me3122 handbook of heat transfer equations 2014

Upload: nian-wee-wu

Post on 02-Jun-2018

232 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    1/22

    HANDBOOK OF EQUATIONS, TABLES

    AND CHARTS FOR

    ME3122/ME3122E HEAT TRANSFER

    Department of Mechanical Engineering

    National University of Singapore

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    2/22

    1

    CONDUCTION HEAT TRANSFER

    1stlaw of thermodynamics: WQdU

    Conduction:

    Convection:

    Radiation: where -4-28 KWm10675 .

    Control Volume:

    Surface:

    Heat Conduction Equation:

    Cartesian:

    Cylindrical:

    Spherical:

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    3/22

    2

    One-Dimensional Walls

    Fin Equations:

    kA/hPmmdx

    d 22

    2

    2

    where0

    which has the general solution mxmx eCeC 21 .

    Fin Efficiency:

    Fin Effectiveness:

    Overall Surface Efficiency:

    ftf

    t

    t

    max

    t

    o A

    NA

    hA

    q

    q

    q

    11

    0

    whereunfinnedft

    ANAA .

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    4/22

    3

    Lumped Capacitance Method:

    ,

    , , ,

    Other Equations (Thermal Properties):

    Solids:

    Free electrons:

    Gases:

    Joule heating: RIEg2

    Interfaces:

    Heat wave speed:

    Two semi-infinite solids touch:

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    5/22

    4

    CONVECTION HEAT TRANSFER

    All symbols have their usual meaning.

    ConstantsGravitational acceleration: g = 9.81 m/s2

    Specific gas constant for air: R= 287 J/kgK

    Definitions

    Kinematic viscosity, /

    Thermal diffusivity, / pck

    Volumetric thermal expansion coefficient,TT p

    11

    for an ideal gas.

    General

    Dimensionless Groups

    uc

    h

    PrRe

    NuSt

    PrGrRa

    LTTgGr

    k/hLNu

    /Pr

    /VL/VLRe

    p

    x

    x

    xx

    LL

    sL

    L

    L

    Number,Stanton

    Number,Rayleigh

    Number,Grashof

    Number,Nusselt

    Number,Prandtl

    Number,Reynolds

    2

    3

    Tcm

    y

    u

    VAm

    RTpv

    TThq

    p

    c

    s

    sectionaghflux throuenergyThermal

    stress,Shear

    rate,flowMass

    :lawgasIdeal

    Cooling,ofLawsNewton'

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    6/22

    5

    2D Continuity Equation:

    2D x-Momentum Equation:

    2D Energy Equation:

    where viscous dissipation,

    2D Boundary Layer Equations:

    x-Momentum Equation:

    Energy Equation:

    Integral Momentum Equation:

    Integral Energy Equation:

    Forced Convection Over External Surfaces

    Generally,nm

    PrReCNu

    Forced Convection Over a Flat Plate:

    For constant , .

    0

    y

    v

    x

    u

    Xy

    u

    x

    u

    x

    p

    y

    u

    vx

    u

    u

    2

    2

    2

    2

    qy

    T

    x

    Tk

    y

    Tv

    x

    Tucp

    2

    2

    2

    2

    222

    2y

    v

    x

    u

    x

    v

    y

    u

    2

    2

    y

    u

    y

    uv

    x

    uu

    2

    2

    y

    T

    y

    Tv

    x

    Tu

    00

    )(

    yy

    udyuuu

    dx

    d

    0

    0

    yy

    TdyTTu

    dx

    d t

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    7/22

    6

    Uniform Surface Temperature (Isothermal):

    11

    0

    L

    x

    A

    x dxhL

    dAhA

    h

    For laminar flow (5Re 5 10

    x ):

    ;5 3121 PrRex tx

    For turbulent flow (5

    Re 5 10x ):

    Pr02960;05920;370 31

    51 5451

    xxxx,fxturb Re.NuRe.CRex.

    For mixed boundary layer conditions ( 5105LRe ):

    Uniform Surface Heat Flux (Isoflux):

    For laminar flow (5Re 5 10

    x ):

    For turbulent flow ( 5Re 5 10x ):3

    1

    Pr03080 54xx Re.Nu

    For Unheated Starting Length,xo, with laminar flow for both isothermal and isoflux

    conditions:

    Forced Convection Across Long Cylinders:

    where Cand mare given byReD C m

    0.4-4 0.989 0.330

    4-40 0.911 0.385

    40-4000 0.683 0.466

    4000-40,000 0.193 0.61840,000-400,000 0.027 0.805

    31

    21

    31

    21

    6640;3320 PrRe.k

    LhNuPrRe.Nu LLxx

    )8710370(;1742074080151 3

    1

    .LLLLL,f Re.Prk

    LhNuReRe.C

    31

    21

    4530 PrRe.Nu xx

    21

    21

    3281;66402

    2

    xL,fx

    x,s

    x,f Re.CRe./u

    C

    31430

    1

    x/xNuNu oxxx o

    31PrReC

    k

    DhNu

    m

    DD

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    8/22

    7

    Forced Convection Across Spheres:

    where all properties are evaluated at thefree-streamtemperature, except s, which isevaluated at the surface temperature of the sphere.

    Forced Convection Across Non-Circular Cylinders

    where Cand mare given by

    Forced Convection Across Tube Banks

    where all properties, exceptPrs, are evaluated at the average of the fluid inlet and outlet

    temperatures,ReD,maxis based on the maximum fluid velocity, and C1and mare given in the

    table below for number of tube rows for various aligned and staggered arrangements

    of tubes.

    41

    403221 060402

    s

    .

    DDD

    PrRe.Re.

    k

    DhNu

    31PrReC

    k

    DhNu

    m

    DD

    41

    360

    1

    s

    .m

    max,DDPr

    PrPrReCNu

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    9/22

    8

    (a)Aligned tube rows (b) Staggered tube rows

    For : where C2for various is given in the table

    below:

    20220 LL NDND NuCNu

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    10/22

    9

    Forced Convection in Tubes and Ducts

    Friction factor,

    PerimeterWettedAreasectional-Cross4Diameter,Hydraulic hD

    For thermally fully-developed condition:

    Laminar Flow (ReD2300):

    Fully developed velocity profile:

    where mean fluid velocity,

    Friction factor, f= 64/ReD

    Nuand ffor Fully-Developed Laminar Flow in Tubes of Various Cross-Sections

    dx

    dpr

    r

    mum

    8

    20

    2

    0

    2

    0

    2

    12)(

    r

    r

    u

    ru

    m

    2

    or2

    2

    2

    m

    m

    u

    D

    Lfp

    /u

    Ddx/dpf

    0)()(

    )()(

    xTxT

    x,rTxT

    x ms

    s

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    11/22

    10

    Turbulent Flow (ReD> 2300):

    For smooth tubes and ducts, the Dittus-Boelter equation:

    with n= 0.4 for heating of fluid, and n= 0.3 for cooling of fluid

    Friction factor for smooth tubes: 26417900 .Reln.f D

    Friction factor for rough tubes of roughness e: 290745733251 .DRe/.D./eln.f

    Reynolds-Colburn Analogy

    For flow over a flat plate:

    For flow in a tube or duct:

    FREE CONVECTION

    Generally,

    flow.entfor turbul31andflow,laminarfor41with mmRaCPrGrCNu mLm

    LL

    Laminar Free Convection on an Isothermal Vertical Plate:

    Boundary layer momentum equation:

    Integral Momentum Equation for Free Convection BL:

    Boundary layer thickness,

    Critical Ra= 109.

    Free Convection from an Isothermal Sphere

    n

    DD PrRe.Nu hh540230

    2;2 3232 /CPr.St/CPr.St L,fLx,fx

    832 /fPr.St

    2

    2

    y

    uTTg

    y

    uv

    x

    uu

    00

    2dyTTg

    y

    udyu

    dx

    d

    s

    414121 9520933 xGrPr.Prx.

    541 101for4302 D/

    DD GrPrGr.k

    DhNu

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    12/22

    11

    Free Convection from Isothermal Planes and Cylinders

    Free Convection from a Vertical Plate with Constant Surface Heat Flux

    where

    mLm

    LL RaCPrGrCNu

    Geometry GrL Pr C mCharacteristic

    Length

    Vertical plane and cylinder104109 0.59 1/4

    Height10 10 0.10 1/3

    Horizontal cylinder

    10-1010-2 0.68 0.058

    Diameter

    10- 10 1.02 0.148

    102104 0.85 0.188

    104109 0.53 1/4

    1091012 0.13 1/3

    Hot surface facing up or

    cold surface facing down

    104107 0.54 1/4Area/Perimeter

    1071011 0.15 1/3

    Hot surface facing down or

    cold surface facing up1051011 0.27 1/4 Area/Perimeter

    161341

    11551

    10102for170:Turbulent

    1010for600:Laminar

    Pr*GrPr*Gr.Nu

    Pr*GrPr*.Gr.k

    xhNu

    xxx

    xxx

    x

    2

    4

    k

    xqg.NuGr*Gr sxxx

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    13/22

    12

    RADIATION HEAT TRANSFER

    Solid angle: 2/ rAn , ddsind

    Radiation:where

    -4-28

    KWm10675

    .

    surssursr

    sursr

    "

    rad

    TTTTh

    TThq

    22

    Spectral directional Intensity:

    Diffuse emitter:

    Blackbody: 4)( TTEb

    Spectral black body emissive power

    ).)T/Cexp(

    C)T,(E b, m(W/m

    1

    2

    2

    5

    1

    m.K104391and/mmW.107423where 42248

    1 .C.C

    Weins displacement law: m.K2898max T

    Emissivity of real surfaces:

    4)()()( TTETTE b

    Absorptivity of surface:

    GGabs

    Semitransparent medium: 1

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    14/22

    13

    Black Body Radiation Functions

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    15/22

    14

    View factors:

    32

    133122132

    AA

    FAFAF ,

    Radiation exchange between black-body surfaces:

    Radiation network approach:

    resistancespatial1re whe1

    resistancesurface1where1

    121

    121

    2112

    FA/FA/

    JJq

    A/A/

    JEq b

    Radiation Exchange Network for a Two-Surface Enclosure

    22

    2

    21111

    1

    4

    2

    4

    112

    111AFAA

    TTq

    ,

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    16/22

    15

    View factor for aligned parallel rectangles

    View factor for coaxial parallel disks

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    17/22

    16

    View factor for perpendicular rectangles with common edge

    HEAT EXCHANGERS

    Log Mean Temperature Difference, io

    iolm

    T/Tln

    TTT

    where fiR and fiR are fouling factors.

    Capacity rate, pcmC , is infinite for a condensing or boiling fluid.

    ooo

    fo

    w

    i

    fi

    ii

    BA

    AhA

    RR

    A

    R

    Ah

    TTq

    11

    exchangerheatindifferenceatureMax temper

    fluid)(minimum

    rateferheat transpossibleMax

    rateferheat transActualess,Effectiven

    T

    max

    min

    max

    minRatio,RateCapacityC

    C

    cm

    cmCr

    nits)Transfer Uof(NumberNTUC/UA min

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    18/22

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    19/22

    18

    Correction Factor for Single Pass Cross-Flow Heat

    Exchangers with the Shell Side Fluid Mixed, and the

    Other Fluid Unmixed.

    Correction Factor for a Single Pass Cross-Flow

    Heat Exchanger withBoth Fluids Unmixed.

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    20/22

    19

    -NTU Charts for Heat Exchangers

    Effectiveness of parallel flow heat exchangers Effectiveness of counterflow heat exchangers

    Effectiveness of Heat Exchangers with One Shell

    Passand Two (or Multiples of Two)Tube Passes.

    Effectiveness of Heat Exchangers with Two Shell

    PassesandFour (or Multiples of Four)Tube Passes.

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    21/22

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014

    22/22

    21

    Heat Exchanger Effectiveness Relations

    Heat Exchanger NTU Relations

    Use the above two equations with