mcen2024 02-24-2011

30
! !"#$%&' ) !*+,+-&. # $%&'()*+(,& *,- ./01,2/31,%,2 41)3*,%&5&  6 731 0('1 (8 -%&'()*+(,& %, 9'*&+) -18(05*+(,  6 ./01,2/31,%,2 51)3*,%&5& %, 5*/10%*'&

Upload: pishtiwan

Post on 08-Jan-2016

217 views

Category:

Documents


0 download

DESCRIPTION

nbnb

TRANSCRIPT

Page 1: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 1/30

!

!"#$%&' ) !*+,+-&.

$%&'()*+(,& *,- ./01,2/31,%,2 41)3*,%&5&

 6  731 0('1 (8 -%&'()*+(,& %, 9'*&+) -18(05*+(,

 6 

./01,2/31,%,2 51)3*,%&5& %, 5*/10%*'&

Page 2: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 2/30

2

Plastic deformation, revisited (again)

•  When stress is

applied to induce

plasticdeformation,

atomic planes slip

•  Atomic planes slip

via the movement

of dislocationsUndeformed (no load)

Elastic deformation:

 Atomic bonds stretched

Elastic and plasticdeformation: Bonds

stretched and atomicplanes “slip”

Plastically deformed

(no load): Atomic

planes remain slipped

 A

X

Y

Z

Page 3: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 3/30

3

Major slip systems

BCC: 12 slip systems, 6 unique planes, 2 directions per plane

FCC: 12 slip systems, 4 unique planes, 3 directions per plane

HCP: 3 slip systems, 1 unique plane, 3 directions

Page 4: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 4/30

4

Comparison of FCC, BCC, and HCP

slip systems•

 

FCC and BCC both have 12 major slip

systems, while HCP only has 3

 – 

Dislocations move via slip systems anddislocation movement is the mechanism of

plastic deformation

 – 

Therefore, HCP materials are less likely to

plastically deform. i.e. HCP materials aretypically brittle

Page 5: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 5/30

 Atomic slipping via dislocation

motion•  Plastic deformation occurs via

the slipping of atomic planeswhich is enabled by themovement of dislocations

•  The dislocation motionmechanism of slip occurs inthe presence of shear force

•  How do dislocations moveduring a tensile test when theapplied load is axial?

Page 6: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 6/30

Dislocation motion in a tension testShear force IS present

in a sample in pure

tension, consider a free

body diagram of a

volume element of the

tensile sample

• “F” is the applied axial

force

• “A” is the top area of

the volume element• The stress state of this

volume element is

simply !=F/A for the

plane of “A”

F

F

Page 7: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 7/30

• 

We will section our volume

element to determine the

stress state of an arbitrary

plane at " from F

•  Note as we proceed that the

stress state becomes more

complex

(please review section 6.2)

Dislocation motion in a tension test

Page 8: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 8/30

•  From geometry, we can findthe resulting forces acting onour plane –  The normal force on the plane

is (F cos ") and the shear

force on the plane is (F sin"

) –  The area of the plane is (A/cos ")

•  Solving for the shear stress:

"  =F shear

 A plane

= F sin# 

 Acos# ( )"  =

 Asin# cos# =$  sin# cos# 

Dislocation motion in a tension test

Page 9: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 9/30

•  From geometry, we can findthe resulting forces acting onour plane –  The normal force on the plane

is (F cos ") and the shear

force on the plane is (F sin"

) –  The area of the plane is(A/cos ")

•  Solving for the shear stress:

"  =F shear

 A plane

= F sin# 

 Acos# ( )"  =

 Asin# cos# =$  sin# cos# 

Maximum value of shear stress

occurs for plane oriented at 45º(1/2!)

Dislocation motion in a tension test

Page 10: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 10/30

• 

Maximum shear

stress at 45º to

applied tensile force – 

For single crystals,

slip will occur on the

slip plane closest to

45º

Dislocation motion in a tension test

Page 11: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 11/30

• 

Maximum shear stress

at 45º to applied tensile

force

 – 

For polycrystals, slip willoccur within each grain

on the slip plane closest

to 45º

 – 

The slip path averagedacross all of the grains

will be 45º

Dislocation motion in a tension test

Page 12: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 12/30

• 

These rings of slip

steps on the surface

of the material are

visible in the SEMvideo of the single

crystal wire in tension

Dislocation motion in a tension test

(Show movie here.)

Page 13: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 13/30

 Another mechanism for plastic

deformation: twinning

• 

With some materials, theformation of twinboundaries allows plasticdeformation

 – 

NiTi shape memoryalloy is an example

• 

The amount ofdeformation by twinning issmall

• 

Twinning can reorientcrystal grains in a directionmore favorable to slip

• 

 A possible deformationpathway if slip is restricted(eg, low temps)

Page 14: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 14/30

Comparison: Slip versus

Twinning

Page 15: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 15/30

Strengthening mechanisms

• 

Since plastic deformation (yielding) occurs by

the movement of dislocations, it is possible to

strengthen a material (increase yield stress) by

preventing the motion of dislocations

•  Dislocation motion may be restricted by:

 –  Impurity atoms

 –  Increased dislocation density (strain hardening)

 –  Grain boundaries

Page 16: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 16/30

Strengthening by impurity atoms

•  Metals may be strengthened with adding

impurities, both substitutional and interstitial.

 –  Example shown is for Nickel in Copper. Both yield

and tensile strength are increased

Page 17: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 17/30

Strengthening by impurity atoms

• 

Strengthening

mechanism

 –  Impurity atoms can

reduce lattice strainaround a dislocationdue to the atomic

size difference

 –  The decreased

lattice strain leadsto the dislocation

being “pinned”

Energy lowering configurations!

Page 18: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 18/30

Strengthening by strain hardening

•   A ductile metal becomesstronger (increased yieldstrength) as it is plasticallydeformed: Strain hardening

 – 

This is seen in the stress-straincurve after elastic recovery

•  The increased strength is aresult of decreased  dislocation mobility caused by

increased  density ofdislocations –  How does the dislocation

density increase?

 –  Why does this restrictdislocation mobility

Page 19: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 19/30

Strengthening by strain hardening

• 

One mechanism for multiplication of dislocations: Frank-Read source

 –  Consider a dislocation where B and C are pinned, but B-C is mobile

 –  Dislocation loops will be generated with applied shear stress, but

not indefinitely. The dislocation loops will eventually encounter

obstacles, inducing lattice strain and preventing generation of moredislocations

http://lem.onera.fr/DisGallery/source.html

http://lem.onera.fr/DisGallery/source.html

Page 20: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 20/30

•  Increased dislocationdensity results indecreased dislocationmobility due to

repulsive forcebetween dislocations –  Consider the lattice

strain of an edgedislocation

 –  Two dislocations mayattract each other andcombine or they mayrepel each other

Strengthening by strain hardening

Page 21: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 21/30

•  Two dislocations mayattract each other andcombine or they mayrepel each other

 – 

Dislocation combinationdoes NOT always leadto annhilation

 –  Dislocations maycombine into a newdislocation that is

“locked” from motion –   A “locked” dislocation

will prevent motion ofother dislocations

Strengthening by strain hardening

Page 22: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 22/30

• 

One mechanism for dislocation lock

 – 

Consider two dislocations b1 and b2 in FCC

Strengthening by strain hardening

b1

b2 

b1 and b2 are moving

on {111}

Page 23: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 23/30

• 

 An applied shear stress would lead b1 and b2 to combineat the intersection of their slip planes, creating b3, which isin the (001) plane. This leads to a “lock” of the dislocationin a non-slip plane.

Strengthening by strain hardening

b1

b2 

b3 

b3 is not on a slip plane

Page 24: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 24/30

Strengthening by strain hardening

• 

Extensive strain hardening results in a

“forest of dislocations”•  http://lem.onera.fr/DisGallery/forest.html

•  Dislocation density of materials

 – 

 Annealed single crystals: 103-104

 –   Annealed polycrystalline material: 105-106

 – 

Significantly strain hardened: 109-1010

Page 25: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 25/30

Strengthening by strain hardening

• 

Quantifying strain hardening

 – 

Strain hardening is also referred to as cold-

working

 – 

Strain hardening is typically measured by

percent cold work

•  %CW=(A0-Ad)/A0 X 100

 –  A0 is original area

 – 

 Ad is deformed area

Page 26: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 26/30

• 

Materials may also

be strengthened by

the presence of grain

boundaries –  Grain boundaries

resist the intergranular

movement of

dislocations –  Example shown is a

Cu-Zn alloy (brass)

Strengthening by grain boundaries

Page 27: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 27/30

Strengthening by grain boundaries

•  In a single crystal grain, a dislocation moves on the slipplane with the highest shear stress

•   At a grain boundary, atomic planes between adjacentgrains are angularly misaligned

• 

When the dislocation encounters the grain boundary, themisaligned planes hinder the movement of thedislocation

Page 28: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 28/30

Strengthening by grain boundaries

•  Two mechanisms hinder the dislocation motion –  The slip planes may be discontinuous (offset) between the two grains

 –  The slip planes will be in different orientations, causing the dislocation tochange direction

•  For high angular misalignments, the dislocation may not traverse the

grain boundary. Instead, the dislocation density increases at the grainboundary and the resulting lattice stress creates new dislocations acrossthe boundary

Page 29: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 29/30

Strengthening by grain boundaries

• 

Small grain materials have more grain boundaryarea than large grain materials. Therefore, smallgrain materials resist dislocation motion more

than large grain materials and have a higheryield strength.

• 

The relationship between yield strength andgrain size may be estimated by the Hall-Petchequation:

!Y= !0 + kyd-1/2

•  where !0 and ky are material specific constants

•  this relationship is not intended for grains <1 µm or >1 mm

Page 30: MCEN2024 02-24-2011

7/17/2019 MCEN2024 02-24-2011

http://slidepdf.com/reader/full/mcen2024-02-24-2011 30/30

 Annealing and plastic deformation

• 

Strain hardening…

 – 

creates internal lattice stress/strain from

movement and generation of dislocations

 – 

restructures crystal grains by atomic slip

•  By annealing (heat treatment), the strain

hardening effects can be reversed.