md1_project1_spring2014

Upload: derek-tate

Post on 02-Jun-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 MD1_Project1_Spring2014

    1/14

  • 8/10/2019 MD1_Project1_Spring2014

    2/14

    This

    report

    d oc u m en t s t h e analysis of an off- loading station lo ca te d a t t h e en d of

    a paper

    rol l ing machine.

    his

    off- loading station

    design

    uses a V-linkage to effect ively transfer fi n is h ed p a p er ro ll s f rom t h e m a c h in e _

    onveyer

    to

    th e

    forklift

    t ruck.

    Th e

    off- loading station consists of

    tw o V-l inks t ha t

    are welded to a steel tube

    t ha t

    I S

    xed

    to a

    shaft

    rotated by an air cyl inder

    through

    a crank

    arm.

    Th e

    purpose

    of t h is s tu dy is

    to design th e

    V-l inks,

    rod, an d

    shaft

    with

    th e appropr iate

    dimensions

    to

    satisfy a safety

    factor t ha t is

    closest

    to 1.2.

    Th e

    weight of

    th e p a p er

    roll

    is

    to

    be determined. Along with

    t he n ot ch

    sensit ivi ty, fatigue

    stress

    factor,

    max imum an d min imum

    bending moments ,

    an d

    th e

    mean an d alternating

    norma l stresses

    Of

    e

    V-l inks.

    F or t h e Cylinder

    rod,

    th e

    compressive

    force at

    starting

    posit ion, an d th e critical C 0 l T | p l S S l V 8 .

    load

    m u s t

    determined.

    Additional ly,

    th e torque

    m ean an d alternating

    shear

    stresses,

    an d

    polar

    m o m e n t

    of inert ia m us t

    be

    Furthermore,

    th e

    dimensions of

    th e

    V-links,

    rod,

    an d

    shaft can

    manipula ted

    to

    provide a factor of

    safety

    losest

    to m i n i m um give.

    g(0Q_ ./

    /

    1

  • 8/10/2019 MD1_Project1_Spring2014

    3/14

  • 8/10/2019 MD1_Project1_Spring2014

    4/14

  • 8/10/2019 MD1_Project1_Spring2014

    5/14

    rom th e initial problem

    statement , the maximum deflect ion on

    an

    arm

    wil l

    occur j us t a fte r

    it

    begins th e

    _ _ _ _

    ransfer an d

    before it completes the transfer .

    At

    this

    t ime

    th e

    roll is in

    contact with both V-link arms, an d -

    hen

    it ls another posi t ion on

    th e arm s th e deflection

    t ip w il l

    b e supported. With

    that said th e

    arm

    can be

    reated a s

    a

    canti lever

    beam. Another

    th ing to take into consideration is t h e f ac t that th e m ax force in th e

    od

    occurs w hen th e transfer starts. Additionally, th e max torque will

    o cc u r w h en t h e

    l ink

    is horizontal an d

    e p a p er

    is

    located

    a s

    shown

    in figure

    6 .

    - u - m a

    |

    l

    of Paper Rol l:

    i t F

    -

    olving

    fo r

    th e

    weight

    of

    t he p a p er

    roll

    1

    4

    IIn

    __ __Qq

    E e l w =

    2 -

    ( 0 0 2

    - 1 0 * )

    - p - 9 - 1 - . . .

    [ N 1

    here W

    is

    weight [N], O D is th e outer d iameter

    of

    th e roll [ m ], lD

    is

    th e inner diameter of th e roll [m ], p

    is

    th e

    density of

    th e

    roll [ 3 - ] , an d Ln, is

    length

    of th e roll [m ]

    - - 1 ?

    v-]ink

    A1-mysis:

    Figure

    2 : V- linkage F B D

    T he m ax b en d in g m o m en t in th e

    arm

    c a n b e found by ( this can b e seen in

    fig.2

    an d fig.3)

    E q . 2 Mm ,

    ( 2 + - Z ; )

    Where ta

    is

    the th ickness of th e

    V-link

    arm

    [m ]

    an d D m b e

    is th e

    diameter of th e

    steel

    tube

    [m ]

    Solv ing

    for

    _-.-

    Q

    l e e

    is.

    - . r _ -

    L

    OD

    ta

    E q s

    r .=T+; I

    s

    e

    l

    a----0

    Determin ing

    th e

    max

    bending moment

    in

    th e V-link arm

    E q _ 3

    Mm =

    Mam - %

    Figure 3

    Where Mm, is equivalent t o th e

    max

    bending

    force [m4]

    Determining th e m in im um bending m o m en t in th e V-link a rm, M m, [m4]

    Eq04 Z0

    Th e

    m o m ent of inertia is n ow calculated s o that th e normal stresses c an b e found

    E wcftaa

    q

    5 fv =T Table

    1:

    Neubers Cons t on t for Steels

    .

    . . .

    R9 . . .

    S i - I 1 (km

    F

    lruc )

    W h e re

    1 ,, I S th e

    m o m e n t ofmertia

    of

    th e V-link [75],

    an d wars

    th e width

    of th e

    link

    ar m

    [m ]

    t - ..

    50

    T h e radius of t he n o tc h r[m], is necessary to solve for notch sensitivity

    Eq.6 r =

    0. 25

    - ta

    Using Tabl e 6 -6

    from

    t h e b oo k ( Ta ble 1), to find in terp o late an d fin d th e

    necessary

    1/E,WhBl8Sut is equiva lent to

    ultimate

    tensile S trength [ksi]

    s ,,

    -s,,

    Eq.7 \/E

    =

    \/E1

    +

    F 2 _ $ u '; ' (\/52

    -

    \/E1)

    To

    fin d

    th e

    notch

    sensitiv ity q ,

    t h e n o tc h r ad iu s

    wil l be

    converted to

    inches

    in

    order

    fo r th e Eq.8 to give

    viab le answer

    E

    . 8

    =

    -1 -

    q

    1 + _ _

    olving fo r static stress concentration,

    K t,

    to fin d the fat igue stress concentration

    (see

    fig.4)

    q . 9

    K , =

    / l , , -

    4

    55

    G O

    70

    8 0

    90

    1(1)

    1

    10

    12 0

    . ,.- __ ._ _-.,-....

    0 . 1 3 0

    O

    11 8

    O .

    10 8

    O

    0 93

    0130

    0

    O70

    0 . 0 6 2

    O

    0 55

    0 . 0 4 9

  • 8/10/2019 MD1_Project1_Spring2014

    6/14

    fatigue

    stress concentration,

    K i, , 1 , , ,

    x,=1+q(K, -1) ll .

    . .

    .- .

    .,

    . ? 1 1 . , _ L L e s s

    .-

    -'

    *

    - '

    2 u ~

    :1 - . 1 1

    u

    ci_q-;

    4- ?

    / - 1 '

    _ _ _ ;. - 1 : , - ; = _ I : _ = _ i q l uS - s ~ 1 -

    -

    /- ( , -n

    -'

    '

    -

    . ..-5I.--{J

    . _ . . _ q

    .7 2

    E

    r

    I.-{Ii

    J

    '

    '7.

    -

    P3

    I.

    I a

    = 5 a

    9

    Q . Pd

    L

    5

    -

    .

    ~

    I

    =

    . .

    ., ,

    F

    .

    -b

    9

    .

    u u

    .0

    8'

    m l - 1 -or equations 1 1 an d 12 , determining t h e m a x im u m an d

    normal stress, where

    c is

    th e

    neutral axis, [MPa]

    K

    I

    q .

    1 1 am =

    q .

    1 2 Um =

    2

    \. -~

    '-i___:

    -T -1 ,5,--.....i-_-.,

    .

    I

    -

    ~ -;

    *4\n>|,____1_Q_--

    -if-.I..:.g-_-

    -

    '

    r '

    or

    equations

    13

    an d

    14the

    m ean an d

    alternating

    nomina l

    . _ i

    -

    ~ . . c = = . ; 1 - 1 - a u w v - . - = . . . , _ _ _ _ ;

    is

    found [MP3] e..;....L...-.l-1e; . .-1lILiL..i-..;.;_.;_: F 5

    1

    q.13

    amnom

    =

    rid

    u u

    -'7 ';.?r

    G1_|Ktna|I1

    and:

    L10

    r

    |zo---~ 9

    1 K A('J)

    where 7

    T ,

    _ \

    M _ _ _ _

    I,

    If \ h

    -.-.,..._ . .. .- -----

    --.

    --

    IIII

    INK)? Z0 -0.

    33

    MD 0 .932

    31 - 0 . 3 0 3 0 4

    L3 0 0 .958

    8 0

    0 .2 7 2 6 0

    I20

    0 . 99 5 9 0

    - 0 . 2 3 8

    29

    I I0 |.0I6$0

    0 . 3 1 5 4 8

    L0 5 1.0 2 260 -0.19156

    l.0l 0.96i5If9 -015-4|?

    2

    Figure 4:Geometric

    Stress-Concentration

    Factor

    K t

    E q . 1

    4

    O . _ o'mnx_f-Tmln

    tlnom_ 2

    Eq'15

    Kfm

    =

    Kf Kf(0'ma.x)nom

    < Sy

    Now

    that

    k;

    an d

    Kr ,

    is

    found,

    actual alternating an d

    mean

    stress

    can

    be found us ing equation

    16

    an d 17

    Eq16 am

    = Kfrn

    ' amnom

    Eq-17

    an = Kf ' aanom

    _

    ___11"5 _

    .. 1T

    Since there are n o other

    nonzero

    stress

    components

    a t t h is po in t on th e to p of t he a rm , th e

    Vo n

    Mises S t r e s s e s , a , . , an d 0 ; } , are

    Eq.18

    0 1 , ,

    =

    om

    Eq.19

    0;

    =

    oa

    Th e

    unmodified

    endurance l imit,

    5;,

    is to be determined in

    order

    to

    solve fo r

    the corrected endurance

    l imit

    Eq.20 S e :

    = 0 .5

    -

    S m

    Th e load

    correction

    f a c t o r , C , , , , , , 1 ,

    is

    equiva lent to

    1 because

    th e

    V-link

    arm acts l ike

    a

    cantilever beam

    an d

    is a bending force

    Eq.21

    C , _ , , , , d = 1

    To fin d th e

    size

    correction factor,

    C 5 , - , , , . , ,

    equations 2 2 an d 2 3

    would

    be

    needed

    A95=

    '

    Wa

    '

    ta

    E q .

    2 3

    1 1 , ,

    =

    Th e

    equation

    represented in equation24,

    is used, because

    th e d e q is 8m m an d 2 50 m m

    E q . 2 4 cm ,

    =

    1.189-(d,,,) 7

    Th e

    following

    equation fo r surface correct ion factor C5,,

    E q .

    2 5 C,,,,.;

    =

    A -

    ( . S , ,, )

    Th e

    temperature

    correction

    factor, C r a m p , is equivalent

    to

    one because

    then surrounding environmen t

    is

    at

    room

    temperature

    Cfgmp=

    1

    Th e reliability

    correction

    factor

    is

    0.897, because

    th e

    reliability is

    at 90 %

    EQ-27 Creliab = 0-897

    Th e

    corrected

    endurance l imit, S e ,

    is

    n ow fo un d b y

    Eq.28

    S e

    = Cioad

    '

    Csize

    ' Csurf '

    Ctemp ' Creliab

    ' Se

    The fat igue factor

    of safety,

    N f,

    can

    n ow be fo un d b y

    s

    2 9 N

    = s 5

    q

    f

    0;'$u;+O:n-5;

    T he m ax

    deflection at

    t ip, d m a x

    W

    '_'(Marm)z'(Marm3'f-v)

    E q . 3 0 6 m a x ' z

    ] , * 5 - , 1

    5

  • 8/10/2019 MD1_Project1_Spring2014

    7/14

    R o d Analysis:

    e

    cylinder

    rod

    is

    given

    to

    be

    at fixed-p inned condi tion. Therefore, th e

    effective

    length,L,, ,

    can

    be

    found

    using

    th e A I S C

    recommended

    quation

    1 :.

    _ q~ . .

    - _ - . ~ .

    T oF ]

    M

    Leff = '- ' L;-ad

    Determin ing

    t h e M om e n t

    of inertia, where dm d is

    th e diameter of

    th e

    rod

    E q . 3 2 , =

    ,,

    . $ 1 2 2 :

    s 4

    I-4

    Determin ing

    th e

    Area

    of

    th e

    ro d t o

    fin d

    gyration

    radius

    of

    th e

    rod

    '2

    E q . 3 3 A r = ,, . L

    i = 1

    LM

    [

    . 7 < ~ 1

    --

    - -

    . .

    F E

    Determin ing th e

    Slenderness

    ratio, S r, to

    then

    fin d

    the slenderness ratio

    at

    _ _

    ;_---

    tangent

    poin t , ( 5 , ) , - _ , i J-3:

    F i gur e 5:

    FB D

    ofCrank Ar m & Cylinder R od

    Sr

    :

    -ail

    (STJD

    =

    11 ' -

    Th e

    following

    equation determines th e critical buckl ing load

    of

    th e rod,

    Pa ,

    where S 3 , ,

    is

    the comprehensive

    yield

    strength

    .

    2

    E q . 3 7 P , _ . , = .4 , - (3,,

    -

    )

    Calcu la t ing

    th e

    torque of

    th e

    V-link arm,

    ' I , , , to fin d

    th e m a x im u m t orq u e, T m ,

    E q . 3 8

    T ,

    =

    N

    -32

    q . 3 9 T , , , , , , , =

    Moment of th e

    maximum

    compressive force,

    M

    I - c , , , , , , , , where L , - m , ,, , is th e

    length

    of th e crank, 6 ,, is th e position

    angle

    of

    th e

    crank arm, an d

    9 ,.

    is th e position angle

    of

    th e ro d

    Eq-4'0 MFcomp =

    Lcrank

    ' 5in(9c _er)

    Th e

    max

    compressive

    force, F c o m p ,

    c a n then b e found with th e following equation

    E q . 4 1 F =

    @-

    M F c c m 1 p

    Determining

    th e Safety factor, ca n then be

    easily found

    by

    th e following

    equation

    E q . - i 2

    N ;

    =

    Om p

    6

  • 8/10/2019 MD1_Project1_Spring2014

    8/14

    Analysis:

    ? m m l m u m

    T O T Q H B . T m . is to

    be

    determined in order to solve fo r Mean torque,

    T m ,

    an d Alternating tor que, T ,

    Tmin = (Tu ' ' 2

    T (Tmnx'*Tmln)

    m = 2

    Ta

    ;_

    (rmaxgrmln)

    ow

    that

    th e m ea n an d alternating torque

    are

    fo un d t h e shear

    stresses

    can b e calculated, where

    rm

    is th e

    mean

    shear

    stress,

    1 , ,

    IS

    th e

    shear

    stress, and Dshaf, is

    th e diameter

    of th e

    shaft

    . 4 6 = . _ ; ~ _ ' =

    rm T m

    27

    Ta=

    Ta

    q

    P

    -

    on M is es m ea n a nd alternatin stress can

    b e found

    usin th e followin e

    uations 4 8

    an d

    4 9, where

    0 3 ; , is

    th e

    mean

    vo n

    Mises stress,

    an d 0 ,,

    S 8

    8 q

    th e alternating vo n Mises

    stress

    J7

    = 1/3 ~

    (fm)2

    git

    = 1/3 - ('['a)2

    h e

    load correction factor of t h e sh af t c an b e

    found

    using

    equation

    21.

    h e s iz e correction factor of th e

    shaft

    can be

    found

    using equation 24 , except substituting th e d e q with Dshaft.

    h e temperature correct ion factor of th e shaft can b e

    found

    using

    equation

    2 6.

    Th e

    reliability

    correct ion factor of t h e sh aft c a n be found using equation 2 7.

    The surface correct ion factor of t h e sh aft can b e found using equation 25 .

    Th e uncorrected endurance l imit of t h e sh aft can b e f ou n d by u s in g e qu a tion

    20.

    Th e

    corrected endurance

    l imi t

    of t h e sh aft c a n b e fo un d b y

    using

    equation

    28.

    Th e fatigue

    factor

    of safety

    of t h e sh aft can

    be found

    by

    using

    equation 29.

    T h e

    internal

    to rques

    c an be

    found us ing equations 50 an d

    51 ,

    t hese torques ar e needed to

    solve

    fo r maximum angle of

    twist

    of

    th e

    shaf t \H Mr

    Eq-50 T1

    = Tmax

    E q . 5 1 T , = r, , , , , , , -

    5%

    h e polar m o m ent

    of

    inertia, /,

    can

    be fo un d b y t he fol lowing equation

    _ _(Dshaf t )

    E q . 5 2

    1-

    1 1 - 3 2

    Determin ing

    th e

    max

    angular tw ist of th e shaft

    ,

    L

    '

    (T 0.25 T 0.D5)

    twwlimqq: W

    Shaft

    11.6 + 2

    K

    7

    Figure 6:

    FB D M a x t orq u e

  • 8/10/2019 MD1_Project1_Spring2014

    9/14

    G i v e n

    D a t a :

    O D =

    0 .9

    m (outer diameter of roll)

    D

    = 0.22 m ( inner diameter of roll)

    u

    =

    3.23

    m

    ( length of

    roll)

    ,,,,;, =

    L , - o n

    ( length

    of

    shaft)

    = 984% (density of ro ll )

    u b , = 0.16 m (diameter of

    tube)

    , =

    1

    m

    ( length

    of

    V- lin k arm)

    n .

    o .: 3 _ = , > ' * a

    I - J .

    fl

    ii

    = 0. 5 m ( le n gt h of cyl inder rod)

    a n k

    = 0 .3

    m ( le n gt h

    of

    crank)

    = 4 5

    (start ing

    angle

    position of

    crank

    arm)

    = 8

    (start ing

    angle

    position

    of cyl inder rod)

    ia b = 9 0 % ( p erc en t of

    reliability)

    2

    25

    MATLAB

    Printed

    Results:

    1)

    2 )

    3 )

    4 )

    The

    weight

    of the paper roll is 18650.1979

    N

    V-link

    Design:

    Thickness is 0 .050 m an d Width is .050 m

    Th e notch

    sensitivity is

    0.9102,/0

    /

    The fatigue stress

    concentration factor is 1.38

    :mi///

    The

    m ax

    bending moment is

    3683.4141

    N*m.and the n bending moment

    is 0.000000

    N *m

    The mean normal stress is

    122.12 MP a

    and the a

    ternating

    normal stress is

    122.l2259

    HP a

    C1oad=1.0000

    v/%

    Csize=0.B306

    Csurf=0.B183

    Ctemp=l.0OO0 /

    Cre1iab=0.8970

    q ._ I

    The corrected

    endurance

    lmt is 191. a t E QLrk_

    _

    The

    fatigue safety

    factor

    is 1.1994

    iQ:

    ii

    T

    T

    bk

    The deflection

    at the

    tip

    is -0.0060

    m

    Cylinder R od Design:

    The

    The

    The

    0

    /

    diameter

    is

    0.018 m,the

    effective

    length

    is,0/400

    m , and the slenderness ratio 18 88.

    compressive

    force at

    the

    starting position/ 49067\394 N

    critica compressive load is 63890.4l94-N

    The safety factor against

    buckling is

    1.3021

    Shaft Design:

    Th e

    diameter

    is 0 . 0 8 1 m an d th e polar

    m o m e n t

    of inertia is 4.226s-03.-are

    The torque is 8858.B44QvNm

    The

    m e a n

    shear stress

    is 0.000000

    and the alternating shear stress

    is 84.897 HPa'

    Cload=1. oooo /

    Csize=0.776

    Z

    Csurf=O.8183

    Ctemp=1.0000

    h

    Creliab=0.897O

    The corrected

    endurance

    lmt is 1.78 e N/m2

    The

    fatigue

    safety factor

    is

    1.2149

    The maximum angle

    of twist

    is 2.4006

    d

    rees

    8

    C U I II )

    ID

  • 8/10/2019 MD1_Project1_Spring2014

    10/14

    dm

    Th e

    loading

    station design

    is possible

    under

    t he g iven parameters .

    Ou t of

    th e three

    components , it can

    be

    t ha t

    th e

    V-linkage

    would require

    th e most materia l.

    Th e carbon steel material is th e per fec t materia l to

    used,

    because it is a strong

    material t ha t

    should be

    able

    to

    perform

    t h e t as k of

    transferring

    t he p a p er rolls. Th e

    of

    th e

    V- l inks are

    0 .05 meters in thickness an d width , p rov id ing

    a

    factor of safety of

    1.1994

    an d a -

    meter deflection a t th e t ip . T o get a safety factor of 1.3021, th e cyl inder rod only needed a diameter of

    meters.

    Th e

    calculated comp ressive

    force

    at

    th e

    starting

    posit ion

    is

    49067

    N

    ewtons, whereas

    th e

    critical

    loa d was 63890 Newtons.

    Therefore, even with

    th e

    small d imens ions , the cyl inder rod is

    able

    hold a

    ot buckle

    during th e

    process

    of

    t rans fer ring tha t s h aft t o th e forklift truck. Additional ly, th e shaft h ad

    a

    safety

    of 1.2149

    with

    a diameter

    of

    only

    0 .08 1

    meters.

    With these

    dimensions

    of

    th e shaft, th e

    max imum

    angle

    of

    ended up

    being

    2 .4

    degrees and

    th e polar

    m o m e n t of inertia

    ended up being

    4 . 2 3 >