medin s . a . [email protected] institute for high energy densities, moscow, russia basko m.m

21
Research Co-ordination Meeting on Elements of Power Plant Design for Inertial Fusion Energy 4-7 November 2003 DESIGN CONCEPT OF FAST-IGNITION HEAVY ION FUSION POWER PLANT Medin S.A. [email protected] Institute for High Energy Densities, Moscow, Russia Basko M.M. [email protected] Churasov M.D. [email protected] Koshkarev D.G. [email protected] Sharkov B.Yu. [email protected] Institute for Theoretical and Experimental Physics, Moscow, Russia Orlov Yu.N. [email protected] Suslin V.M. [email protected] Keldych Institute for Applied Mathematics, Moscow, Russia Slide № 1 Medin S.A. et al

Upload: thisbe

Post on 21-Mar-2016

56 views

Category:

Documents


2 download

DESCRIPTION

Research Co-ordination Meeting on Elements of Power Plant Design for Inertial Fusion Energy 4-7 November 2003 DESIGN CONCEPT OF FAST-IGNITION HEAVY ION FUSION POWER PLANT. Medin S . A . [email protected] Institute for High Energy Densities, Moscow, Russia Basko M.M. [email protected] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Research Co-ordination Meeting onElements of Power Plant Design for Inertial Fusion Energy

4-7 November 2003DESIGN CONCEPT OF FAST-IGNITION

HEAVY ION FUSION POWER PLANT

Medin S.A. [email protected]

Institute for High Energy Densities, Moscow, Russia

Basko [email protected]

Churasov [email protected]

Koshkarev [email protected]

Sharkov B.Yu. [email protected]

Institute for Theoretical and Experimental Physics, Moscow, Russia

Orlov [email protected]

Suslin V.M. [email protected]

Keldych Institute for Applied Mathematics, Moscow, Russia

Slide № 1 Medin S.A. et al

Page 2: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

RFQRFQIS

Wideroe

Alvarez

Main linac

Pt+198 }

Pt+196 }

Pt+194 }

Pt+192 }

Pt-198 }

Pt-196 }

Pt-194 }

Pt-192 }

Storage rings

compressing

IS=ionsource

1 2 3 4 5 6 7 8

Pt+192

beam

ReactorChamber

Slide № 2 Medin S.A. et al

FIHIF Driver Scheme

Page 3: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 3 Medin S.A. et al

Beam parameters in HIF driver for fast ignition fusion

Station number

Ion energy (GeV)

RF frequency (MHz)

Bunch current (A)

Momentum

spread

(x104)

Emittance

(m)

β=v/c

1 10-4 0.04 ±300 0.3 0.0012 10-3 6.25 0.16 ±180 0.9 0.0033 10-2 12.5 0.4 ±36 0.9 0.0104 0.1 50 1 ±37 0.9 0.0335 0.2 200 4 ±75 0.95 0.0476 100 1000 230 ±2 1 0.7457 100 Single

bunch

20000 ±30 1 0.745

8 100 Single bunc

h

1600 ±20 1 0.745

Page 4: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 4 Medin S.A. et al

,Pt 198,196,194,192

HIGH POWER HEAVY ION DRIVERIons

Ion energy (GeV) 100

Hollow Compression beam

Energy (MJ) 7.1 (profiled)

Duration (ns) 75

Rotation frequency (GHz) 1

Ignition beam

Energy (MJ) 0.4

Duration (ns) 0.2

Main linac length (km) 11

Transmission line length (km) 5

Driver efficiency 0.25

,Pt 198,196,194,192

Page 5: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Cylindrical FIHIF Target

Slide № 5 Medin S.A. et al

Page 6: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

DT

Slide № 6 Medin S.A. et al

Cylindrical FIHIF Target

Page 7: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 7 Medin S.A. et al

CYLINDRICAL TARGET

DT fuel mass (g) 0.006

Total mass (g) 3.696

Length (mm) 7.1

ρR parameter (g/cm2) 0.5

Burn fraction 0.35

Gain 100

Fusion energy (MJ) 750

Energy partition

X-ray (MJ) 17

Ion debris (MJ) 187

Neutrons (MJ) 546

Page 8: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Density distribution in compressed cylindrical target for FIHIF (t=30ns)

Slide № 8 Medin S.A. et al

Page 9: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

REACTOR CHAMBER FOR FIHIF POWER PLANT

Slide № 9 Medin S.A. et al

Page 10: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

REACTOR CHAMBER CHARACTERISTICS

Fusion energy per shot (MJ) 750

Repetition rate (Hz) 2

Li/Pb atom density (cm-3) 1012

Coolant temperature (oC) 550

Explosion cavity diameter (m) 8

Number of beam penetrations 2

First wall material SiC

Coolant tubes material V-4Cr-4Ti

Energy multiplication 1.096

Slide № 10 Medin S.A. et al

Page 11: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

S.J. Zinkle11th APEX Meeting

Argonne National Laboratory, May 10-12, 2000

Page 12: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

S.J. Zinkle11th APEX Meeting

Argonne National Laboratory, May 10-12, 2000

Page 13: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

S.J. Zinkle11th APEX Meeting

Argonne National Laboratory, May 10-12, 2000

Page 14: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 14 Medin S.A. et al

Page 15: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Evaporation-condensation dynamics

Slide № 15 Medin S.A. et al

Page 16: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 16 Medin S.A. et al

Page 17: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 17 Medin S.A. et al

Material ofblanket zones

R, cm R, cm , g/cm3

M, 103 kg

Q/V,MJ/m3

Q, MJ

1. PbLi2. PbLi3. SiC/ PbLi4. PbLi5. V/10Cr/5Ti6. PbLi7. V/10Cr/5Ti8. PbLi9. V/10Cr/5Ti10. PbLi11. V/10Cr/5Ti12. PbLi13. V/10Cr/5Ti14. PbLi15. V/10Cr/5Ti16. HT-9

400,0400,1401,1411,1411,6417,6417,9423,9424,2430,2430,5436,5436,8443,0444,0450,0

4000,11100,560.360,360,360,36,216

10-9

9,35,79,35,969,35,969,35,969,35,969,35,969,35,967,9

310-6

1,8611,51192,696,31120,623,87124,244,05127,964,17131,784,29140,1514,72119,05

Total:1000

510-9

17,9213,6812,793,899,851,965,171,033,290,561,950,480,850,170,08

1,610-6

3,5827,65276,264,13127,841,2769,240,7145,460,4027,980,3413,330,441,32

Total:600

FIHIF Blanket Structure and Neutron Energy Deposition

Page 18: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 18 Medin S.A. et al

ENERGY DEPOSITION IN BLANKET MATERIALS

Page 19: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 19 Medin S.A. et al

Page 20: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 20 Medin S.A. et al

ENERGY CONVERSION SYSTEM

Primary coolant loop Li17 Pb83

Max./min. temperature (oC) 550/350

Mass flow rate (ton/s) 13.1

Pump power (MW) 11.5

Intermediate coolant loop Na

Max./min. temperature (oC) 500/300

Mass flow rate (ton/s) 6.40

Pump power (MW) 3.77

Steam cycle

Steam parameters (MPa/oC/oC) 18/470/470

Net efficiency 0.417

Power plant parameters

Net power (per 1 chamber) (MW) 670

Net efficiency 0.373

Page 21: Medin S . A .  medin@ihed.ras.ru Institute for High Energy Densities, Moscow, Russia  Basko M.M

Slide № 21 Medin S.A. et al

CONCLUSIONS

The concept of power plant for fast ignition HIF involves a number of new components and devices. High power heavy ion driver and cylindrical target look to have clear basic design. The massive target causes some redistribution of energy fluxes resulting from microexplosion. Altogether the long driver train and target positioning in flight are problems of concern.

The reactor chamber with wetted first wall has a minimum number of ports for beam injection. The composition of the reactor chamber of two sections makes easier the condensation problem and partly lessens pressure loading. The problems of coolant droplets and thermal stresses in blanket materials are of major concern in the reactor chamber.

The energy conversion system consisting of three loops is a convenient object for the plant efficiency optimization and thermal equipment development.