mechanicalventilation-090317230450-phpapp01

Upload: ahmadfadhlanabdhamid

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    1/82

    0

    MECHANICAL VENTILATIONMECHANICAL VENTILATION

    Compiled by

    Mohd Rodzi I smail

    School of Housing Building & Planning

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    2/82

    1

    INTRODUCTION

    Definition

    the process of changing air in an

    enclosed space Indoor air is withdrawn and replaced byfresh air continuously

    From clean external source

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    3/82

    2

    The importance of ventilation to maintain air purity, i.e.:

    preservation of O2 content this should be maintained atapproximately 21% of air volume

    removal of CO2 control of humidity between 30 & 70% RH is acceptable for

    human comfort prevention of heat concentrations from machinery, lighting

    and people

    prevention of condensation

    dispersal of concentrations of bacteria dilution and disposal of contaminants such as smoke, dust

    gases and body odours

    provisions of freshness an optimum air velocity lies

    between 0.15 and 0.5 ms-1

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    4/82

    3

    VENTILATIONREQUIREMENTS

    Control of ventilation rates - normallybased on recommendations byauthorities or code of practice.

    e.g. BS 5720

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    5/82

    4

    Table 2.0 - Air changes rates (BS 5720)

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    6/82

    5

    Conversion from m3

    /hour per person to airchanges per hour

    Air supply rate x nos. occupants

    Room volume

    Example 1

    A private office of 30 m3 volume designed for 2people

    air changes per hour86.22

    30

    43=x

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    7/82

    6

    MECHANICALVENTILATION

    An alternative to the unreliable naturalsystems

    Components involved:

    Fan Filters

    Ductwork

    Fire dampers Diffusers

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    8/82

    7

    Table 1.0 - Fresh air supply rates (BS 5720)

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    9/82

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    10/82

    9

    Basic law of fan capabilities (at aconstant air density):

    1. Volume of air varies in direct proportion tothe fan speed, i.e.

    where, Q= volume of air (m3/s) N= fan impeller (rpm)

    1

    2

    1

    2

    N

    N

    Q

    Q=

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    11/82

    10

    2. Pressure of, or resistance to, airmovement is proportional to fan speed

    squared, i.e.

    where,

    P= pressure (Pa)

    2

    1

    2

    2

    1

    2

    )(

    )(

    N

    N

    P

    P

    =

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    12/82

    11

    3. Air and impeller power is proportional tofan speed cubed, i.e.

    where,

    W= power (W or kW)

    31

    3

    2

    1

    2

    )(

    )(

    N

    N

    W

    W=

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    13/82

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    14/82

    13

    1

    2

    1

    2

    N

    N

    Q

    Q=1.

    1000

    1250

    4

    2 =Q

    therefore, Q2 = 5 m3/s

    2

    1

    22

    1

    2

    )()(

    N

    N

    P

    P =2. 2

    2

    2

    )1000()1250(

    250=P therefore, P2 = 390 Pa

    3

    1

    3

    2

    1

    2

    )()(

    NN

    WW =3. 3

    3

    2

    )1000()1250(

    2=W therefore, W2 = 3.9 kW

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    15/82

    14

    As fans are not totally efficient, the following formula

    may be applied to determine the percentage

    1

    100x

    (W)powerAbsorbed

    volumeairxpressurefanTotalEfficiency =

    So, for the previous example,

    %501

    100x3900

    5x903Efficiency ==

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    16/82

    15

    Types of fan1. Cross-flow or tangential

    2. Propeller

    3. Axial flow

    4. Centrifugal

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    17/82

    16

    Cross-flow or tangential fan

    Tangential or cross-flow fan

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    18/82

    17

    Tangential flow fan

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    19/82

    18

    How tangential flow fans work

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    20/82

    19

    Propeller fan

    Wall mounted propeller fanFree standing propeller fan

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    21/82

    20

    Types of propeller fans

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    22/82

    21

    Axial flow fan

    Axial flow fan Bifurcated axial flow fan

    To protect the fan-cooledmotor in greasy, hot &

    corrosive gas situations

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    23/82

    22

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    24/82

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    25/82

    24

    Heavy duty Counter rotating

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    26/82

    25

    Bifurcated axial-flow fan

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    27/82

    26

    Centrifugal fan

    Centrifugal fan

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    28/82

    27

    Air in

    Air out

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    29/82

    28

    Centrifugal fan impellers

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    30/82

    29

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    31/82

    30

    Centrifugal fans

    Wall type

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    32/82

    31

    HVAC duty centrifugal fan Industrial duty

    centrifugal fan

    Tubular

    centrifugal fan

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    33/82

    32

    Filters

    Four categories of filters1. Dry

    2. Viscous

    3. Electrostatic4. Activated carbon

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    34/82

    33

    Dry filters

    Roll filter Disposable element filter

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    35/82

    34

    35

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    36/82

    35

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    37/82

    37

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    38/82

    37

    38

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    39/82

    38

    Electrostatic filters

    Electrostatic filter

    39

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    40/82

    39

    40

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    41/82

    40

    Activated carbon filters

    Commercial cooker hood

    41

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    42/82

    42

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    43/82

    HEPA filters

    43

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    44/82

    Ductwork

    Circular, square or rectangular cross-sections

    Circular & rectangular ductwork

    More efficient, less

    frictional resistance

    to airflow

    Convenience,

    more easily

    fitted intobuilding fabric

    44

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    45/82

    Table 3.0 - Ductwork data

    45

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    46/82

    Duct conversion

    For equal velocity of flow

    For equal volume of flow

    where

    d= diameter of circular duct (mm) a= longest side of rectangular duct (mm) b= shortest side of rectangular duct (mm) 0.2= fifth root

    ba

    abd

    +=

    2

    2.03

    )(265.1

    +=

    ba

    abxd

    46

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    47/82

    Example 3 (duct conversion)

    A 450 mm diameter duct converted to rectangularprofile of aspect ratio 2 : 1 (a = 2b).

    ba

    abd

    +=

    2

    For equal velocity of flow:

    3

    4

    3

    4

    2

    22450

    2b

    b

    b

    bb

    bxbx==

    +=

    4

    4503xb = Therefore, b= 337.5 mm and a= 2b= 675 mm

    47

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    48/82

    2.03

    )(265.1

    += baabxd

    2.03

    2

    )2(265.1450

    +

    =

    bb

    bxbx

    For equal volume of flow:

    2.032

    3

    )2(265.1450

    =

    b

    bx

    From this, b= 292 mm and a= 2b= 584 mm

    48

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    49/82

    Duct conversion using conversion chart (simpler

    but less accurate)

    Circular to rectangular ductwork conversion chart

    49

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    50/82

    Noise control

    Sound attenuation

    50

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    51/82

    Table 4.0 - Recommended maximum ducted air velocities

    and resistance for accepted levels of noise

    51

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    52/82

    Volume &

    direction control

    Air movement control

    52

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    53/82

    Fire dampers

    Fire dampers

    53

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    54/82

    Diffusers

    Grills &

    diffusers

    54

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    55/82

    Diffusers

    airflowpatterns

    55

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    56/82

    Coanda effect created by restricted air and pressure at the adjacent

    surface due to limited access for air to replace the entrained air above

    the plume

    56

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    57/82

    Suspended ceilings as plenum chambers

    57

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    58/82

    SYSTEMS

    Mechanical ventilation systems

    Mechanical extract/natural supply

    Mechanical supply/natural supply

    Combined mechanical extract &supply

    58

    Mechanical extract/natural

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    59/82

    Mechanical extract/natural

    supply

    Extract ventilation to a commercial kitchen

    59

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    60/82

    Extract ventilation to a lecture theatre

    60

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    61/82

    Application of shunt ducts to a block of flats

    61

    Mechanical supply/natural

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    62/82

    Mechanical supply/natural

    supply

    Plenum ventilation

    system

    62

    Combined mechanical

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    63/82

    Combined mechanical

    extract & supply

    Combined mechanical extract and supply

    63

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    64/82

    VENTILATION DESIGN

    Three methods of designing ductwork and fan:

    Equal velocity method the designer selects the same air velocity for use

    through out the system

    Velocity reduction method

    the designer selects variable velocities appropriateto each section or branch of ductwork

    Equal friction method

    the air velocity in the main duct is selected and thesize and friction determined from a design chart. The

    same frictional resistance is used for all othersections of ductwork

    64

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    65/82

    Duct design chart

    65

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    66/82

    Example 4 (ventilation design calculation)

    Q, air volume flow rate (m3/s) = Room volume x air changes per hour

    Time in seconds

    66

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    67/82

    Given

    Room volume = 480 m3

    Air changes per hour = 6

    Therefore

    smx

    Q /8.03600

    6480 3==

    67

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    68/82

    Equal velocity method

    Air velocity throughout the system (duct A &

    duct B) = 5 m/s (selected based on Table4.0)

    Q, the quantity of air = 0.4 m3/s is equally

    extracted through grille Duct A will convey 0.8 m3/s; duct B will

    convey 0.4 m3/s

    68

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    69/82

    (0.8 m3/s)

    0.4 m3/s 0.4 m3/s

    (0.4 m3/s)

    69

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    70/82

    320

    450

    A

    B

    From the design chart: Duct A = 450 mm

    Duct B = 320 mm

    70

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    71/82

    From duct design

    chart (equal

    velocity method)

    71

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    72/82

    The fan rating relates to the frictional resistance obtained

    in N/m2

    orPaper unit length of ductwork

    From the design chart

    Duct A = 0.65 Pax 5 m effective duct length = 3.25 PaDuct B = 1.00 Pax 10 m effective duct length = 10.00 Pa

    Total = 13.25 Pa

    Therefore, the fan rating or specification is 0.8 m3/s at13.25 Pa

    Effective duct length the actual length plus additional allowances for bends, offsets, dampers, etc.

    72

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    73/82

    Velocity reduction method

    Selected air velocity in duct A = 6 m/s

    Selected air velocity in duct B = 3 m/s Q, the quantity of air = 0.4 m3/s is equally extracted

    through grille

    Duct A will convey 0.8 m3/s; duct B will convey 0.4

    m3/s

    From the design chart

    Duct A and B are both coincidentally 420 mm

    73

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    74/82

    From duct design

    chart (Velocity

    reduction method)

    74

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    75/82

    Friction in duct A = 1.00 Pax 5 m = 5.0 Pa

    Friction in duct B = 0.26 Pax 10 m = 2.6 PaTotal = 7.6 Pa

    Therefore, the fan rating or specification is 0.8 m3/s at 7.6

    Pa

    Effective duct length the actual length plus additional allowances for bends, offsets, dampers, etc.

    75

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    76/82

    Equal friction method

    Selected air velocity through duct A = 5 m/s

    Calculated airflow through duct A = 0.8 m3

    /s Calculated airflow through duct B = 0.4 m3/s

    From the chart:

    Duct A at 0.8 m3/s = 450 with a frictionalresistance of 0.65 Pa/m

    Duct B (using the same friction) at 0.4 m3/s = 350 with an air velocity of approximately 4.2 m/s

    The fan rating is 0.8 m3/s at 0.65 Pa/m x 15 m =9.75 Pa

    76

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    77/82

    From duct design

    chart (Equal friction

    method)

    77

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    78/82

    Determination of sufficient air changes

    e.g.: Library (max. velocity of 2.5 m/s with a max.

    resistance of 0.4 Pa/m length) from Table 4.0

    From the chart:

    Maximum air discharged, Q = 0.1 m3/s

    Duct size = 225 mm

    78

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    79/82

    Duct design chart

    79

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    80/82

    From

    Q = Room volume x air changes per hourTime in seconds

    and,

    Air changes per hour = Qx time secondsRoom volume

    = 0.1 x 3600

    180

    Thus, 2 changes per hour would be provided

    80

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    81/82

    REFERENCES

    Greeno, R.(1997). Building Services,

    Technology and Design. Essex:Longman.

    Hall, F. & Greeno, R. (2005). BuildingServices Handbook. Oxford: Elsevier.

    81

  • 8/2/2019 mechanicalventilation-090317230450-phpapp01

    82/82

    QUIZ

    Name 5 purposes of ventilation

    What is coanda effect?