media.nature.com · web viewlu wang,1 yue dong,2 yan zhang,1 zheye zhang,1 kai chi,1 hao yuan,1...

24
Supplemental material PtAu alloy nanoflowers on 3D porous ionic liquid functionalized graphene wrapped activated carbon fiber as flexible microelectrode for near-cell detection of cancer Lu Wang, 1 Yue Dong, 2 Yan Zhang, 1 Zheye Zhang, 1 Kai Chi, 1 Hao Yuan, 1 Anshun Zhao, 1 Jinghua Ren, 3 Fei Xiao, 1 and Shuai Wang 1 1 Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China 2 Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics & Molecular Imaging Key Laboratory,

Upload: ngokiet

Post on 11-Apr-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Supplemental material

PtAu alloy nanoflowers on 3D porous ionic liquid functionalized

graphene wrapped activated carbon fiber as flexible

microelectrode for near-cell detection of cancer

Lu Wang,1 Yue Dong,2 Yan Zhang,1 Zheye Zhang,1 Kai Chi,1 Hao Yuan,1 Anshun

Zhao,1 Jinghua Ren,3 Fei Xiao,1 and Shuai Wang1

1 Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry

of Education, School of Chemistry and Chemical Engineering, Huazhong University

of Science & Technology, Wuhan 430074, China

2 Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for

Optoelectronics–Hubei Bioinformatics & Molecular Imaging Key Laboratory,

Systems Biology Theme, Department of Biomedical Engineering, College of Life

Science and Technology, Huazhong University of Science & Technology, Wuhan

430074, China

3Union Hospital, Tongji Medical College, Huazhong University of Science &

Technology, Wuhan 430022, China

Correspondence: Professor F. Xiao, Professor S. Wang, School of Chemistry and

Chemical Engineering, Huazhong University of Science and Technology, Wuhan,

430074, China. E-mail: [email protected]; [email protected]

Figure S1 SEM images of (a) and (b) CF, (c) and (d) ACF with different

magnification.

Figure S2 SEM images of IL–ERGO/ACF prepared by electrodeposing GO on ACF in IL

electrolyte. The concentration of GO in IL is (a) 0.5 mg mL-1 and (b) 1.0 mg mL-1.

Figure S3 XRD of IL–ERGO/ACF and GO samples.

Figure S4 EDX of PtAu/IL–ERGO/ACF.

Figure S5 SEM images of PtAu/ACF with different magnification.

Figure S6 CV curves of bare ACF, IL–ERGO/ACF, Au/IL–ERGO/ACF, Pt/IL–

ERGO/ACF and PtAu/IL–ERGO/ACF microelectrodes in 0.1 M KCl solution

containing 1.0 mM K3Fe(CN)6 and 1.0 mM K4Fe(CN)6. Scan rate: 10 mV s-1.

Figure S7 Effects of bending states on the current responses of 0.5 mM H2O2 for

PtAu/IL–ERGO/ACF microelectrode. (a) Bending inward to different angles. (b)

Repetitive bending to 180o for different number of times. (c) Being bending inward to

angle of 180° for different days.

Figure S8 Current responses of one PtAu/IL–ERGO/ACF microelectrode to 0.5 mM

H2O2 with (a) different storage time and (b) different number of times for repetitive

testing.

Figure S9 Current responses of one PtAu/IL–ERGO/ACF microelectrode for in-situ

detection of H2O2 in 10 different testing solutions with the same number of cells.

Table S1 The analytical performances of various nanomaterials based electrochemical

sensors for detecting H2O2 (Ref. is the selected references from 2015 to date).

Electrode materialsDetection

limit (μM)

Linear range

(mM)

Sensitivity

(μA mM-1 cm-2)Ref.

PtAu/IL–ERGO/

ACF1.0 0.001~19.94 118

This

work

Sr0.85Ce0.15FeO3

perovskite10 0.01 ~0.5 60 1

palladium

nanoparticle-bilayer

graphene hybrid

1.5 0.004~13.5 115.1 2

flexible, transparent

Ag nanowire

electrode electrodes

460.2 ~1.5

1.7 ~3.4

749

16403

3D micro-

snowflake

structured α-Fe2O3

10 0.1 ~5.5 7.16 4

Pt modified CF 44 0.044 ~12.30 - 5

MoS2 flowers on

graphene/carbon

nanotubes

0.83 0.005 ~0.145 5.184 6

Nafion/Nanoporous

Cu–carbon black1.2 0.003 ~2.238 3.914 7

CVD-grown

graphene with Au

nanoparticles

1.8 0.002~5 - 8

dendrimer-

encapsulated Pt

nanoparticle carbon

nanotube composite

50 0.05 ~8 mM - 9

3D graphene foam

loaded

NixCo2x(OH)6x

nanoflakes

10 up to 37.4 23.66 10

Mimetic

biomembrane–

AuNPs–graphene

hybrid

2.6 0.02 ~0.28 243.7 11

PDA-graphene/Ag

nanoparticles2.07 0.5 ~8 11.1 12

Ag nanoparticle–

carbon nanotube–

reduced GO

1.0 0.01~10 - 13

Pt@UiO-66

heterostructures3.06 0.005 ~14.75 75.33 14

Co phthalocyanine 60 0.1 ~12 14.5 15

tetracarboxylic acid

modified graphene

Fe3O4 nanoparticles

/GO–polyamido

amine dendrimer

2.0 0.02 ~1 1.385 16

Cu based metal–

organic

framework–

graphene

2.0 0.01 ~11.18 57.73 17

MnO2 nanowires on

graphene paper10 0.1~45.4 59.0 18

Pt0.5Au0.5@C 2.4 0.007~6.5 210.3 19

References:

1. Deganello, F., Liotta, L. F., Leonardi, S. G. & Neri, G. Electrochemical properties

of Ce-doped SrFeO3 perovskites-modified electrodes towards hydrogen peroxide

oxidation. Electrochim. Acta 190, 939-947 (2016).

2. Wang, J., Sun, H. B., Pan, H. Y., Ding, Y. Y., Wan, J. G., Wang, G. H. & Han, M.

Detection of hydrogen peroxide at a palladium nanoparticle-bilayer graphene

hybrid-modified electrode. Sens. Actuat. B Chem. 230, 690-696 (2016).

3. Lee, J. H., Huynh-Nguyen, B. C., Ko, E., Kim, J. H. & Seong, G. H. Fabrication of

flexible, transparent silver nanowire electrodes for amperometric detection of

hydrogen peroxide. Sens. Actuat. B Chem. 224, 789-797 (2016)

4. Majumder, S., Saha, B., Dey, S., Mondal, R., Kumar, S. & Banerjee, S. A high

sensitive non-enzymatic hydrogen peroxide and hydrazine electrochemical sensor

based on 3D micro-snowflakes architectures of α-Fe2O3. RSC Adv. 6, 59907-59918

(2016).

5. Chen, Y., Li, Q., Jiang, H. & Wang, X. Pt modified carbon fiber microelectrode for

electrochemically catalytic reduction of hydrogen peroxide and its application in

living cell H2O2 detection. J. Electro. Chem. (2016). doi.org/10.1016/j.jelechem.

2016.06.020

6. Govindasamy, M., Mani, V., Chen, S. M., Karthik, R., Manibalan, K. &

Umamaheswari, R. MoS2 flowers grown on graphene/carbon nanotubes: a versatile

substrate for electrochemical determination of hydrogen peroxide. Int. J.

Electrochem. Sci. 11, 2954-2961 (2016).

7. Mei, L., Zhang, P., Chen, J., Chen, D., Quan, Y., Gu, N. & Cui, R. Non-enzymatic

sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified

with a nanocomposite consisting of nanoporous copper, carbon black and Nafion.

Microchimica Acta 183, 1359-1365. (2016).

8. Shown, I. & Ganguly, A. Non-covalent functionalization of CVD-grown graphene

with Au nanoparticles for electrochemical sensing application. J. Nanostruct.

Chem. 1-8 (2016).

9. Deb, A. K., Das, S. C., Saha, A., Wayu, M. B., Marksberry, M. H., Baltz, R. J., &

Chusuei, C. C. Ascorbic acid, acetaminophen, and hydrogen peroxide detection

using a dendrimer-encapsulated Pt nanoparticle carbon nanotube composite. J.

Appl. Electrochem. 46, 289-298 (2016).

10. Dong, S., Dao, A. Q., Zheng, B., Tan, Z., Fu, C., Liu, H. & Xiao, F. One-step

electrochemical synthesis of three-dimensional graphene foam loaded nickel–cobalt

hydroxides nanoflakes and its electrochemical properties. Electrochim. Acta. 152,

195-201 (2015).

11. Wang, T., Liu, J., Ren, J., Wang, J. & Wang, E. Mimetic biomembrane–AuNPs–

graphene hybrid as matrix for enzyme immobilization and bioelectrocatalysis

study. Talanta 143, 438-441 (2015).

12. Fan, Z., Lin, Q., Gong, P., Liu, B., Wang, J. & Yang, S. A new enzymatic

immobilization carrier based on graphene capsule for hydrogen peroxide

biosensors. Electrochimica Acta 151, 186-194 (2015).

13. Zhang, Y., Wang, Z., Ji, Y., Liu, S. & Zhang, T. Synthesis of Ag nanoparticle–

carbon nanotube–reduced graphene oxide hybrids for highly sensitive non-

enzymatic hydrogen peroxide detection. RSC Adv. 5, 39037-39041 (2015).

14. Xu, Z., Yang, L. & Xu, C. Pt@UiO-66 heterostructures for highly selective

detection of hydrogen peroxide with an extended linear range. Anal. Chem. 87,

3438-3444 (2015).

15. Hosu, I. S., Wang, Q., Vasilescu, A., Peteu, S. F., Raditoiu, V., Railian, S. &

Boukherroub, R. Cobalt phthalocyanine tetracarboxylic acid modified reduced

graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite

and hydrogen peroxide. RSC Adv. 5, 1474-1484 (2015).

16. Yang, X., Wang, L., Zhou, G., Sui, N., Gu, Y. & Wan, J. Electrochemical

detection of H2O2 based on Fe3O4 nanoparticles with graphene oxide and

polyamidoamine dendrimer. J. Clust. Sci. 26, 789-798 (2015).

17. Yang, J., Zhao, F. & Zeng, B. One-step synthesis of a copper-based metal–organic

framework–graphene nanocomposite with enhanced electrocatalytic activity. RSC

Adv. 5, 22060-22065 (2015).

18. Dong, S., Xi, J., Wu, Y., Liu, H., Fu, C., Liu, H. & Xiao, F. High loading MnO2

nanowires on graphene paper: facile electrochemical synthesis and use as flexible

electrode for tracking hydrogen peroxide secretion in live cells. Anal. Chimica Acta

853, 200-206 (2015).

19. Sahin, O. G. Microwave-assisted synthesis of PtAu@C based bimetallic

nanocatalysts for non-enzymatic H2O2 sensor. Electrochimica Acta 180, 873-878

(2015).