mech4450 introduction to finite element methods

15
MECH4450 Introduction to Finite Element Methods Chapter 4 Finite Element Analysis (F.E.A.) of 1-D Problems – Heat Conduction

Upload: rodger-walker

Post on 08-Jan-2018

213 views

Category:

Documents


1 download

DESCRIPTION

Heat Transfer Mechanisms Conduction – heat transfer by molecular agitation within a material without any motion of the material as a whole. Convection – heat transfer by motion of a fluid. Radiation – the exchange of thermal radiation between two or more bodies. Thermal radiation is the energy emitted from hot surfaces as electromagnetic waves.

TRANSCRIPT

Page 1: MECH4450 Introduction to Finite Element Methods

MECH4450 Introduction to Finite Element Methods

Chapter 4

Finite Element Analysis (F.E.A.) of 1-D Problems – Heat Conduction

Page 2: MECH4450 Introduction to Finite Element Methods

Heat Transfer Mechanisms Conduction – heat transfer by molecular

agitation within a material without any motion of the material as a whole.

Convection – heat transfer by motion of a fluid.

Radiation – the exchange of thermal radiation between two or more bodies. Thermal radiation is the energy emitted from hot surfaces as electromagnetic waves.

Page 3: MECH4450 Introduction to Finite Element Methods

Heat Conduction in 1-DHeat flux q: heat transferred per unit area per unit time (W/m2)

dTq kdx

T TA AQ CAx x t

Q: heat generated per unit volume per unit time C: mass heat capacity

Governing equation:

Steady state equation:

0d dTA AQdx dx

: thermal conductivity

Page 4: MECH4450 Introduction to Finite Element Methods

Thermal Convection

( )sq h T T

Newton’s Law of Cooling

2: convective heat transfer coefficient ( )oh W m C

Page 5: MECH4450 Introduction to Finite Element Methods

Thermal Conduction in 1-D

Dirichlet BC:

Boundary conditions:

Natural BC:

Mixed BC:

Page 6: MECH4450 Introduction to Finite Element Methods

Weak Formulation of 1-D Heat Conduction(Steady State Analysis)

• Governing Equation of 1-D Heat Conduction -----

( )( ) ( ) ( ) 0d dT xx A x AQ xdx dx

0<x<L

• Weighted Integral Formulation -----

• Weak Form from Integration-by-Parts -----

0

( )0 ( ) ( ) ( ) ( )L d dT xw x x A x AQ x dx

dx dx

0 0

0LL dw dT dTA wAQ dx w A

dx dx dx

Page 7: MECH4450 Introduction to Finite Element Methods

Formulation for 1-D Linear Element

Let 1 1 2 2(x) (x) (x)T T T

f2

x1 x2

1 2

T1

x

T2

f1

2 11 2( ) , ( )x x x xx x

l l

22

11 )( ,)(

xTAxf

xTAxf

Page 8: MECH4450 Introduction to Finite Element Methods

Formulation for 1-D Linear Element

Let w(x)= i (x), i = 1, 2

2 2

1 1

2

2 2 1 11

0 ( ) ( )x x

jij i i i

j x x

ddT A dx AQ dx x f x fdx dx

1122

2

1

)()( fxfxQTK iiij

jij

2

1

2212

1211

2

1

2

1

TT

KKKK

QQ

ff

2 2

1 21 1

1 2 , Q , f , fx x

jiij i i

x xx x

dd dT dTwhere K A dx AQ dx A Adx dx dx dx

Page 9: MECH4450 Introduction to Finite Element Methods

Element Equations of 1-D Linear Element

2

1

2

1

2

1

1111

TT

LA

QQ

ff

2

1 21

1 2 Q , f , fx

i ix x x xx

dT dTwhere AQ dx A Adx dx

f2

x1 x2

1 2

T1

x

T2

f1

Page 10: MECH4450 Introduction to Finite Element Methods

1-D Heat Conduction - Example

A composite wall consists of three materials, as shown in the figure below. The inside wall temperature is 200oC and the outside air temperature is 50oCwith a convection coefficient of h = 10 W(m2.K). Find the temperature alongthe composite wall.

t1 t2 t3

0 200oT C 50oT C

x

1 2 3

1 2 3

1 2 3

70 , 40 , 20

2 , 2.5 , 4

W m K W m K W m K

t cm t cm t cm

Page 11: MECH4450 Introduction to Finite Element Methods

Thermal Conduction and Convection- Fin

Objective: to enhance heat transfer

dx

t

x

w 2 ( )2 ( ) 2 ( )

lossc c

h T T w th T T dx w h T T dx tQA dx A

Governing equation for 1-D heat transfer in thin fin

0c cd dTA A Qdx dx

0c cd dTA Ph T T A Qdx dx

2P w t where cA w t

Page 12: MECH4450 Introduction to Finite Element Methods

Fin - Weak Formulation(Steady State Analysis)

• Governing Equation of 1-D Heat Conduction -----

( )( ) ( ) 0d dT xx A x Ph T T AQdx dx

0<x<L

• Weighted Integral Formulation -----

• Weak Form from Integration-by-Parts -----

0

( )0 ( ) ( ) ( ) ( ) ( )L d dT xw x x A x Ph T T AQ x dx

dx dx

0 0

0 ( )LL dw dT dTA wPh T T wAQ dx w A

dx dx dx

Page 13: MECH4450 Introduction to Finite Element Methods

Formulation for 1-D Linear Element

Let w(x)= i (x), i = 1, 2

2 2

1 1

2

1

2 2 1 1

0

( ) ( )

x xji

j i j ij x x

i i

ddT A Ph dx AQ PhT dxdx dx

x f x f

1122

2

1

)()( fxfxQTK iiij

jij

2

1

2212

1211

2

1

2

1

TT

KKKK

QQ

ff

2 2

1 1

1 2

1 2

, Q ,

,

x xji

ij i j i ix x

x x x x

ddwhere K A Ph dx AQ PhT dxdx dx

dT dTf A f Adx dx

Page 14: MECH4450 Introduction to Finite Element Methods

Element Equations of 1-D Linear Element

1 1 1

2 2 2

1 1 2 11 1 1 26

f Q TA PhLf Q TL

f2

x=0 x=L1 2

T1

x

T2

f1

2

1 21

1 2 Q , , x

i ix x x xx

dT dTwhere AQ PhT dx f A f Adx dx

Page 15: MECH4450 Introduction to Finite Element Methods

1-D Heat Conduction – Example 2

A metallic fin extends from a plane wall whose temperature is 235oC. DetermineThe temperature distribution and amount of heat transferred from the fin to the air At 20oC .

0 235oT C

20oT C

x

2360 , 9

10 , 0.1 , w 1

o oW m C h W m C

l cm t cm m

lt