mechanismsofaconof staphylococcal*toxins(partii)* bd

36
Mechanisms of ac-on of staphylococcal toxins (Part II) PoreForming Toxins PhenolSoluble Modulins (PSMs) Centre Interna)onal de Recherche en Infec)ologie (CIRI, Lyon, France) Thomas Henry ([email protected]) ESCMID Online Lecture Library © by author

Upload: others

Post on 10-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Mechanisms  of  ac-on  of  staphylococcal  toxins  (Part  II)    

Pore-­‐Forming  Toxins    

Phenol-­‐Soluble  Modulins  (PSMs)  

Centre  Interna)onal  de  Recherche  en  Infec)ologie  (CIRI,  Lyon,  France)  Thomas  Henry  ([email protected])    

ESCMID Online Lecture Library

© by author

Page 2: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Staphylococcus  aureus  and  its  arsenal  of  ly-c  factors  

PFTs: e.g. α-­‐hemolysin

Panton-­‐Valen)ne  Leukocidin  (PVL)

Phenol-­‐Soluble  Modulins  (PSMs)

β-­‐hemolysin  (sphingomyelinase)

Vandenesch F et al. 2012, FrontiersGaldiero S et al, Science 2004Wang R et al, Nat Med 2007

ESCMID Online Lecture Library

© by author

Page 3: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  defini-on  Short  pep)des:  ≈20  AA  for  PSM-­‐α  and  ≈40AA  for  PSM-­‐βα-­‐type:  PSMα1-­‐4,  δ-­‐toxin  (encoded  in  RNAIII)  ,  PSM-­‐mec  (encoded  in  a  methicillin  resistant  cassePe)  β-­‐type:  PSMβ1,  β2  

α-helical  structure    Amphipa)c:  one  face  of  the  helix  is  hydrophilic  one  face  is  hydrophobic      

Wang  R.  et  al.  Nat  Med  2007  Mehlin  C.  et  al.  JEM  1999  

ESCMID Online Lecture Library

© by author

Page 4: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  defini-on  

Short  pep)des:  ≈20  AA  for  PSM-­‐α  and  ≈40AA  for  PSM-­‐βα-helical  structure  Amphipa)c:  one  face  of  the  helix  is  hydrophilic  one  face  is  hydrophobic  

 Surfactant-­‐like  proper)es      

Peschel  A  and  OPo  M.  Nat  Rev.  Microbiol.  2014    

PSM-­‐α3  helical  wheel  projec)on  

ESCMID Online Lecture Library

© by author

Page 5: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  ly-c  pep-des  wo  receptors  

Laabei  M  et  al.  BBA  2014  

Synthe)c  vesicles  

ESCMID Online Lecture Library

© by author

Page 6: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  ly-c  pep-des  wo  receptors  

Laabei  M  et  al.  BBA  2014  

Synthe)c  vesicles   T  cells  

Wang  R  et  al.  Nat  Med  07  

ESCMID Online Lecture Library

© by author

Page 7: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  ac-ng  from  within  the  phagosomes?  

Surewaard  BGB  et  al.  PlosPath  2012    

Liproteins  inac)vate  PSMs  

ESCMID Online Lecture Library

© by author

Page 8: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  ac-ng  from  within  the  phagosomes?  

Surewaard  BGB  et  al.  PlosPath  2012    

Liproteins  inac)vate  PSMs  

Surewaard  BGB  et  al.  CellMicro  2013  promoter  PSMα::GFP  

Neutrophil  killing  assay  

Post-­‐phagocytosis  ESCMID Online Lectu

re Library

© by author

Page 9: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  Mode  of  secre-on  and  therapeu-c  target  

Secre-on  by  an  ABC  transporter  

Red:  ATPases  Purple:  Membrane  Prot  

ChaPerjee  SS  et  al.  Nat.  Med  13    

ESCMID Online Lecture Library

© by author

Page 10: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  Potent  pro-­‐inflammatory  signals  (FpR2  ac-va-on)  

Kretschmer  D  et  al.  CHM  10    

ESCMID Online Lecture Library

© by author

Page 11: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Phenol  Soluble  Modulins  (PSMs):  required  for  virulence  

Wang  R  et  al.  Nat  Med  07  

ESCMID Online Lecture Library

© by author

Page 12: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Peschel  A.  and  OPo  M.  ,  Nat  Rev  Microbiol.  2013  

Phenol  Soluble  Modulins  (PSMs):  Virulence  factors  but  not  only!  

ESCMID Online Lecture Library

© by author

Page 13: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Staphylococcus  aureus  and  its  arsenal  of  ly-c  factors:  PFTs  

PFTs: e.g. α-­‐hemolysin

Panton-­‐Valen)ne  Leukocidin  (PVL)

Phenol-­‐Soluble  Modulins  (PSMs)

β-­‐hemolysin  (sphingomyelinase)

Vandenesch F et al. 2012, FrontiersGaldiero S et al, Science 2004Wang R et al, Nat Med 2007

ESCMID Online Lecture Library

© by author

Page 14: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Staphylococcus  aureus:  6  PFTs  

homoheptamer:  α-­‐hemolysin

γ-­‐hemolysin  (HlgBC)γ-­‐hemolysin  (HlgAB)

Panton-­‐Valen)ne  Leukocidin  (PVL)

LukED

Vandenesch F et al. 2012, Frontiers in cellular and Infection Microbiology

LukAB/GH

Bi-­‐components  PFTs:  hetero-­‐octamer

ESCMID Online Lecture Library

© by author

Page 15: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Staphylococcus  aureus:  6  PFTs  of  various  prevalence  

homoheptamer:  α-­‐hemolysin  ≈100%

γ-­‐hemolysin  (HlgBC)  ≈100%γ-­‐hemolysin  (HlgAB)  ≈100%

Panton-­‐Valen)ne  Leukocidin  (PVL)  3%≈100%  depending  of  the  countries

LukED≈80%

Vandenesch F et al. 2012, Frontiers in cellular and Infection MicrobiologyMcCarthy AJ et al. 2013, Infection, Genetics and Evolution

LukAB/GH≈100%

Bi-­‐components  PFTs:  hetero-­‐octamer

ESCMID Online Lecture Library

© by author

Page 16: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

PVL:  a  bi-­‐component  leukocidin  targe-ng  specifically  phagocytes  

•  Hetero-­‐octamer  β-­‐barrel  pore  forming  toxin.  

 

Miles G et al.JBC. 2006

ESCMID Online Lecture Library

© by author

Page 17: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

15 years old

70 years old

The  Panton  Valen-ne  Leukocidin:  a  leukocidin  associated  with  severe  infec-ons  

•  Pro-­‐phage  encoded-­‐toxin  present  in  3  to  >90%  of  the  clinical  strains    –  Associated  with  severe  diseases  (necro)zing  pneumonia,  furuncles)  

–  Over-­‐represented  in  CA-­‐MRSA  (present  in  clone  USA300  highly  prevalent  in  the  USA)  Panton  PN  et  al.  Lancet  1932  Lina  G  et  al.  CID  1999  Gillet  Y  et  al.,  The  Lancet  2002  

Death of patients Severe S.aureus pneumonia

ESCMID Online Lecture Library

© by author

Page 18: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

The  Panton  Valen-ne  Leukocidin:  a  human  specific  leukocidin  

Loffler  B  et  al.  PLoS  Path  2010  

ESCMID Online Lecture Library

© by author

Page 19: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

The  Panton  Valen-ne  Leukocidin:  lesson  from  a  rabbit  model  of  infec-on  

Diep  B  et  al,  PNAS  2010  

ESCMID Online Lecture Library

© by author

Page 20: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

The  Panton  Valen-ne  Leukocidin:  lesson  from  a  rabbit  model  of  infec-on  

Diep  B  et  al,  PNAS  2010  

ESCMID Online Lecture Library

© by author

Page 21: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Current  model  to  explain  the  role  of  PVL  in  inflamma-on  

Diep  B  et  al,  PNAS  2010  Perret  M  et  al,  Cell  Micro  2012  

IL-­‐1β  

IL-­‐1β  

ESCMID Online Lecture Library

© by author

Page 22: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

The  Panton  Valen-ne  Leukocidin:  Iden-fica-on  of  the  host  receptor  

X  •  56  receptors,  leukocytes  •  An)body  binding  inhibi)on  assay  

LukS-­‐PV  interacts  with    Human  C5a  Receptor  

Spaan  et  al.  CHM  2012  

ESCMID Online Lecture Library

© by author

Page 23: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

The  Panton  Valen-ne  Leukocidin:  LukS-­‐PV  Binds  C5a  Receptors  

Human  C5a  receptor  (CD88)  n  G-­‐protein  coupled  receptor  

C5a  

C5a  

C5a  

ESCMID Online Lecture Library

© by author

Page 24: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

PVL  Targets  C5a  Receptors   PI  

PVL  induced  pore    forma)on  is  mediated    by  C5aR  

ESCMID Online Lecture Library

© by author

Page 25: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

PVL  Targets  C5a  Receptors   PI  

PVL  induced  pore    forma)on  is  mediated    by  C5aR  

ESCMID Online Lecture Library

© by author

Page 26: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

C5aR  expression  level  determines  PVL  Cell  Specificity  

C5aR  is  most  abundantly    expressed  on  neutrophils  and  monocytes  but  not    on  lymphocytes  

ESCMID Online Lecture Library

© by author

Page 27: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

C5aR  Determines  PVL  Species  Specificity  

C5aR  mediated  suscep)bility  is  in  line  with  suscep)bility  of  primary  cells  

J  Infect  Dis  (2009);  PLoS  Pathog  (2010).  Spaan  A.  et  al,  CHM  2013  

ESCMID Online Lecture Library

© by author

Page 28: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Leukocidin  Myeloid  Host  Counterparts-­‐Progressing  beyond  redondancy  

HlgCB

LukAB

HlgAB

LukED PVL

C5aR

C5L2

CCR5

CXCR1

CXCR2

CCR2

CD11b

a              n  All  receptor  are  myeloid-­‐specific  n  They  define  both  the  cell  and  the  species  specifici)es  n  Mostly  extracellular  but  intracellular  ac)on  for  LukAB  n  Subly)c  roles  to  be  determined.  Cell  Host  Microbe  (2013);  Nature  (2013);  Proc  Natl  Acad  Sci  USA  (2013);    Cell  Host  Microbe  (2014);  Nat  Commun  (2014).  

ESCMID Online Lecture Library

© by author

Page 29: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Therapies  targe-ng  PFTs-­‐1:  An-bio-c  

Dumitrescu  O.  et  al  CMI  2008  

ESCMID Online Lecture Library

© by author

Page 30: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Therapies  targe-ng  PFTs-­‐1:  An-bio-c  

Dumitrescu  O.  et  al  CMI  2008  Dumitrescu  O.  et  al  AAC  2011  

Oxacillin  

PB1  

sarA  +  rot  

LukS/F-­‐PV  induc)on  

ESCMID Online Lecture Library

© by author

Page 31: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Therapies  targe-ng  PFTs-­‐2:  Monoclonal  an-bodies  

i.n.    Ab  24h  BI  

i.v.    Ab  24h  BI  

i.v.    Ab  2h  PI  

Rouha  H  et  al.  mAbs  2014  

ESCMID Online Lecture Library

© by author

Page 32: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

Staphylococcus  aureus  and  its  arsenal  of  ly-c  factors  New  therapeu-c  targets  &  open  ques-ons  

PFTs: e.g. α-­‐hemolysin

Panton-­‐Valen)ne  Leukocidin  (PVL)

Phenol-­‐Soluble  Modulins  (PSMs)

β-­‐hemolysin  (sphingomyelinase)

Vandenesch F et al. 2012, FrontiersGaldiero S et al, Science 2004Wang R et al, Nat Med 2007

ESCMID Online Lecture Library

© by author

Page 33: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

DARC  n  Duffy  An)gen  Receptor    of  Chemokines  

n  7-­‐Transmembrane  receptor  n  Related  to  CXCR1/2  n  Binds  CXCL8  

n  Erythrocytes  n Duffy  blood  groups  n P.  vivax  entry-­‐receptor  

Nat  Genet  (1995);  Nat  Immunol  (2009).  

Amino acids critical for the binding of CXCL-8As shown above, quantitative flow cytometric analysisusing three different anti-Fy mAbs as well as immunopre-cipitation experiments indicated that sufficient cell surfaceexpression of DARC protein was achieved on all recombin-ant cells, enabling the testing of CXCL-8 binding. K562-transfected cells were incubated for 1 h with 125I-labelledCXCL-8 (0Æ5 nmol/l), and the specific cell-associated radio-activity was measured as described in Materials andmethods. Results were adjusted to take into account therelative surface expression of the different DARC mutants.As shown in Fig 4, 30 out of the 39 alanine substitutionshad no or moderate effect on chemokine-binding capacity ofmutant cells with a residual binding capacity above 40%that of wild-type DARC. Nine other mutants exhibited adrastic reduction in CXCL-8 binding capacity (Fig 4).Alanine substitution of F22–E23 and P50 located in theECD1, of D263, R267 and D283 located in the ECD4 as wellas mutation of C51, C129, C195 and C276 located in ECD1,ECD2, ECD3 and ECD4, respectively, abrogated CXCL-8binding (at least 85% reduction compared with wild type). It

is assumed that these four cysteine residues are involved indisulphide bridges as these mutations also impaired thebinding of anti-Fy3, which recognizes amino acids presentin three ECDs (Table I). Of note, mutation of cysteine C54had no effect on anti-Fy binding (Table I) or CXCL-8 binding(Fig 4). Q19 and L20 were also mutated because theybelong to the QLDFEDV epitope, recognized by the i3A mAb(Wasniowska et al, 2000a), another anti-Fy6 mAb, which,like 2C3, is an antagonist of CXCL-8 binding (Tournamilleet al, 1997). As shown in Fig 4, these mutations did notalter CXCL-8 binding. Finally, in preliminary experiments,we found that the binding of CC chemokine ligand 5 (CCL5;RANTES) was not affected by mutations that severelyaltered the binding of CXCL-8 (data not shown).

N-glycosylation status of DARC and ligand bindingto transfected cellsAsparagines at positions 16 and 27 were individuallymutated to disrupt the two potential N-glycosylation sites(N16-SS and N27-SS) of DARC. To analyse the consequenceof these mutations on the N-glycosylation status of DARC,

Fig 2. Schematic representation of DARC showing the amino acid residues that are critical for anti-Fy mAbs and CXCL-8 binding. Role ofmutated residues present in the extracellular domains (ECDs): black, critical for CXCL-8 binding; grey, not involved in the CXCL-8 binding site.Residues critical for Fya and Fy6 epitopes, recognized by the 655 and 2C3 mAbs, respectively, are depicted according to our presentmutagenesis analysis and differ slightly from those characterized previously by PEPSCAN analysis (Wasniowska et al, 2000b, 2002). Starshighlight the amino acid residues participating in the Fy3 epitope recognized by the CRC-512 anti-Fy3 mAb. Putative disulphide bridges (C51–C276 and C129–C195) are indicated by broken arrows.

1018 C. Tournamille et al

! 2003 Blackwell Publishing Ltd, British Journal of Haematology 122: 1014–1023

Duffy  Fya  Fyb  Fyweak  Fynull  ESCMID Online Lecture Library

© by author

Page 34: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

n  DARC  expression  is    required  and  sufficient  for  hemolysis  by  both    HlgAB  and  LukED  

DARC  is  the  Erythroid  Leukocidin  Receptor  

Fyb+/b+

Fya-/b

-

Fyb+w

eak /Fyb

+wea

k

Fyb+w

eak /Fyb

-

102

103

104 DARC

Rec

epto

r num

ber

B

D

C D

1 10 1000

20

40

60

80

100Fy a+/b+Fy a+/a+Fy a+/b+weak

Fy b+/b+Fy b+weak/Fy b+weak

Fy b+weak/Fy b-Fy a-/b-

Concentration HlgAB (nM)

% H

emol

ysis

Cell  Host  Microbe  (2015).  

E F

1 10 100 10000

20

40

60

80

100Fy a+/b+Fy a+/b-Fy a-/b+

Fy a-/b-

Fy b+weak/Fy b+weak

Fy b+weak/Fy b-

Concentration LukED (nM)

% H

emol

ysis

ESCMID Online Lecture Library

© by author

Page 35: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

n  Hemolysis  during  bacterial    growth  is  mediated  by    leukocidins  and  DARC  

Hemolysis  by  S.  aureus  

Cell  Host  Microbe  (2015).  

DARC+

DARC+ DARC-

DARC-

USA300 LAC WT USA300 LAC WT

B

A

Figure S4 (Related to Figure 4). S. aureus lyses erythrocytes in a γ-hemolysin and DARC dependent manner.(A) Bacteria were grown in the presence of erythrocytes from donors with or without erythroid expression of DARC. Microscopic images of S. aureus strain USA300 clone LAC and its isogen-ic hlgA mutant strain (hlgA::bursa) grown overnight show depletion of erythrocytes in a DARC and hlgA dependent manner. Pictures show representative samples, with infectious dose set at 1x106 CFU per sample. (B) Bacteria were grown in the presence of erythrocytes from donors with or without erythroid expression of DARC. Hemolysis induced overnight during growth of S. aureus strain USA300 clone SF8300, strain Newman, strain V8, and their respective hlgACB mutant isogenic strains (inoculation set at 1x106 CFU per sample). Hemolysis is expressed as OD405 nm of the super-natant. Bars indicate SEM, with n = 2. (C) Immunoblot analyses of filtered culture supernatants of S. aureus strains Newman wild type (WT) and isogenic mutants Δhla, ΔhlgΔlukED and ΔisdBH against LukA, Hla, LukD, and HlgC antisera. Immunoblots are representative of two individual isolates per strain.

USA300 LAC ΔhlgAUSA300 LAC ΔhlgA

C

0.0

0.5

1.0

1.5

2.0

WThlgACB

DARC+

USA300-SF8300

DARC-

OD

405

nm

0.0

0.5

1.0

1.5

2.0

WThlgACB

DARC+

Newman

DARC-

0.0

0.5

1.0

1.5

2.0

WThlgACB

DARC+

V8

DARC-

WT ΔhlaΔhlg

ΔlukEDΔisdBHAnti-LukA

Anti-Hla

Anti-LukD

Anti-HlgC

*

*

for initial binding of LukS-PV (Spaan et al., 2013a). Possibly,sulfated N-terminal tyrosines define a conserved host interactionsite for the staphylococcal leukocidins. Otherwise, our datashow that HlgAB and LukED interact differentially with DARC.An N-terminal cysteine (C51) identified as involved in the interac-tion of DARCwith LukED is also involved in bindingCXCL8 (Tour-namille et al., 2003), supporting the notion that this chemokinedirectly blocks receptor binding by LukE.

The genes encoding HlgAB are present in over 99.5% of hu-man S. aureus isolates (Prevost et al., 1995). Strictly followingclonal lineage, approximately 80% of S. aureus strains carrythe genes encoding LukED (McCarthy and Lindsay, 2013). TheS. aureus strains investigated in this study all contain the genesencoding HlgAB and LukED, thus demonstrating that S. aureus-mediated hemolysis requires DARC and these leukocidins.

S. aureus is remarkably well adapted to the human host, thusmultiple virulence factors of this bacterium are not compatiblewith non-human species frequently used during in vivo studies.One such factor is the staphylococcal hemoglobin receptorIsdB, which exhibits low affinity for murine hemoglobin ascompared to human hemoglobin (Pishchany et al., 2010). Never-theless, our in vivo studies revealed a remarkable similarity in thephenotypes of isogenic mutants lacking either the hemoglobinreceptors or the hemolytic leukocidins, suggesting that thesetoxins contribute to nutrient acquisition during infection. How-ever, to unequivocally demonstrate that the attenuated pheno-type exhibited by theDhlgDlukED strain is due to impaired eryth-rocyte lysis, additional studies uncoupling the leukocidal andhemolytic activities of HlgAB and LukED are required.

The current epidemic of CA-MRSA in the United States andelsewhere disproportionally affects individuals of African

descent with severe and invasive infections (Fridkin et al.,2005). Socio-economic factors and other underlying diseaseslikely contribute to this predisposition, precluding epidemiolog-ical assessment of the contribution of erythroid DARCexpression to S. aureus infection. However, the resistance ofDARC negative erythrocytes to the parasites P. vivax andP. knowlesi, together with our findings, further support thenotion that this gene could undergo positive selection inresponse to different diseases caused by important humanpathogens.

EXPERIMENTAL PROCEDURES

Ethics StatementDARC blood samples were provided by the Centre National de Reference sur

les Groupes Sanguins (CNRGS, Paris). Additional blood samples of consent-

ing, healthy volunteers were obtained in accordance with the Declaration of

Helsinki. Approval was obtained from the medical ethics committee of the

UMC Utrecht, The Netherlands. Blood was also obtained from de-identified,

consenting donors from the New York Blood Center.

All experiments involving animals were reviewed and approved by the Insti-

tutional Animal Care andUseCommittee of New York University and were per-

formed according to NIH guidelines, the Animal Welfare Act, and US Federal

law.

Hemolysis Assays with Recombinant ToxinsErythrocytes were washed thrice in 0.9% saline, adjusted to 5 3 107 cells/ml,

and then intoxicated at a final of 2.5 3 107 cells/ml per reaction with purified

recombinant toxins for 30 min at 37!C + 5% CO2 in a final volume of 160 ml.

Equimolar concentrations of 6xHis-tagged proteins were used. Samples

were centrifuged for 10 min at 1,780 3 g, 4!C, and 100 ml of cell-free lysates

were used to measure absorbance (OD405 nm). Hemolysis is expressed as

the OD405 nm of cell-free lysates using an EnVision Plate Reader. The hemo-

lysis experiments with recombinant proteins were performed using buffer

A B

C D

Figure 4. S. aureus Lyses Erythrocytes in aHlgAB-, LukED-, and DARC-DependentManner to Release Iron and Promote Growth(A) S. aureusUSA300 LAC grown in the presence of

erythrocytes from donors with or without erythroid

expression of DARC and hemolysis measured.

Curves depict a representative sample.

(B) Hemolysis induced during overnight growth of

S. aureus strain USA300 LAC and its hlgA mutant

(hlgA::bursa) strain (infectious dose set at 1 3 106

CFU per sample). n = 3 ± SEM.

(C) Growth after 20 hr of S. aureus strains Newman

WT or isogenic DisdBH as a result of erythrocyte

lysis by LukED and HlgAB in iron-restricted me-

dium. n = 9 ± SEM. Statistical significance is dis-

played as ns (not significant), *p < 0.05, **p < 0.01,

and ****p < 0.0001 using one-way ANOVA with

Tukey’s post hoc test correction for multiple com-

parisons. Bacterial growth was measured at

OD600 nm.

(D) Swiss-Webster female mice (n = 10 mice per

group) infected systemicallywithS. aureusNewman

isogenicstrains:WT,DhlgDlukED,Dhla, andDisdBH

("1 3 107 colony forming units, CFU). 96 hr post

infection, mice were sacrificed and bacterial burden

in the liver determined. Lines represent median log

CFU. Statistical significance is displayed as ns (not

significant), *p < 0.05, **p < 0.01, and ****p < 0.0001

using one-way ANOVA with Tukey’s post hoc test

correction for multiple comparisons.

See also Figure S4.

CHOM 1319

6 Cell Host & Microbe 18, 1–8, September 9, 2015 ª2015 Elsevier Inc.

Please cite this article in press as: Spaan et al., Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Eryth-rocytes, Cell Host & Microbe (2015), http://dx.doi.org/10.1016/j.chom.2015.08.001

ESCMID Online Lecture Library

© by author

Page 36: Mechanismsofaconof staphylococcal*toxins(PartII)* BD

DARC  targe-ng  provides  S.  aureus  with  iron  in  the  host  

Modèle  murin  

Spaan  et  al.  Cell  Host  Microbes  2015  

ESCMID Online Lecture Library

© by author