measuring biodiversity - up · measuring biodiversity geometric series motomura, i. 1932. a...

59
Biodiversidade de Ecossistemas Aquáticos 13/04/11 1 Measuring Biodiversity

Upload: doantram

Post on 26-Dec-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Biodiversidade de Ecossistemas Aquáticos 13/04/11 1

Measuring Biodiversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 2

Measuring Biodiversity

Species Site 1 Site 2 Site 3

Stenothoe monoculoides 122 28 4657

Arcturidae 0 0 16

Campecopea hirsuta 0 0 10

Cymodoce truncata 0 0 103

Dynamene bidentata 378 112 2224

Dynamene edwardsi 0 0 10

Dynamene magnitorata 14 0 1010

Gnathia sp. 20 0 12

Idotea baltica 0 0 22

Idotea granulosa 4 1011 3411

Idotea pelagica 0 107 627

Ischyromene lacazei 0 51 754

Are these communities equally diverse?

Biodiversidade de Ecossistemas Aquáticos 13/04/11 3

Measuring Biodiversity

Commonness and rarity of species

Biodiversidade de Ecossistemas Aquáticos 13/04/11 4

Measuring Biodiversity

Plotting species abundance data

For Site 3For Site 1

1 2 3 4 5 6 7 8 9 10 11 12 13

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13

0

50

100

150

200

250

300

350

400

Biodiversidade de Ecossistemas Aquáticos 13/04/11 5

Measuring Biodiversity

Whittaker plots

1 2 3 4 5 6 7 8 9 10 11 12 130.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

Site 1Site 3

Species Rank

Re

lati

ve A

bun

da

n ce

Biodiversidade de Ecossistemas Aquáticos 13/04/11 6

Measuring Biodiversity

Relative Species Abundance Patterns

● Descriptive approaches– attempt to fit a mathematical model to real data sets

● Mechanistic approaches– create a mathematical model based on biological

principles and then test how well these models fit real data sets

Biodiversidade de Ecossistemas Aquáticos 13/04/11 7

Measuring Biodiversity

Descriptive approaches

Biodiversidade de Ecossistemas Aquáticos 13/04/11 8

Measuring Biodiversity

Geometric SeriesMotomura, I. 1932. A statistical treatment of associations, Jpn. J. Zool. 44: 379–383 (in Japanese)

Within the geometric series each species’ level of abundance is a sequential, constant proportion (k) of the total number of individuals in the community. Thus if k is 0.5, the most common species would represent half of individuals in the community (50%), the second most common species would represent half of the remaining half (25%), the third, half of the remaining quarter (12.5%) and so forth.

ni=NC k k 1−k i−1

ni = total number of individuals in the ith species

N = total number of individualsS = total number of speciesk = proportion of the remaining nicheC

k = [1-(1-k)S]-1

Biodiversidade de Ecossistemas Aquáticos 13/04/11 9

Measuring Biodiversity

Geometric Series

Best fit to species-poor assemblages (harsh environments) in the very early stages of succession

Biodiversidade de Ecossistemas Aquáticos 13/04/11 10

Measuring Biodiversity

Logseries (Fisher et al 1943)Fisher, R.A, Corbet A.S., Williams C.B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12: 42-58.

S= ln 1N

N = total number of individualsS = total number of speciesα = proportion of the remaining nichex = a positive constant (0<x<1) which is derived from the sample data set and generally approaches 1 in value

n = total number of individuals for a given species

S n= xn

n

The number of species with 1,2,3,...,n individuals is x , x2

2, x3

3 , , xn

n

Biodiversidade de Ecossistemas Aquáticos 13/04/11 11

Measuring Biodiversity

Log Normal (Preston 1948)Preston, F.W. 1948. The Commonness, and Rarity of Species. Ecology 29 (3): 254-283

S R=S 0 exp −a2 R2

S(R) = number of species in the Rth octave (class)S

0 = number of species in the modal class

a=22

Species abundances follow a Normal (Gaussian) distribution. According to this argument, the left-skew observed in species abundance frequency histograms (including those described by the logseries) is a sampling artifact. Given that species toward the left side of the x-axis are increasingly rare, they may be missed in a random species sample. As the sample size increases however, the likelihood of collecting rare species in a way that accurately represents their abundance also increases, and more of the normal distribution becomes visible

Biodiversidade de Ecossistemas Aquáticos 13/04/11 12

Measuring Biodiversity

Log Normal (Preston 1948)

Biodiversidade de Ecossistemas Aquáticos 13/04/11 13

Measuring Biodiversity

(Niche apportionment models)Mechanistic approaches (Niche apportionment models)

● MacArthur's Broken-stick model

● Tokeshi's models

Biodiversidade de Ecossistemas Aquáticos 13/04/11 14

Measuring Biodiversity

MacArthur's Broken-stick modelMac Arthur, R. H. (1957). On the relative abundance of bird species. Proc. Natl. Acad. Sci. 43, 293-295.

ni=N T

S∑n=i

S1n

Niche space is divided randomly between S species (a stick is broken randomly and simultaneously in S parts)

ni = number of individuals in the ith most important species

NT = total number of individuals

S = total number of species

Biodiversidade de Ecossistemas Aquáticos 13/04/11 15

Measuring Biodiversity

Tokeshi's models

Biodiversidade de Ecossistemas Aquáticos 13/04/11 16

Measuring Biodiversity

Tokeshi's models (e.g., Power Fraction)

The probability with which a portion of the niche colonized is dependent on the relative sizes of the established niches, and is scaled by an exponent k. k can take a value between 0 and 1 and if k>0 there is always a slightly higher probably that the larger niche will be colonized. This model is thought as being more biologically realistic because one can imagine many cases where the species with the larger proportion of resources is more likely to be invaded because that niche has more resource space, and thus more opportunity for acquisition.

Biodiversidade de Ecossistemas Aquáticos 13/04/11 17

Measuring Biodiversity

Fitting models to data

The AIC (Akaike Information Criterion)

Y = a + bx + cx²Y = a + bx

Biodiversidade de Ecossistemas Aquáticos 13/04/11 18

Measuring Biodiversity

Species Richness (S)

How many species are there?

Biodiversidade de Ecossistemas Aquáticos 13/04/11 19

Measuring Biodiversity

DMg=1−S ln N

Simple indices

Margalef's diversity index

DMn=S

NMenhinick's index

Both measures remain strongly influenced by sampling effort

Biodiversidade de Ecossistemas Aquáticos 13/04/11 20

Measuring Biodiversity

Species accumulation curves

Plot the cumulative number of species recorded (S) as a function of sampling effort (n)

Sampling effort (n) can be an increase in area, volume, time, pitfalls, nets, etc.

Biodiversidade de Ecossistemas Aquáticos 13/04/11 21

Measuring Biodiversity

Species accumulation curves

Biodiversidade de Ecossistemas Aquáticos 13/04/11 22

Measuring Biodiversity

Species accumulation curves

Estimating the number of (unobserved) species

Parametric methods

S n=Smax n

BnS(n) = total number of species observed in n samplesS

max = total number of species in the assemblage

B = sampling effort required to detect 50% of Smax

Methods try to estimate the fitted constants Smax

and B

Biodiversidade de Ecossistemas Aquáticos 13/04/11 23

Measuring Biodiversity

Species accumulation curves

Estimating the number of (unobserved) species

Non-parametric estimators

SChao 1

SChao 2

SACE

SJack 1

SJack 1

SBoot

Mostly base estimates on “rare” species

Biodiversidade de Ecossistemas Aquáticos 13/04/11 24

Measuring Biodiversity

Species accumulation curves

Estimating the number of (unobserved) species

SChao1=S obsF 1

2

F 22

Sobs

= number of species in sample

F1 = number of singletons

F2 = number of doubletons

SChao2=S obsQ1

2

2Q22

Sobs

= number of species in sample

Q1 = number of species that occur in

one sample only

Q2 = number of species that occur in

two samples

Biodiversidade de Ecossistemas Aquáticos 13/04/11 25

Measuring Biodiversity

Species accumulation curves

Estimating the number of (unobserved) species

S ACE=S abundS rare

C ACE

F 1

C ACE

×2ACE

Srare

= number of rare species (< 10 individuals)

Sabund

= number of common species (> 10 individuals)

Fi = number of species with i individuals

CACE

= 1-F1/N

rare

and 2ACE=max { S rare

C ACE

×

∑i=1

10

i i−1F i

N rare N rare−1 −1.0}

Biodiversidade de Ecossistemas Aquáticos 13/04/11 26

Measuring Biodiversity

Species accumulation curves

Estimating the number of (unobserved) species

S Jack 1=S obsQ1m−1m

Sobs

= number of species in sample

Q1 = number of species that occur in one sample only

Q2 = number of species that occur in two samples

m = number of samples

S Jack 2=S obs[Q1 2m−3

m−Q2m−22

mm−1 ]

Biodiversidade de Ecossistemas Aquáticos 13/04/11 27

Measuring Biodiversity

Species accumulation curves

Estimating the number of (unobserved) species

Sboot=Sobs∑k=1

S obs

1− pk m

Sobs

= number of species in sample

pi = frequency of species i

m = number of samples

Biodiversidade de Ecossistemas Aquáticos 13/04/11 28

Measuring Biodiversity

Performance

Known universe Unknown universe

Biodiversidade de Ecossistemas Aquáticos 13/04/11 29

Measuring Biodiversity

Rarefaction

Technique to standardize and compare species richness computed from samples of different sizes

The larger the number of individuals sampled, the more species will be found

Biodiversidade de Ecossistemas Aquáticos 13/04/11 30

Measuring Biodiversity

Rarefaction

Rarefaction curves are necessary for estimating species richness. Raw species richness counts, which are used to create accumulation curves, can only be compared when the species richness has reached a clear asymptote.

Rarefaction curves produce smoother lines that facilitate point-to-point or full dataset comparisons.

Biodiversidade de Ecossistemas Aquáticos 13/04/11 31

Measuring Biodiversity

Rarefaction

Rarefaction only works well when no taxon is extremely rare or common, or when beta diversity is very high.

Rarefaction assumes that the number of occurrences of a species reflects the sampling intensity, but if one taxon is especially common or rare, the number of occurrences will be related to the extremity of the number of individuals of that species, not to the intensity of sampling.

It also assumes individuals disperse randomly

Biodiversidade de Ecossistemas Aquáticos 13/04/11 32

Measuring Biodiversity

Rarefaction

Biodiversidade de Ecossistemas Aquáticos 13/04/11 33

Measuring Biodiversity

Indices of α diversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 34

Measuring Biodiversity

Logseries α

Lognormal λ

“Parametric” measures of diversity

S= ln 1N

The number of species with 1,2,3,...,n individuals is x , x2

2, x3

3 , , xn

n

Biodiversidade de Ecossistemas Aquáticos 13/04/11 35

Measuring Biodiversity

“Non-parametric” measures of diversity

Shannon-Wiener H'

Brillouin's Index (HB)

Simpson's Index (D) and variants

Taxonomic diversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 36

Measuring Biodiversity

Shannon-Wiener* H'

*Note: Incorrectly spelled “Shannon-Weaver” because it was published in a book edited by Shannon and Weaver

H '=−∑

i=1

n

pi ln pi

n = number of species in samplepi = proportion of species i in sample

Biodiversidade de Ecossistemas Aquáticos 13/04/11 37

Measuring Biodiversity

Shannon-Wiener* H'

Site 1 Site 2 Site 1 -p*lnp

Site 2 -p*lnp

Sp A 12 49 0.34 0.06

Sp B 11 1 0.33 0.08

Sp C 14 1 0.36 0.08

Sp D 13 1 0.35 0.08

sum 50 52 1.38 0.28

12/38*Ln(12/38)

Biodiversidade de Ecossistemas Aquáticos 13/04/11 38

Measuring Biodiversity

Shannon Evenness J'

H '=−∑

i=1

n

pi ln pi

n = number of species in samplepi = proportion of species i in sampleS = total number of species observed

J '=

H '

H max

H max=ln S

Biodiversidade de Ecossistemas Aquáticos 13/04/11 39

Measuring Biodiversity

Simpson's Index D

n = number of species in samplepi = proportion of species i in sample

D=∑i=1

n

p2i

Simpsons's D measures the probability of any two individuals drawn at random from an infinitely large community belonging to the same species

Sometimes also reported as 1-D or 1/D

Biodiversidade de Ecossistemas Aquáticos 13/04/11 40

Measuring Biodiversity

Simpson's Index D

ni = total number of individuals of the ith species

N = total number of individualsS = total number of species

D=∑i=1

S niN

×[ni−1]

[N−1]

This version is for finite samples...

Biodiversidade de Ecossistemas Aquáticos 13/04/11 41

Measuring Biodiversity

Simpson's Evenness

S = total number of species

E1 /D=1/DS

Biodiversidade de Ecossistemas Aquáticos 13/04/11 42

Measuring Biodiversity

Taxonomic Diversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 43

Measuring Biodiversity

Taxonomic Diversity

=[∑i=1

S−1

∑j=i1

S

ij xi x j ][ nn−1

2 ]S = total number of speciesx

i = proportion of ith species in sample

n = Σxi

Biodiversidade de Ecossistemas Aquáticos 13/04/11 44

Measuring Biodiversity

Taxonomic Diversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 45

Measuring Biodiversity

Taxonomic Distinctness

*=

[∑i=1

S−1

∑j=i1

S

ij x i x j ][∑i=1

S−1

∑j=i1

S

x i x j ]S = total number of speciesx

i = proportion of ith species in sample

Effects of proportionsof individuals are “removed”

Measures pure taxonomicrelatedness

Biodiversidade de Ecossistemas Aquáticos 13/04/11 46

Measuring Biodiversity

Average Taxonomic Path Length

+=

[∑i=1

S−1

∑j=i1

S

ij ][ S S−1

2 ]S = total number of species

This measure is a particular case of both Δ and Δ* when data is reduced to presence absence

Biodiversidade de Ecossistemas Aquáticos 13/04/11 47

Measuring Biodiversity

a) Δ+ = 3.0 b) Δ+ = 1.0 c) Δ+ = 1.56 d) Δ+ = 1.2

Average Taxonomic Path Length

Biodiversidade de Ecossistemas Aquáticos 13/04/11 48

Measuring Biodiversity

Taxonomic Diversity: invariant to sample size!

H' Pielou's JMergalef's D

ΔΔ Δ* Δ+

Biodiversidade de Ecossistemas Aquáticos 13/04/11 49

Measuring Biodiversity

Taxonomic Diversity: testing hypothesis

Biodiversidade de Ecossistemas Aquáticos 13/04/11 50

Measuring Biodiversity

Taxonomic Diversity: testing hypothesis

Biodiversidade de Ecossistemas Aquáticos 13/04/11 51

Measuring Biodiversity

Measuring β diversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 52

Measuring Biodiversity

Biodiversidade de Ecossistemas Aquáticos 13/04/11 53

Measuring Biodiversity

Whittaker's βw

w=S /

S = total number of species

= average sample diversity

Samples should have a standard size and diversity is measured as species richness

Biodiversidade de Ecossistemas Aquáticos 13/04/11 54

Measuring Biodiversity

Other measures

C=g H lH

2Cody's β

C

R=S2

2rS−1 Routledge's β

R

I=logT−[1/T ∑ ei log e i ]−[1/T ∑ Sj log Sj ] Routledge's βI

E=e I Routledge's β

E

Biodiversidade de Ecossistemas Aquáticos 13/04/11 55

Measuring Biodiversity

Indices of similarity and dissimilarity

CM=1−a

abc

a = number of species in both samplesb = number of species exclusive of sample 1c = number of species exclusive from sample 2

C j=a

abcCM is the complement of Jaccard's (1908) index

Biodiversidade de Ecossistemas Aquáticos 13/04/11 56

Measuring Biodiversity

Indices of similarity and dissimilarity

CM=1−a

abc

a = 7b = 2c = 2

CM=1−7

722=0.364

Species Site 1 Site 2 Site 3

Stenothoe monoculoides 122 28 4657

Arcturidae 0 0 16

Campecopea hirsuta 0 0 10

Cymodoce truncata 0 0 103

Dynamene bidentata 378 112 2224

Dynamene edwardsi 0 0 10

Dynamene magnitorata 14 0 1010

Gnathia sp. 20 0 12

Idotea baltica 0 0 22

Idotea granulosa 4 1011 3411

Idotea pelagica 0 107 627

Ischyromene lacazei 0 51 754

Between Site 1 and 2

Biodiversidade de Ecossistemas Aquáticos 13/04/11 57

Measuring Biodiversity

Indices of similarity and dissimilarity

CS=2a

2abc

sim=1− aaminb ,c

CN=2jNN aN b

Plenty of them...

Biodiversidade de Ecossistemas Aquáticos 13/04/11 58

Measuring Biodiversity

Multivariate Analysis

●Cluster Analysis (UPGMA, K-means, etc.)

●PCA (Principal Component Analysis)

●PCo (Principal Coordinate Analysis)

●CA (Correspondence Analysis)

●MDA (Multidimensional Scaling)

●etc.

Biodiversidade de Ecossistemas Aquáticos 13/04/11 59

Measuring Biodiversity

Non-metric Multidimensional Scaling