.

0038

(0.9

968,

1.01

09)

0.67

12

n.s.

O3,

8-hr

max

(ppb

) la

g 2

0.99

78 (0

.991

0,1.

0046

) 0.

3509

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

3 1.

0024

(0.9

959,

1.00

89)

0.32

73

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

74 (0

.998

7,1.

0161

) 0.

3277

n.

s. O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0047

(0.9

948,

1.01

46)

0.30

02

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

53 (0

.994

6,1.

0161

) 0.

2662

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 0

1.00

03 (0

.990

6,1.

0101

) 0.

8398

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

63 (0

.996

4,1.

0163

) 0.

9221

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 2

1.00

13 (0

.990

7,1.

0119

) 0.

7505

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

1.00

43 (0

.994

4,1.

0143

) 0.

9362

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

41 (0

.992

9,1.

0155

) 0.

8474

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

40 (0

.991

1,1.

0172

) 0.

9696

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

55 (0

.991

2,1.

0200

) 0.

9334

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

1.00

10 (0

.996

8,1.

0053

) 0.

3846

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

15 (0

.997

2,1.

0058

) 0.

8072

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

0.99

97 (0

.995

0,1.

0044

) 0.

5304

n.

s. N

O2,

1-hr

max

(ppb

) la

g 3

1.00

10 (0

.996

7,1.

0053

) 0.

7824

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

16 (0

.996

6,1.

0066

) 0.

5689

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

12 (0

.995

3,1.

0070

) 0.

5398

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

15 (0

.995

0,1.

0080

) 0.

6063

n.

s.

Page 98: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

94

10.1

2 G

astr

oint

estin

al D

isea

se H

ospi

talis

atio

ns: O

dds r

atio

per

uni

t inc

reas

e in

pol

luta

nt, w

ith 9

5% c

onfid

ence

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

81 (0

.996

5,0.

9998

) 0.

3616

ns

PM

2.5

(µg/

m3 )

lag

1 0.

9992

(0.9

976,

1.00

08)

0.21

69

ns

PM2.

5 (µ

g/m

3 ) la

g 2

1.00

07 (0

.999

1,1.

0023

) 0.

2134

ns

PM

2.5

(µg/

m3 )

lag

3 1.

0005

(0.9

989,

1.00

21)

0.01

16

Win

ter (

+)

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

80 (0

.996

0,1.

0000

) 0.

2102

ns

PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 0.

9987

(0.9

964,

1.00

10)

0.15

61

ns

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

91 (0

.996

5,1.

0017

) 0.

0473

W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) la

g 0

0.98

85 (0

.978

9,0.

9982

) 0.

3196

ns

N

eph,

1-h

r max

(Bsp

) la

g 1

1.00

37 (0

.994

0,1.

0124

) 0.

2299

ns

N

eph,

1-h

r max

(Bsp

) la

g 2

1.00

69 (0

.997

1,1.

0168

) 0.

1656

ns

N

eph,

1-h

r max

(Bsp

) la

g 3

0.99

81 (0

.988

2,1.

0080

) 0.

0056

W

inte

r (+)

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

0.99

44 (0

.982

9,1.

0060

) 0.

1381

ns

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

95 (0

.986

5,1.

0127

) 0.

0949

ns

N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

85 (0

.984

1,1.

0131

) 0.

0128

W

inte

r (+)

N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

9290

(0.8

658,

0.99

67)

0.28

74

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

0.99

84 (0

.930

8,1.

0709

) 0.

1254

ns

N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 1.

0380

(0.9

666,

1.11

41)

0.24

48

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

1.01

49 (0

.944

5,1.

0905

) 0.

0023

W

inte

r (+)

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 0.

9520

(0.8

778,

1.03

25)

0.11

64

ns

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.98

26 (0

.897

3,1.

0759

) 0.

1086

ns

N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9904

(0.8

960,

1.09

46)

0.02

17

Win

ter (

+)

CO

, 8-h

r max

(ppm

) la

g 0

0.99

75 (0

.984

0,1.

0111

) 0.

2325

ns

C

O, 8

-hr m

ax (p

pm)

lag

1 0.

9981

(0.9

848,

1.01

16)

0.09

02

ns

CO

, 8-h

r max

(ppm

) la

g 2

0.98

98 (0

.976

5,1.

0034

) 0.

0063

W

inte

r (+)

C

O, 8

-hr m

ax (p

pm)

lag

3 0.

9966

(0.9

833,

1.01

01)

0.00

54

Win

ter (

+)

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

0.99

80 (0

.982

4,1.

0137

) 0.

0751

ns

C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 0.

9880

(0.9

707,

1.00

56)

0.01

30

Win

ter (

+)

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.98

68 (0

.967

8,1.

0062

) 0.

0022

W

inte

r (+)

Page 99: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

95

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

1.00

02 (0

.998

9,1.

0015

) 0.

0211

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

1 0.

9987

(0.9

974,

1.00

01)

0.03

12

Win

ter (

+)

O3,

1-hr

max

(ppb

) la

g 2

0.99

99 (0

.998

6,1.

0013

) 0.

0006

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

3 0.

9999

(0.9

986,

1.00

13)

0.00

93

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

90 (0

.997

4,1.

0007

) 0.

0145

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9993

(0.9

973,

1.00

12)

0.00

21

Win

ter (

+)

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

92 (0

.997

0,1.

0014

) 0.

0015

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

0 1.

0002

(0.9

984,

1.00

19)

0.02

02

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 1

0.99

84 (0

.996

7,1.

0001

) 0.

0253

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

lag

2 1.

0002

(0.9

984,

1.00

20)

0.00

09

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 3

0.99

99 (0

.998

2,1.

0017

) 0.

0128

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9988

(0.9

966,

1.00

09)

0.01

36

Win

ter (

+)

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

92 (0

.996

7,1.

0017

) 0.

0024

W

inte

r (+)

O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9991

(0.9

963,

1.00

19)

0.00

19

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 0

1.00

04 (0

.997

9,1.

0022

) 0.

0182

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

1 0.

9978

(0.9

957,

1.00

00)

0.02

82

Win

ter (

+)

O3,

8-hr

max

(ppb

) la

g 2

1.00

05 (0

.998

3,1.

0026

) 0.

0007

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

3 0.

9997

(0.9

976,

1.00

19)

0.02

13

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

82 (0

.995

6,1.

0008

) 0.

0128

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 0.

9988

(0.9

958,

1.00

18)

0.00

22

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

87 (0

.995

4,1.

0021

) 0.

0021

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 0

0.99

72 (0

.993

9,1.

0006

) 0.

2230

ns

N

O2,

24-h

r ave

rage

(ppb

) la

g 1

0.99

94 (0

.996

0,1.

0027

) 0.

0396

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

71 (0

.993

7,1.

0004

) 0.

0161

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

93 (0

.995

9,1.

0027

) 0.

0263

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

0.99

77 (0

.993

9,1.

0016

) 0.

0775

ns

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

67 (0

.992

4,1.

0010

) 0.

0378

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

68 (0

.992

1,1.

0015

) 0.

0220

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) la

g 0

0.99

85 (0

.997

1,0.

9999

) 0.

1477

ns

N

O2,

1-hr

max

(ppb

) la

g 1

0.99

93 (0

.997

9,1.

0007

) 0.

0590

ns

N

O2,

1-hr

max

(ppb

) la

g 2

0.99

87 (0

.997

3,1.

0002

) 0.

0251

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) la

g 3

0.99

96 (0

.998

1,1.

0010

) 0.

0196

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

84 (0

.996

8,1.

0000

) 0.

0689

ns

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

80 (0

.996

2,0.

9999

) 0.

0393

W

inte

r (+)

N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

80 (0

.996

0,1.

0001

) 0.

0201

W

inte

r (+)

Page 100: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

96

10.1

3

Gas

troi

ntes

tinal

Dis

ease

Hos

pita

lisat

ions

(65

+ Y

ears

): O

dds

ratio

per

uni

t in

crea

se i

n po

lluta

nt,

with

95%

con

fiden

ce

inte

rval

s

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

PM2.

5 (µ

g/m

3 ) la

g 0

0.99

83 (0

.995

3,1.

0014

) 0.

6605

n.

s. PM

2.5

(µg/

m3 )

lag

1 1.

0011

(0.9

982,

1.00

39)

0.97

31

n.s.

PM2.

5 (µ

g/m

3 ) la

g 2

1.00

10 (0

.998

0,1.

0040

) 0.

6332

n.

s. PM

2.5

(µg/

m3 )

lag

3 0.

9982

(0.9

950,

1.00

14)

0.80

95

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

0.99

97 (0

.996

1,1.

0032

) 0.

8095

n.

s. PM

2.5

(µg/

m3 )

curr

ent d

ay +

lag

1 +

lag

2 1.

0003

(0.9

962,

1.00

45)

0.71

92

n.s.

PM2.

5 (µ

g/m

3 ) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

93 (0

.994

6,1.

0040

) 0.

3474

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 0

0.98

22 (0

.965

0,0.

9997

) 0.

0919

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 1

1.00

98 (0

.992

5,1.

0273

) 0.

6759

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 2

0.99

82 (0

.980

7,1.

0160

) 0.

1183

n.

s. N

eph,

1-h

r max

(Bsp

) la

g 3

0.98

71 (0

.969

7,1.

0048

) 0.

0564

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

0.99

44 (0

.973

9,1.

0152

) 0.

1782

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

40 (0

.970

8,1.

0178

) 0.

0732

n.

s. N

eph,

1-h

r max

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.98

73 (0

.961

7,1.

0136

) 0.

0193

W

inte

r (+)

N

eph,

24-

hr a

vera

ge (B

sp)

lag

0 0.

9359

(0.8

254,

1.06

10)

0.39

29

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 1

1.10

13 (0

.970

6,1.

2497

) 0.

5088

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

lag

2 1.

0485

(0.9

210,

1.19

37)

0.22

98

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) la

g 3

0.88

16 (0

.773

5,1.

0049

) 0.

1245

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 1.

0193

(0.8

813,

1.17

90)

0.40

24

n.s.

Nep

h, 2

4-hr

ave

rage

(Bsp

) cu

rren

t day

+ la

g 1

+ la

g 2

1.04

41 (0

.886

2,1.

2300

) 0.

2844

n.

s. N

eph,

24-

hr a

vera

ge (B

sp)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9770

(0.8

149,

1.17

13)

0.14

13

n.s.

CO

, 8-h

r max

(ppm

) la

g 0

1.01

10 (0

.986

3,1.

0363

) 0.

3828

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

1 1.

0247

(0.9

998,

1.05

02)

0.69

57

n.s.

CO

, 8-h

r max

(ppm

) la

g 2

1.00

10 (0

.976

5,1.

0261

) 0.

7092

n.

s. C

O, 8

-hr m

ax (p

pm)

lag

3 1.

0038

(0.9

793,

1.02

89)

0.39

77

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

1.02

22 (0

.993

3,1.

0519

) 0.

5799

n.

s. C

O, 8

-hr m

ax (p

pm)

curr

ent d

ay +

lag

1 +

lag

2 1.

0154

(0.9

831,

1.04

88)

0.79

74

n.s.

CO

, 8-h

r max

(ppm

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.01

52 (0

.979

7,1.

0520

) 0.

9892

n.

s.

Page 101: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

97

Pollu

tant

Lag

A

ll Y

ear

OR

(95%

CI)

Se

ason

al D

iffer

ence

(p

-val

ue)

Seas

onal

Dir

ectio

n

O3,

1-hr

max

(ppb

) la

g 0

0.99

90 (0

.996

5,1.

0015

) 0.

1983

n.

s. O

3, 1-

hr m

ax (p

pb)

lag

1 1.

0014

(0.9

989,

1.00

39)

0.18

39

n.s.

O3,

1-hr

max

(ppb

) la

g 2

1.00

05 (0

.998

0,1.

0030

) 0.

0459

W

inte

r (+)

O

3, 1-

hr m

ax (p

pb)

lag

3 0.

9988

(0.9

963,

1.00

13)

0.33

86

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

98 (0

.996

8,1.

0029

) 0.

1393

n.

s. O

3, 1-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0001

(0.9

966,

1.00

37)

0.07

12

n.s.

O3,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

91 (0

.995

1,1.

0032

) 0.

0809

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

0 0.

9984

(0.9

952,

1.00

16)

0.23

58

n.s.

O3,

4-hr

max

(ppb

) la

g 1

1.00

17 (0

.998

6,1.

0049

) 0.

1206

n.

s. O

3, 4-

hr m

ax (p

pb)

lag

2 1.

0013

(0.9

982,

1.00

45)

0.02

65

Win

ter (

+)

O3,

4-hr

max

(ppb

) la

g 3

0.99

88 (0

.995

5,1.

0020

) 0.

3182

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 0.

9995

(0.9

956,

1.00

34)

0.12

84

n.s.

O3,

4-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

04 (0

.995

9,1.

0049

) 0.

0557

n.

s. O

3, 4-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 +

lag

3 0.

9994

(0.9

943,

1.00

46)

0.07

04

n.s.

O3,

8-hr

max

(ppb

) la

g 0

0.99

80 (0

.994

2,1.

0019

) 0.

1893

n.

s. O

3, 8-

hr m

ax (p

pb)

lag

1 1.

0020

(0.9

981,

1.00

59)

0.15

04

n.s.

O3,

8-hr

max

(ppb

) la

g 2

1.00

27 (0

.998

8,1.

0067

) 0.

0104

W

inte

r (+)

O

3, 8-

hr m

ax (p

pb)

lag

3 0.

9992

(0.9

952,

1.00

32)

0.21

81

n.s.

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

0.99

92 (0

.994

5,1.

0040

) 0.

1222

n.

s. O

3, 8-

hr m

ax (p

pb)

curr

ent d

ay +

lag

1 +

lag

2 1.

0010

(0.9

955,

1.00

64)

0.04

05

Win

ter (

+)

O3,

8-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

1.00

02 (0

.994

1,1.

0064

) 0.

0490

W

inte

r (+)

N

O2,

24-h

r ave

rage

(ppb

) la

g 0

1.00

17 (0

.995

6,1.

0079

) 0.

8876

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 1

1.00

50 (0

.998

8,1.

0111

) 0.

6706

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 2

0.99

73 (0

.991

1,1.

0035

) 0.

5276

n.

s. N

O2,

24-h

r ave

rage

(ppb

) la

g 3

0.99

38 (0

.987

6,1.

0001

) 0.

8269

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

1.00

44 (0

.997

4,1.

0115

) 0.

7584

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

1.00

22 (0

.994

3,1.

0102

) 0.

6948

n.

s. N

O2,

24-h

r ave

rage

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

90 (0

.990

3,1.

0077

) 0.

6972

n.

s. N

O2,

1-hr

max

(ppb

) la

g 0

0.99

94 (0

.996

8,1.

0020

) 0.

5464

n.

s. N

O2,

1-hr

max

(ppb

) la

g 1

1.00

15 (0

.998

9,1.

0040

) 0.

5410

n.

s. N

O2,

1-hr

max

(ppb

) la

g 2

0.99

89 (0

.996

3,1.

0015

) 0.

6796

n.

s. N

O2,

1-hr

max

(ppb

) la

g 3

0.99

77 (0

.995

0,1.

0003

) 0.

8373

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

1.00

06 (0

.997

6,1.

0036

) 0.

5071

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

0.99

98 (0

.996

4,1.

0032

) 0.

5705

n.

s. N

O2,

1-hr

max

(ppb

) cu

rren

t day

+ la

g 1

+ la

g 2

+ la

g 3

0.99

86 (0

.994

9,1.

0024

) 0.

5990

n.

s.

Page 102: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

98

App

endi

x 11

. Com

pari

son

to O

ther

Stu

dies

- M

orta

lity

App

endi

x 11

.1

Res

pira

tory

and

Car

diov

ascu

lar

Mor

talit

y: R

isk

of d

eath

per

uni

t inc

reas

e in

O3 (

with

95%

con

fiden

ce in

terv

als)

fr

om v

ario

us st

udie

s Po

lluta

nt

O

utco

me

Pert

h1 O

R (9

5% C

I)

Mel

bour

ne2

RR

(95%

CI)

Sy

dney

3 R

R (9

5% C

I)

Bri

sban

e4 R

R (9

5% C

I)

O3 8

-hou

r m

axim

um

Res

pira

tory

Dea

ths

1.00

26 (0

.995

8, 1

.009

3)

1.00

29 (0

.999

9, 1

.005

9)

O3 4

-hou

r m

axim

um

Res

pira

tory

Dea

ths

1.00

01 (0

.994

6, 1

.005

7)

1.00

27*

(1.0

003,

1.0

051)

O

3 1-h

our

max

imum

R

espi

rato

ry D

eath

s 0.

9995

(0.9

951,

1.0

039)

1.

0023

* (1

.000

1, 1

.004

5)

0.99

16 (0

.928

4,1.

0591

) 1.

013

(0.9

77, 1

.050

) O

3 8-h

our

max

imum

C

ardi

ovas

cula

r Dea

ths

1.00

34*

(1.0

005,

1.0

063)

O3 8

-hou

r m

axim

um (l

ag 2

) C

ardi

ovas

cula

r Dea

ths

1.00

10 (0

.998

1, 1

.003

8)

1.00

05 (0

.999

1, 1

.001

9)

O3 8

-hou

r m

axim

um

(cur

rent

day

+ la

g 1)

Car

diov

ascu

lar D

eath

s

1.00

42*

(1.0

006,

1.0

079)

O3 4

-hou

r m

axim

um

Car

diov

ascu

lar D

eath

s 1.

0026

* (1

.000

3, 1

.004

9)

O

3 4-h

our

max

imum

(lag

1)

Car

diov

ascu

lar D

eath

s 1.

0018

(0.9

993,

1.0

042)

1.

0004

(0.9

994,

1.0

014)

O

3 4-h

our

max

imum

(c

urre

nt d

ay +

lag

1)

C

ardi

ovas

cula

r Dea

ths

1.

0033

* (1

.000

3, 1

.006

3)

O3 1

-hou

r m

axim

um

Car

diov

ascu

lar D

eath

s 1.

0018

(0.9

999,

1.0

036)

1.02

52 (0

.997

5, 1

.053

8)

1.01

2 (0

.994

, 1.0

31)

O3 1

-hou

r m

axim

um (l

ag 1

) C

ardi

ovas

cula

r Dea

ths

1.00

12 (0

.999

2, 1

.003

1)

1.00

05 (0

.999

5, 1

.001

5)

* st

atis

tical

ly si

gnifi

cant

at t

he P

<0.0

5 le

vel

1 Con

ditio

nal l

ogis

tic re

gres

sion

; per

incr

ease

of 1

ppb

2 G

AM

(Mel

bour

ne M

orta

lity

Stud

y 19

91-1

996)

; per

incr

ease

of 1

ppb

3 P

oiss

on re

gres

sion

with

Gen

eral

ised

Est

imat

ing

Equa

tions

mod

el (S

ydne

y 19

89-1

993)

4 P

oiss

on re

gres

sion

with

Gen

eral

ised

Est

imat

ing

Equa

tions

mod

el; p

er in

crea

se o

f 10

ppb

Page 103: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

99

App

endi

x 11

.2

R

espi

rato

ry a

nd C

ardi

ovas

cula

r M

orta

lity:

Ris

k of

dea

th p

er u

nit

incr

ease

in

NO

2 (w

ith 9

5% c

onfid

ence

in

terv

als)

from

var

ious

stud

ies

Pollu

tant

Out

com

e Pe

rth1

OR

(95%

CI)

M

elbo

urne

2 R

R (9

5% C

I)

Mel

bour

ne3

RR

(95%

CI)

Sy

dney

4 R

R (9

5% C

I)

NO

2 24-

hour

ave

rage

R

espi

rato

ry D

eath

s 0.

9937

(0.9

844,

1.0

031)

1.

0035

(0.9

985,

1.0

085)

1.

0027

(0.9

983,

1.0

071)

NO

2 24-

hour

ave

rage

(lag

1)

Res

pira

tory

Dea

ths

0.99

49 (0

.985

7, 1

.004

2)

1.06

81 (0

.992

6, 1

.149

3)

NO

2 24-

hour

ave

rage

(lag

1)

Car

diov

ascu

lar D

eath

s 1.

0020

(0.9

978,

1.0

062)

1.

0025

* (1

.000

3, 1

.004

7)

1.00

21*

(1.0

003,

1.0

039)

1.

0234

(0.9

918,

1.0

561)

N

O2

1-ho

ur m

axim

um (

lag

1)

Car

diov

ascu

lar D

eath

s 1.

0011

(0.9

992,

1.0

029)

1.

0010

(0.9

998,

1.0

022)

1.00

96 (0

.984

7, 1

.035

2)

* st

atis

tical

ly si

gnifi

cant

at t

he P

<0.0

5 le

vel

1 Con

ditio

nal l

ogis

tic re

gres

sion

; per

incr

ease

of 1

ppb

2 T

rigon

omet

ric m

odel

ling

(Mel

bour

ne M

orta

lity

Stud

y 19

91-1

996)

; per

incr

ease

of 1

ppb

3 G

AM

(Mel

bour

ne M

orta

lity

Stud

y 19

91-1

996)

; per

incr

ease

of 1

ppb

4 P

oiss

on re

gres

sion

usi

ng G

ener

alis

ed E

stim

atin

g Eq

uatio

ns m

odel

(Syd

ney

1989

-199

3)

Page 104: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

100

App

endi

x 11

.3

Car

diov

ascu

lar

Mor

talit

y: R

isk

of d

eath

per

uni

t inc

reas

e in

fine

par

ticle

s (w

ith 9

5% c

onfid

ence

inte

rval

s) fr

om

vari

ous s

tudi

es

Pollu

tant

Out

com

e Pe

rth1

OR

(95%

CI)

M

elbo

urne

2 R

R (9

5% C

I)

Sydn

ey3

RR

(95%

CI)

B

risb

ane4

RR

(95%

CI)

B

scat

/104

24-h

our

aver

age

Car

diov

ascu

lar D

eath

s

1.

0221

(0.9

994,

1.0

454)

Bsc

at/1

04 1-

hour

max

imum

C

ardi

ovas

cula

r Dea

ths

1.02

96*

(1.0

082,

1.0

514)

Bsp

24-

hour

ave

rage

C

ardi

ovas

cula

r Dea

ths

1.00

09 (0

.919

7, 1

.089

4)

1.01

0 (0

.998

, 1.0

02)

Bsp

24-

hour

ave

rage

(lag

1)

Car

diov

ascu

lar D

eath

s 0.

9622

(0.8

837,

1.0

478)

1.

0361

(0.9

939,

1.0

802)

PM

10 2

4-ho

ur a

vera

ge (

lag

1)

Car

diov

ascu

lar D

eath

s

1.00

11 (0

.999

7, 1

.002

5)

PM10

24-

hour

ave

rage

(la

g 1)

**

Car

diov

ascu

lar D

eath

s

1.00

19 (0

.998

9, 1

.004

9)

PM2.

5 24

-hou

r av

erag

e (la

g 1)

C

ardi

ovas

cula

r Dea

ths

0.99

86 (0

.996

7, 1

.000

5)

1.00

25 (0

.999

7, 1

.005

3)

*sta

tistic

ally

sign

ifica

nt a

t P<0

.01

leve

l **

ever

y 6th

day

dat

a 1 C

ondi

tiona

l log

istic

regr

essi

on

2 Trig

onom

etric

mod

ellin

g (M

elbo

urne

Mor

talit

y St

udy

1991

-199

6)

3 Poi

sson

regr

essi

on u

sing

Gen

eral

ised

Est

imat

ing

Equa

tions

(Syd

ney

1989

-199

3)

4 Poi

sson

regr

essi

on w

ith G

ener

alis

ed E

stim

atin

g Eq

uatio

ns m

odel

Page 105: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

101

App

endi

x 12

Com

pari

son

to O

ther

Stu

dies

- H

ospi

talis

atio

ns

App

endi

x 12

.1

Res

pira

tory

and

Car

diov

ascu

lar

Hos

pita

lisat

ions

: R

isk

of h

ospi

tal a

dmis

sion

per

uni

t in

crea

se in

O3

(with

95%

co

nfid

ence

inte

rval

s) fr

om v

ario

us st

udie

s Po

lluta

nt

O

utco

me

Pert

h1 O

R (9

5% C

I)

Pert

h2 R

R (9

5% C

I)

Mel

bour

ne3

RR

(95%

CI)

O

3 8-h

our

max

imum

R

espi

rato

ry D

isea

se (A

ll ag

es)

1.00

18 (0

.999

8,1.

0038

) lag

0

1.

0014

(1.0

006,

1.00

22) l

ag2

O3 4

-hou

r m

axim

um

Res

pira

tory

Dis

ease

(65+

yea

rs)

1.00

13 (0

.998

1,1.

0044

) lag

0

0.99

30 (0

.946

0,1.

0410

) lag

0-3

1.00

16 (1

.000

2,1.

0030

) lag

2 O

3 4-h

our

max

imum

R

espi

rato

ry D

isea

se (A

ll ag

es)

1.00

16 (1

.000

0,1.

0033

) lag

0

1.02

70 (0

.999

0,1.

0550

) lag

0-3

1.00

14 (1

.000

6,1.

0022

) lag

2 O

3 1-h

our

max

imum

R

espi

rato

ry D

isea

se (6

5+ y

ears

) 1.

0014

(0.9

989,

1.00

39) l

ag 0

1.00

15 (1

.000

3,1.

0027

) lag

2 O

3 1-h

our

max

imum

R

espi

rato

ry D

isea

se (A

ll ag

es)

1.00

15 (1

.000

2,1.

0028

) lag

0

1.

0013

(1.0

005,

1.00

21) l

ag2

O3 4

-hou

r m

axim

um

CO

PD (A

ll ag

es)

1.00

47 (1

.000

2,1.

0092

) lag

3

O3 1

-hou

r m

axim

um

CO

PD (A

ll ag

es)

1.00

03 (0

.996

7,1.

0039

) lag

0

1.00

50 (0

.967

0,1.

0440

) lag

2

O

3 4-h

our

max

imum

A

sthm

a (0

-14

year

s)

1.00

31 (0

.999

7,1.

0066

) lag

0

1.05

30 (0

.995

0,1.

1140

) lag

0-3

O

3 4-h

our

max

imum

A

sthm

a (A

ll ag

es)

1.00

17 (0

.999

0,1.

0045

) lag

0

1.04

80 (1

.002

0,1.

0960

) lag

0-3

O

3 1-h

our

max

imum

A

sthm

a (0

-14

year

s)

1.00

31 (1

.000

3,1.

0058

) lag

0

0.

9992

(0.9

980,

1.00

04) l

ag 0

O

3 1-h

our

max

imum

A

sthm

a (A

ll ag

es)

1.00

15 (0

.999

3,1.

0037

) lag

0

0.

9993

(0.9

979,

1.00

07) l

ag 1

O

3 8-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(65+

yea

rs)

0.99

95 (0

.997

2,1.

0017

) lag

0

0.

9981

(0.9

965,

0.99

97) 5

-day

avg

O

3 8-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(All

ages

) 0.

9993

(0.9

975,

1.00

12) l

ag 0

0.99

76 (0

.996

4,0.

9988

) 5-d

ay a

vg

O3 4

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (6

5+ y

ears

) 0.

9994

(0.9

976,

1.00

13) l

ag 0

0.99

85 (0

.997

2,0.

9999

) 5-d

ay a

vg

O3 4

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (A

ll ag

es)

0.99

92 (0

.997

7,1.

0007

) lag

0

1.02

80 (1

.004

0,1.

0530

) lag

0-3

0.99

81 (0

.996

9,0.

9993

) 5-d

ay a

vg

O3 1

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (6

5+ y

ears

) 0.

9997

(0.9

983,

1.00

11) l

ag 0

0.99

87 (0

.997

3,1.

0001

) 5-d

ay a

vg

O3 1

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (A

ll ag

es)

0.99

95 (0

.998

3,1.

0006

) lag

0

0.

9982

(0.9

972,

0.99

92) 5

-day

avg

1 C

ase-

cros

sove

r con

ditio

nal l

ogis

tic re

gres

sion

; per

incr

ease

of 1

ppb

; Per

th 1

992-

1997

2 T

ime

serie

s ana

lysi

s; p

er in

crea

se o

f 10

ppb;

Per

th 1

992-

1997

3 G

AM

; per

incr

ease

of 1

ppb

; Mel

bour

ne 1

994-

1997

(EPA

Vic

toria

, 200

1)

Page 106: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

102

App

endi

x 12

.2

Res

pira

tory

and

Car

diov

ascu

lar

Hos

pita

lisat

ions

: Ris

k of

hos

pita

l adm

issi

on p

er u

nit i

ncre

ase

in p

artic

les

(with

95

% c

onfid

ence

inte

rval

s) fr

om v

ario

us st

udie

s Po

lluta

nt

O

utco

me

Pert

h1 O

R (9

5% C

I)

Pert

h2 R

R (9

5% C

I)

Mel

bour

ne3

RR

(95%

CI)

B

sp 2

4-ho

ur a

vera

ge

Res

pira

tory

Dis

ease

(0-1

4 ye

ars)

0.

9811

(0.9

360,

1.02

83) l

ag 2

B

sp 2

4-ho

ur a

vera

ge

Res

pira

tory

Dis

ease

(15-

64 y

ears

)

1.

0784

(1.0

121,

1.14

91) 3

-day

avg

B

sp 2

4-ho

ur a

vera

ge

Res

pira

tory

Dis

ease

(65+

yea

rs)

1.10

08 (0

.986

6,1.

2284

) lag

2

1.

0745

(1.0

041,

1.14

99) 5

-day

avg

B

sp 2

4-ho

ur a

vera

ge

Res

pira

tory

Dis

ease

(All

ages

) 1.

0373

(0.9

806,

1.09

72) l

ag 3

1.02

39 (0

.992

7,1.

0561

) lag

0

Bsp

1-h

our

max

imum

R

espi

rato

ry D

isea

se (0

-14

year

s)

0.99

40 (0

.970

0,1.

0187

) lag

0

Bsp

1-h

our

max

imum

R

espi

rato

ry D

isea

se (1

5-64

yea

rs)

1.03

83 (1

.006

3,1.

0714

) 3-d

ay a

vg

Bsp

1-h

our

max

imum

R

espi

rato

ry D

isea

se (6

5+ y

ears

) 1.

0196

(1.0

048,

1.03

47) l

ag 2

1.

0390

(1.0

200,

1.05

80) l

ag0-

3 1.

0430

(1.0

088,

1.07

83) 5

-day

avg

B

sp 1

-hou

r m

axim

um

Res

pira

tory

Dis

ease

(All

ages

) 1.

0035

(0.9

957,

1.01

14) l

ag 2

1.

0140

(1.0

040,

1.02

50) l

ag0-

3 1.

0119

(0.9

967,

1.02

73) l

ag 0

B

sp 2

4-ho

ur a

vera

ge

CO

PD (A

ll ag

es)

1.16

56 (0

.993

1,1.

3681

) lag

2

1.17

70 (1

.031

0,1.

3430

) lag

3

B

sp 1

-hou

r m

axim

um

CO

PD (A

ll ag

es)

1.03

47 (1

.012

5,1.

0573

) lag

2

Bsp

24-

hour

ave

rage

A

sthm

a (0

-14

year

s)

1.06

75 (0

.946

0,1.

2045

) lag

3

1.10

90 (0

.995

0,1.

2350

) lag

3

1.14

81 (1

.062

8,1.

2403

) lag

0

Bsp

24-

hour

ave

rage

A

sthm

a (A

ll ag

es)

1.02

74 (0

.934

5,1.

1295

) lag

3

1.07

30 (0

.986

0,1.

1680

) lag

3

1.13

94 (1

.058

2,1.

2268

) 5-d

ay a

vg

Bsp

1-h

our

max

imum

A

sthm

a (0

-14

year

s)

1.01

01 (0

.993

1,1.

0274

) lag

3

1.

0592

(1.0

197,

1.10

02) l

ag 0

B

sp 1

-hou

r m

axim

um

Ast

hma

(All

ages

) 1.

0031

(0.9

900,

1.01

64) l

ag 3

1.07

66 (1

.037

4,1.

1172

) 5-d

ay a

vg

Bsp

24-

hour

ave

rage

C

ardi

ovas

cula

r Dis

ease

(65+

ye

ars)

1.

0391

(0.9

719,

1.11

09) l

ag 3

1.05

60 (1

.020

8,1.

0924

) lag

1

Bsp

24-

hour

ave

rage

C

ardi

ovas

cula

r Dis

ease

(All

ages

) 1.

0225

(0.9

685,

1.07

96) l

ag 1

1.04

61 (1

.017

4,1.

0757

) lag

1

Bsp

1-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(65+

ye

ars)

1.

0063

(0.9

974,

1.01

53) l

ag 3

1.03

52 (1

.014

3,1.

0565

) 3-d

ay a

vg

Bsp

1-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(All

ages

) 0.

9993

(0.9

919,

1.00

66) l

ag 3

1.

0060

(0.9

990,

1.01

20) l

ag 3

1.

0274

(1.0

104,

1.04

46) 3

-day

avg

1 C

ase-

cros

sove

r con

ditio

nal l

ogis

tic re

gres

sion

; Per

th 1

992-

1997

2 T

ime

serie

s ana

lysi

s; P

erth

199

2-19

97

3 GA

M; M

elbo

urne

199

4-19

97 (E

PA V

icto

ria, 2

001)

Page 107: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

103

App

endi

x 12

.3

Res

pira

tory

and

Car

diov

ascu

lar

Hos

pita

lisat

ions

: Ris

k of

hos

pita

l adm

issi

on p

er u

nit i

ncre

ase

in N

O2 (

with

95%

co

nfid

ence

inte

rval

s) fr

om v

ario

us st

udie

s Po

lluta

nt

Out

com

e Pe

rth1

OR

(95%

CI)

Pe

rth2

RR

(95%

CI)

M

elbo

urne

3 R

R (9

5% C

I)

NO

2 24-

hour

ave

rage

R

espi

rato

ry D

isea

se (0

-14

year

s)

1.00

79 (1

.003

8,1.

0121

) 5-d

ay a

vg

NO

2 24-

hour

ave

rage

R

espi

rato

ry D

isea

se (1

5-64

yea

rs)

1.00

84 (1

.004

3,1.

0126

) 5-d

ay a

vg

NO

2 24-

hour

ave

rage

R

espi

rato

ry D

isea

se (6

5+ y

ears

) 1.

0058

(1.0

003,

1.01

13) l

ag 1

1.01

10 (1

.007

0,1.

0149

) 5-d

ay a

vg

NO

2 24-

hour

ave

rage

R

espi

rato

ry D

isea

se (A

ll ag

es)

1.00

14 ((

0.99

81,1

.004

7)

curr

ent d

ay +

lag

1

1.00

78 (1

.005

5,1.

0102

) 5-d

ay a

vg

NO

2 1-h

our

max

imum

R

espi

rato

ry D

isea

se (1

5-64

yea

rs)

1.00

45 (1

.002

0,1.

0071

) 5-d

ay a

vg

NO

2 1-h

our

max

imum

R

espi

rato

ry D

isea

se (6

5+ y

ears

) 1.

0017

(0.9

993,

1.00

41) l

ag 1

1.

0150

(0.9

950,

1.03

50) l

ag 3

1.

0048

(1.0

025,

1.00

72) 5

-day

avg

N

O2 1

-hou

r m

axim

um

Res

pira

tory

Dis

ease

(All

ages

) 1.

0003

(0.9

991,

1.00

15) l

ag 0

1.

0000

(0.9

990,

1.02

20) l

ag 3

1.

0043

(1.0

029,

1.00

57) 5

-day

avg

N

O2 2

4-ho

ur a

vera

ge

CO

PD (A

ll ag

es)

1.00

20 (0

.994

1,1.

0100

) lag

1

NO

2 1-h

our

max

imum

C

OPD

(All

ages

) 1.

0011

(0.9

976,

1.00

45) l

ag 1

0.

9890

(0.9

580,

1.02

10) l

ag 2

NO

2 24-

hour

ave

rage

A

sthm

a (0

-14

year

s)

1.00

30 (0

.997

1,1.

0090

) lag

0

1.01

20 (0

.964

0,1.

0620

) lag

0

1.01

18 (1

.005

8,1.

0177

) 5-d

ay a

vg

NO

2 24-

hour

ave

rage

A

sthm

a (A

ll ag

es)

1.00

32 (0

.998

5,1.

0080

) lag

0

2.00

00 (0

.982

0,1.

0600

) lag

0

1.01

45 (1

.009

9,1.

0191

) 5-d

ay a

vg

NO

2 1-h

our

max

imum

A

sthm

a (0

-14

year

s)

1.00

12 (0

.998

7,1.

0038

) lag

0

1.

0048

(1.0

013,

1.00

84) 5

-day

avg

N

O2 1

-hou

r m

axim

um

Ast

hma

(All

ages

) 1.

0006

(0.9

986,

1.00

27) l

ag 0

1.00

59 (1

.003

2,1.

0087

) 5-d

ay a

vg

NO

2 24-

hour

ave

rage

C

ardi

ovas

cula

r Dis

ease

(0-6

4 ye

ars)

1.

0036

(1.0

011,

1.00

62) l

ag 0

N

O2 2

4-ho

ur a

vera

ge

Car

diov

ascu

lar D

isea

se (6

5+ y

ears

) 1.

0391

(0.9

719,

1.11

09) l

ag 3

1.00

45 (1

.002

3,1.

0067

) 3-d

ay a

vg

NO

2 24-

hour

ave

rage

C

ardi

ovas

cula

r Dis

ease

(All

ages

) 1.

0029

(1.0

002,

1.00

56) l

ag 1

1.

0370

(1.0

100,

1.06

30) l

ag 0

-2

1.00

40 (1

.002

2,1.

0058

) 3-d

ay a

vg

NO

2 1-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(0-6

4 ye

ars)

1.

0013

(0.9

999,

1.00

27) l

ag 0

N

O2 1

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (6

5+ y

ears

) 1.

0063

(0.9

974,

1.01

53) l

ag 3

1.00

20 (1

.000

8,1.

0032

) 3-d

ay a

vg

NO

2 1-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(All

ages

) 1.

0010

(0.9

998,

1.00

21) l

ag 1

1.00

17 (1

.000

7,1.

0027

) 3-d

ay a

vg

1 Cas

e-cr

osso

ver c

ondi

tiona

l log

istic

regr

essi

on; p

er in

crea

se o

f 1 p

pb; P

erth

199

2-19

97

2 Tim

e se

ries a

naly

sis;

per

incr

ease

of 1

0 pp

b; P

erth

199

2-19

97

3 GA

M; p

er in

crea

se o

f 1 p

pb; M

elbo

urne

199

4-19

97 (E

PA V

icto

ria, 2

001)

Page 108: May 2003 Perth, Western AustraliaDepartment of …...The case-crossover study design is an alternative to the traditional time series analysis and considers the effects of transient

104

App

endi

x 12

.4

Res

pira

tory

and

Car

diov

ascu

lar

Hos

pita

lisat

ions

: Ris

k of

hos

pita

l adm

issi

on p

er u

nit i

ncre

ase

in C

O (w

ith 9

5%

conf

iden

ce in

terv

als)

from

var

ious

stud

ies

Pollu

tant

O

utco

me

Pert

h1 O

R (9

5% C

I)

Pert

h2 R

R (9

5% C

I)

Mel

bour

ne3

RR

(95%

CI)

C

O 8

-hou

r m

axim

um

Res

pira

tory

Dis

ease

(15-

64 y

ears

)

1.

0328

(1.0

098,

1.05

64) 3

-day

avg

C

O 8

-hou

r m

axim

um

Res

pira

tory

Dis

ease

(65+

yea

rs)

1.01

13 (0

.988

8,1.

0342

) lag

1

1.01

40 (0

.995

0,1.

0330

) lag

0

1.03

05 (1

.006

9,1.

0546

) 5-d

ay a

vg

CO

8-h

our

max

imum

R

espi

rato

ry D

isea

se (A

ll ag

es)

1.00

55 (0

.993

7,1.

0174

) lag

0

0.00

00 (0

.989

0,1.

0100

) lag

0

1.00

90 ((

0.99

92,1

.019

0) la

g 1

CO

1-h

our

max

imum

R

espi

rato

ry D

isea

se (1

5-64

yea

rs)

1.01

95 (1

.005

0,1.

0342

) 3-d

ay a

vg

CO

1-h

our

max

imum

R

espi

rato

ry D

isea

se (6

5+ y

ears

)

1.

0210

(1.0

059,

1.03

63) 5

-day

avg

C

O 1

-hou

r m

axim

um

Res

pira

tory

Dis

ease

(All

ages

)

1.

0101

(1.0

010,

1.01

92) 5

-day

avg

C

O 8

-hou

r m

axim

um

Ast

hma

(0-1

4 ye

ars)

1.

0109

(0.9

869,

1.03

55) l

ag 0

0.

9930

(0.9

720,

1.01

40) l

ag 0

1.

0606

(1.0

274,

1.09

48) 3

-day

avg

C

O 8

-hou

r m

axim

um

Ast

hma

(All

ages

) 1.

0130

(0.9

936,

1.03

27) l

ag 0

0.

9970

(0.9

810,

1.01

40) l

ag 0

1.

0310

(1.0

100,

1.05

24) 5

-day

avg

C

O 1

-hou

r m

axim

um

Ast

hma

(0-1

4 ye

ars)

1.

0639

(1.0

363,

1.09

22) 3

-day

avg

C

O 1

-hou

r m

axim

um

Ast

hma

(All

ages

)

1.

0398

(1.0

222,

1.05

77) 5

-day

avg

C

O 8

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (0

-64

year

s)

1.02

48 (1

.004

3,1.

0457

) 3-d

ay a

vg

CO

8-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(65+

yea

rs)

1.00

80 (0

.993

6,1.

0227

) lag

1

1.

0329

(1.0

185,

1.04

76) 3

-day

avg

C

O 8

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (A

ll ag

es)

1.00

87 (0

.996

0,1.

0195

) lag

1

1.00

70 (0

.997

0,1.

0180

) lag

2

1.02

72 (1

.015

4,1.

0391

) 3-d

ay a

vg

CO

1-h

our

max

imum

C

ardi

ovas

cula

r Dis

ease

(0-6

4 ye

ars)

1.

0118

(1.0

021,

1.02

15) l

ag 0

C

O 1

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (6

5+ y

ears

)

1.

0205

(1.0

113,

1.02

97) 3

-day

avg

C

O 1

-hou

r m

axim

um

Car

diov

ascu

lar D

isea

se (A

ll ag

es)

1.01

73 (1

.009

8,1.

0250

) 3-d

ay a

vg

1 Cas

e-cr

osso

ver c

ondi

tiona

l log

istic

regr

essi

on; p

er in

crea

se o

f 1 p

pm; P

erth

199

2-19

97

2 Tim

e se

ries a

naly

sis;

per

incr

ease

of 1

ppm

; Per

th 1

992-

1997

3 G

AM

; per

incr

ease

of 1

ppb

; Mel

bour

ne 1

994-

1997

(EPA

Vic

toria

, 200

1)