membrane structure and function.pptx

Upload: lio-hasse

Post on 10-Oct-2015

29 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/20/2018 Membrane Structure and Function.pptx

    1/158

    FRMACOSANTICONVULSIVANTE

    S

  • 5/20/2018 Membrane Structure and Function.pptx

    2/158

  • 5/20/2018 Membrane Structure and Function.pptx

    3/158

  • 5/20/2018 Membrane Structure and Function.pptx

    4/158

  • 5/20/2018 Membrane Structure and Function.pptx

    5/158

  • 5/20/2018 Membrane Structure and Function.pptx

    6/158

  • 5/20/2018 Membrane Structure and Function.pptx

    7/158

  • 5/20/2018 Membrane Structure and Function.pptx

    8/158

    Principios del tratamiento de laepilepsia

    Reducir la neutrotransmisin excitatoria

  • 5/20/2018 Membrane Structure and Function.pptx

    9/158

    Principios del tratamiento de laepilepsia

    Aumentar la neutrotransmisin inhibitoria

  • 5/20/2018 Membrane Structure and Function.pptx

    10/158

    Dao Neuronal

    Excitotxico

    Crisis

    Convulsivas

    Glu

    GABA

    esequilibrio Inhibicin-Excitaci

  • 5/20/2018 Membrane Structure and Function.pptx

    11/158

    E X C I T O T O X I C I D A D

    Sobre-activacin deR-Glu

    Aumento de la concentracinintracelular de Ca++

    Activacin de los ReceptoresGlutamatrgicos (R-Glu)

    Produccin de Oxido Ntrico

    Liberacin de PoliaminasEndgenas

    Liberacin deGlutamato

    Generacin deradicales libres

    Dao neuronalexcitotxico

    DaoOxidativoActivacin de la Sintasadel Oxido Ntrico

    GENERACION DE CRISIS

    CONVULSIVAS

  • 5/20/2018 Membrane Structure and Function.pptx

    12/158

  • 5/20/2018 Membrane Structure and Function.pptx

    13/158

    13

    The ionotropic GABAAreceptor

  • 5/20/2018 Membrane Structure and Function.pptx

    14/158

    14

    Subunit composition of GABAAreceptors

    Five subunits, each with four transmembranedomains (like nAChR)

    Most have two alpha (),two beta (), onegamma () subunit

    1

    2

    2is predominant in mammalian brain butthere are different combinations in specificbrain regions

  • 5/20/2018 Membrane Structure and Function.pptx

    15/158

    SINAPSIS GABAERGICA

  • 5/20/2018 Membrane Structure and Function.pptx

    16/158

    Sntesis de GABA

  • 5/20/2018 Membrane Structure and Function.pptx

    17/158

  • 5/20/2018 Membrane Structure and Function.pptx

    18/158

  • 5/20/2018 Membrane Structure and Function.pptx

    19/158

    DETERMINANTE?

  • 5/20/2018 Membrane Structure and Function.pptx

    20/158

  • 5/20/2018 Membrane Structure and Function.pptx

    21/158

    21

    Pharmacology of the GABAAreceptor

  • 5/20/2018 Membrane Structure and Function.pptx

    22/158

    GABAAreceptor pharmacology

    There are two GABA binding sites per receptor.

    Benzodiazepines and the newer hypnotic drugs bindto allosteric sites on the receptor to potentiate

    GABA mediated channel opening.

    Babiturates act at a distinct allosteric site to alsopotentiate GABA inhibition.

    These drugs act as CNS depressants

    Picrotoxin blocks the GABA-gated chloride channel

  • 5/20/2018 Membrane Structure and Function.pptx

    23/158

    23

  • 5/20/2018 Membrane Structure and Function.pptx

    24/158

  • 5/20/2018 Membrane Structure and Function.pptx

    25/158

    GABAAreceptor involvement in seizuredisorders

    Loss of GABA-ergic transmission contributes toexcessive excitability and impulse spread in epilepsy.

    Picrotoxin and bicuculline ( GABA receptor blocker)

    inhibit GABAAreceptor function and are convulsants.

    BDZs and barbiturates increase GABAAreceptorfunction and are anticonvulsants.

    Drugs that block GABA reuptake (GAT) andmetabolism ( GABA-T) to increase available GABA areanticonvulsants

  • 5/20/2018 Membrane Structure and Function.pptx

    26/158

  • 5/20/2018 Membrane Structure and Function.pptx

    27/158

    27

  • 5/20/2018 Membrane Structure and Function.pptx

    28/158

    Glycine as an inhibitory CNS neurotransmitter

    Major role is in the spinal cord

    Glycine receptor is an ionotropic chloride

    channel analagous to the GABAAreceptor.

    Strychnine, a competitive antagonist ofglycine, removes spinal inhibition to skeletal

    muscle and induces a violent motor response.

  • 5/20/2018 Membrane Structure and Function.pptx

    29/158

    29

    Glutamate as a CNSneurotransmitter

  • 5/20/2018 Membrane Structure and Function.pptx

    30/158

    Glutamate and Aspartate

  • 5/20/2018 Membrane Structure and Function.pptx

    31/158

    Glutamate

    Neurotransmitter at 75-80% of CNSsynapses

    Synthesized within the brain from Glucose (via KREBS cycle/-ketoglutarate) Glutamine (from glial cells)

    Actions terminated by uptake throughexcitatory amino acid transporters (EAATs)inneurons and astrocytes

  • 5/20/2018 Membrane Structure and Function.pptx

    32/158

    32

    NH2CHCH2CH2- COOHCOOH

    Glutamate Synthesis

    Glutamate

    -ketoglutarate

    Glutamine (from glia)

    transaminases

  • 5/20/2018 Membrane Structure and Function.pptx

    33/158

    Learning objects

    Describe the process of glutamate synthesis,storage, and metabolism as well as the roles ofneurons and glial cells.

    Differentiate the types of glutamate receptorsand their physiological function

    Define excitatory neurotoxicity

    Define the role of glutamate receptors in

    learning and memory

    E l t f l t t ti i

  • 5/20/2018 Membrane Structure and Function.pptx

    34/158

    Early reports of glutamate action in

    the CNS

    Effects of sodium glutamate on the centralnervous system

    MSG (monosodium glutamate), may causedizziness and numbness

    Crayfish neuromuscular junction, crustaceans

    and insects Electrophysiological response: application of

    glutamatenerve cell depolarized

  • 5/20/2018 Membrane Structure and Function.pptx

    35/158

  • 5/20/2018 Membrane Structure and Function.pptx

    36/158

  • 5/20/2018 Membrane Structure and Function.pptx

    37/158

    Glutamate synthesis

  • 5/20/2018 Membrane Structure and Function.pptx

    38/158

    Glutamine transporter

    Gln is released from astrocytes via system N

    transporters (SN1) and taken up by neurons

    through sodium-coupled amino acid

    transporters (SAT).

  • 5/20/2018 Membrane Structure and Function.pptx

    39/158

    Glutaminase

    TCA cycle

  • 5/20/2018 Membrane Structure and Function.pptx

    40/158

    Vesicular Glutamate Transporter

    glutamateuptake into synaptic vesicles and aredriven by a proton electrochemicalgradientgenerated by the vacuolar H+-ATPase

    three structurally related vesicular transporters(VGLUT13 ) are expressed in the brain with partialoverlapping expression patterns.

    VGLUT1 predominates in the cortex, whereasVGLUT2 is highly expressed in the diencephalonand brainstem, and VGLUT3 functions as a co-transmitter transporter in a variety of non-glutamatergic neurons

  • 5/20/2018 Membrane Structure and Function.pptx

    41/158

  • 5/20/2018 Membrane Structure and Function.pptx

    42/158

  • 5/20/2018 Membrane Structure and Function.pptx

    43/158

    Glutamate

  • 5/20/2018 Membrane Structure and Function.pptx

    44/158

    Receptor NMDA

    44

  • 5/20/2018 Membrane Structure and Function.pptx

    45/158

    NMDA receptor

  • 5/20/2018 Membrane Structure and Function.pptx

    46/158

    Ionotropic Glutamate Receptors

    NMDA

    AMPA KAINATE

    Non-NMDA

    AMPA and Kainatereceptors generallyallow the passage of

    Na+and K+

    NMDA receptors allowsthe passage of both Na+

    and Ca++ions. More

    permeable to Ca++

    Ligand-gated ion channels

    http://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeghttp://rds.yahoo.com/S=96062883/K=glutamate+receptors/v=2/l=IVI/*-http:/webvision.med.utah.edu/imageswv/GLU6.jpeg
  • 5/20/2018 Membrane Structure and Function.pptx

    47/158

    AMPA ReceptorsAMPA Rc subunit

    Encoded by four genes:

    GluR1-485-90% of the AMPA receptorshave a GluR2 subunit, whichis Ca++-impermeable (afterRNA editing - replacement of

    Arg for Gln in the membranesegment 2)

    Combination of four subunits form Receptor

    subtypes-homo/heterotetramers

    N-terminal domain

    C-terminal domain(variable region-mediates interactions with proteins)

    4 hydrophobic membrane domains

    Postsynaptic location - mediation of the

    majority of the fast excitatory synaptic

    transmission

    Int

    Ext

    C l i (C ++) bilit f AMPA

  • 5/20/2018 Membrane Structure and Function.pptx

    48/158

    48

    Calcium (Ca++) permeability of AMPA vsNMDA receptors

    It is the GluR2 subunit that makes mostAMPA receptors Ca++impermeant

    The GluR2 subunit contains one amino acidsubstitution : arginine (R) versus glutamine

    (Q) in all other GluRs

  • 5/20/2018 Membrane Structure and Function.pptx

    49/158

    RNA editing of GluR subunits

    Functional Effects of Multiple Gene Products for iGluRs:Th Gl R2 S b it D t i C 2+ P bilit

  • 5/20/2018 Membrane Structure and Function.pptx

    50/158

    External Solution:

    The GluR2 Subunit Determines Ca2+Permeability

    Na+ Ca2+ Na+ Ca2+

  • 5/20/2018 Membrane Structure and Function.pptx

    51/158

    Ad apted from Kandel et al, Fig 12.11

    GluR2(Q) Arg GluR2(R) Gln

    Na+External

    Ca2+

    External

    RNA Editing in GluR2:The Q/R Site Regulates Ca2+Permeability

    K i t R t

  • 5/20/2018 Membrane Structure and Function.pptx

    52/158

    Kainate Receptors

    Physiological studies have been identified both post-and presynaptic roles forkainate receptors

    -presynaptic kainate receptor facilitate or reduce the neurotransmission depending

    on where they are in the brain

    - postsynaptic kainate receptors can directly mediate excitatory transmission

    As well as GluR2, GLU5 and GLU6can undergo RNA editing (Sommer et al (1991))

    that changes an amino acid in the channel pore and regulates permeation properties

    AMPA and kainate receptor

  • 5/20/2018 Membrane Structure and Function.pptx

    53/158

    AMPA and kainate receptorDesensitization

    Desensitization is defined as a long-lasting

    ligand-bound, yet closed state.Desensitization of AMPA and kainate

    receptors occurs within a few milliseconds; a

    value found to be on the time scale of the

    postsynaptic response.

  • 5/20/2018 Membrane Structure and Function.pptx

    54/158

  • 5/20/2018 Membrane Structure and Function.pptx

    55/158

  • 5/20/2018 Membrane Structure and Function.pptx

    56/158

  • 5/20/2018 Membrane Structure and Function.pptx

    57/158

  • 5/20/2018 Membrane Structure and Function.pptx

    58/158

  • 5/20/2018 Membrane Structure and Function.pptx

    59/158

  • 5/20/2018 Membrane Structure and Function.pptx

    60/158

  • 5/20/2018 Membrane Structure and Function.pptx

    61/158

  • 5/20/2018 Membrane Structure and Function.pptx

    62/158

  • 5/20/2018 Membrane Structure and Function.pptx

    63/158

  • 5/20/2018 Membrane Structure and Function.pptx

    64/158

    Spermine and Spermidine

    an increase in the magnitude of NMDA-induced

    whole-cell currents seen in the presence of

    saturating concentrations of glycine

    an increase in glycine affinity

    a decrease in glutamate affinity, and voltage-

    dependent inhibition at higher concentrations.

  • 5/20/2018 Membrane Structure and Function.pptx

    65/158

    Mg2

  • 5/20/2018 Membrane Structure and Function.pptx

    66/158

    AMPA receptorsNMDAreceptor

    Na+Na+Na+Na+

    Ca2+

    synapticstrengtheni With low presynaptic activity only some of the AMPA

    receptors are activated, giving rise to a weak EPSP.

    Under these circumstances the NMDA receptor isinactive despite binding of glutamate because itschannel is blocked by Mg .2+

    With high presynaptic activity most of the AMPAreceptors are activated and the EPSP is strong.

    The Ca signal ultimately leads to synapticstrengthening.

    2+

    The strong EPSP (or back-propagated action potential)lifts the Mg block of the NMDA receptor.2+

    Physiological/pathological roles

  • 5/20/2018 Membrane Structure and Function.pptx

    67/158

    Physiological/pathological roles

    AMPA receptors mediate most fast EPSPs in the CNS

    Kainate receptorsRegulation of neuronal excitability

    epilepsy, excitotoxicity and pain

    NMDA receptorsmediate most fast EPSPs in the CNSAnaesthesia

    Learning and memory Developmental plasticity Epilepsy Excitotoxicity (eg stroke) Schizophrenia

  • 5/20/2018 Membrane Structure and Function.pptx

    68/158

    Exogenousexcitotoxicity?No need to try that again!

    We know that it kills neurons.But, what about

    endogenous excitotoxicity?

  • 5/20/2018 Membrane Structure and Function.pptx

    69/158

    69 Figure 20A.

  • 5/20/2018 Membrane Structure and Function.pptx

    70/158

    GABA neurotransmission will drive membrane potential toward the Cl-

    reversal potential

  • 5/20/2018 Membrane Structure and Function.pptx

    71/158

    reversal potential

    GABA can depolarize cells depending on the direction of the chloride gradient

    (i E b th h ld)

  • 5/20/2018 Membrane Structure and Function.pptx

    72/158

    (i.e. EClmay be suprathreshold)

    Summation of postsynaptic membrane potentials allows multiple synaptici t t b i t t d

  • 5/20/2018 Membrane Structure and Function.pptx

    73/158

    inputs to be integrated

  • 5/20/2018 Membrane Structure and Function.pptx

    74/158

    PHARMACOLOGY OF

    ANTIEPILEPTICDRUGSMelanie K. Tallent, Ph.D.

    [email protected]

    Basic Mechanisms Underlying

  • 5/20/2018 Membrane Structure and Function.pptx

    75/158

    Seizures and Epilepsy

    Seizure: the clinical manifestation of anabnormal and excessive excitation andsynchronization of a population of corticalneurons

    Epilepsy: a disease characterized by

    spontaneous recurrent seizures

    Epileptogenesis: sequence of events thatconverts a normal neuronal network into anepileptic network

    P ti l S i

  • 5/20/2018 Membrane Structure and Function.pptx

    76/158

    Partial Seizures

    Simple

    Complex

    Secondary generalized

    localized onset can be determined

    Simple Partial Sei re

  • 5/20/2018 Membrane Structure and Function.pptx

    77/158

    Simple Partial Seizure

    Focal with minimal spread of abnormaldischarge

    normal consciousness and awareness are

    maintained

    Complex Partial Seizures

  • 5/20/2018 Membrane Structure and Function.pptx

    78/158

    Complex Partial Seizures

    Local onset, then spreads

    Impaired consciousness

    Clinical manifestations vary with site oforigin and degree of spread

    Presence and nature of auraAutomatisms

    Other motor activity

    Temporal lobe epilepsy

    most common

    Secondarily Generalized

  • 5/20/2018 Membrane Structure and Function.pptx

    79/158

    y

    Seizures

    Begins focally, with or without focal neurological

    symptoms

    Variable symmetry, intensity, and duration of tonic

    (stiffening) and clonic (jerking) phases

    Typical duration up to 1-2 minutes

    Postictal confusion and somnolence

    G li d S i

  • 5/20/2018 Membrane Structure and Function.pptx

    80/158

    Generalized Seizures

    In generalized seizures,both hemispheres arewidely involved fromthe outset.

    Manifestations of theseizure aredetermined by thecortical site at whichthe seizure arises.

    Present in 40% of allepileptic Syndromes.

    Generalized seizures

  • 5/20/2018 Membrane Structure and Function.pptx

    81/158

    Generalized seizures

    Absence seizures (Petit mal): sudden onset andabrupt cessation; brief duration, consciousness is

    altered; attack may be associated with mild clonic

    jerking of the eyelids or extremities, postural tone

    changes, autonomic phenomena and automatisms

    (difficult diagnosis from partial); characteristic 2.5-3.5Hz spike-and wave pattern

    Myoclonic seizures: myoclonic jerking is seen in a

    wide variety of seizures but when this is the majorseizure type it is treated differently to some extent from

    partial leading to generalized

    Generalized Seizures (cont)

  • 5/20/2018 Membrane Structure and Function.pptx

    82/158

    Generalized Seizures (cont)

    Atonic seizures: sudden loss of postural tone;most often in children but may be seen in

    adults

    Tonic-clonic seizures (grand mal): major

    convulsions with rigidity (tonic) and jerking

    (clonic), this slows over 60-120 sec followed

    by stuporous state (post-ictal depression)

    Generalized Tonic-Clonic Seizures

  • 5/20/2018 Membrane Structure and Function.pptx

    83/158

    Recruitment of neurons throughout the cortex

    Major convulsions, usually with two phases:

    1) Tonic phase: muscles will suddenly tense up, causing the

    person to fall to the ground if they are standing. 2) Clonic phase: muscles will start to contract

    and relax rapidly, causing convulsions

    Convulsions:

    motor manifestations

    may or may not be present during seizures

    excessive neuronal discharge

    Convulsions appear in Simple Partial and Complex PartialSeizures if the focal neuronal discharge includes motor centers;they occur in all Generalized Tonic-Clonic Seizures regardless ofthe site of origin.

    Atonic and absence Seizures are non-convulsive

    Status Epilepticus

  • 5/20/2018 Membrane Structure and Function.pptx

    84/158

    Status Epilepticus

    More than 30 minutes of continuous seizure

    activity

    Two or more sequential seizures spanning

    this period without full recovery betweenseizures

    Medical emergency

    ANTIEPILEPTIC DRUG

  • 5/20/2018 Membrane Structure and Function.pptx

    85/158

    ANTIEPILEPTIC DRUG

    A drug which decreases the frequency and/orseverity of seizures in people with epilepsy

    Treats the symptom of seizures, not the

    underlying epileptic condition Goalmaximize quality of life by minimizing

    seizures and adverse drug effects

    Currently no anti-epileptogenic drugs available

    FDA Indications for AEDs:

  • 5/20/2018 Membrane Structure and Function.pptx

    86/158

    Monotherapy and/or Add-On Therapy

    Monotherapy

    Carbamazepine

    Divalproex ER

    EthosuximideOxcarbazepine

    Phenobarbital

    Phenytoin

    PrimidoneLamotrigine1

    Felbamate1

    Topiramate

    1

    Approved for conversion to monotherapy.

    Add-On Therapy

    Carbamazepine Levetiracetam

    Divalproex ER Gabapentin

    Ethosuximide PhenytoinOxcarbazepine Tiagabine

    Phenobarbital Zonisamide

    Primidone

    Physicians Desk Reference, 2004.

    Epilepsia inducida por frmacos

  • 5/20/2018 Membrane Structure and Function.pptx

    87/158

    Epilepsia inducida por frmacos

    Mecanismo de accin de antepilpticos

  • 5/20/2018 Membrane Structure and Function.pptx

    88/158

    Mecanismo de accin de antepilpticos

    Mecanismo de accin de antepilpticos

  • 5/20/2018 Membrane Structure and Function.pptx

    89/158

    Mecanismo de accin de antepilpticos

    Therapy Has Improved

  • 5/20/2018 Membrane Structure and Function.pptx

    90/158

    Significantly

    Give the sick person some blood from a

    pregnant donkey to drink; or steep linen in it,

    dry it, pour alcohol onto it and administer this.

    Formey, Versuch einer medizinischenTopographie von Berlin 1796, p. 193

    Choosing Antiepileptic Drugs

  • 5/20/2018 Membrane Structure and Function.pptx

    91/158

    Choosing Antiepileptic Drugs

    Seizure type

    Epilepsy syndrome

    Pharmacokinetic profileInteractions/other medical conditions

    Efficacy

    Expected adverse effectsCost

    General Facts About AEDs

  • 5/20/2018 Membrane Structure and Function.pptx

    92/158

    General Facts About AEDs

    Good oral absorption and bioavailability

    Most metabolized in liver but some excreted

    unchanged in kidneys

    Classic AEDs generally have more severeCNS sedation than newer drugs (except

    ethosuximide)

    Because of overlapping mechanisms of action,best drug can be chosen based on minimizing

    side effects in addition to efficacy

    Classification of AEDs

  • 5/20/2018 Membrane Structure and Function.pptx

    93/158

    Classification of AEDs

    Classical Phenytoin

    Phenobarbital

    Primidone

    Carbamazepine

    Ethosuximide

    Valproate (valproic acid)

    Trimethadione (not currently

    in use)

    Newer Lamotrigine

    Felbamate

    Topiramate

    Gabapentin/Pregabalin

    Tiagabine

    Vigabatrin

    Oxycarbazepine

    Levetiracetam

    Fosphenytoin

    Side effect issues

  • 5/20/2018 Membrane Structure and Function.pptx

    94/158

    Side effect issues

    Sedation - especially with barbiturates

    Weight gainvalproic acid, gabapentin

    Weight loss - topiramate

    Reproductive functionvalproic acid

    Cognitive - topiramate

    Behavioralfelbamate, leviteracetam

    Allergic - many

    Cellular Mechanisms of

    S i G ti

  • 5/20/2018 Membrane Structure and Function.pptx

    95/158

    emedicine.com

    Seizure Generation

    Targets for AEDs

  • 5/20/2018 Membrane Structure and Function.pptx

    96/158

    Targets for AEDs

    Increase inhibitory neurotransmitter systemGABA

    Decrease excitatory neurotransmitter system

    glutamate

    Block voltage-gated inward positive currentsNa+or

    Ca++

    Increase outward positive currentK+

    Many AEDs pleiotropicact via multiple mechanisms

    EpilepsyGlutamate

  • 5/20/2018 Membrane Structure and Function.pptx

    97/158

    Epilepsy Glutamate

    The brains major excitatory neurotransmitter

    Two groups of glutamate receptors

    Ionotropicfast synaptic transmission NMDA, AMPA, kainate

    Gated Ca++ and Gated Na+ channels

    Metabotropicslow synaptic transmission Regulation of second messengers (cAMP and

    Inositol)

    Modulation of synaptic activity

    Modulation of glutamate receptors

    Glycine, polyamine sites, Zinc, redox site

    Epilepsy Glutamate

  • 5/20/2018 Membrane Structure and Function.pptx

    98/158

    EpilepsyGlutamate

    E X C I T O T O X I C I D A D

  • 5/20/2018 Membrane Structure and Function.pptx

    99/158

    Sobre-activacin deR-Glu

    Aumento de la concentracinintracelular de Ca++

    Activacin de los ReceptoresGlutamatrgicos (R-Glu)

    Produccin de Oxido Ntrico

    Liberacin de PoliaminasEndgenas

    Liberacin deGlutamato

    Generacin deradicales libres

    Dao neuronal

    excitotxico

    DaoOxidativoActivacin de la Sintasadel Oxido Ntrico

    GENERACION DE CRISISCONVULSIVAS

    Glutamate Receptors as AED

  • 5/20/2018 Membrane Structure and Function.pptx

    100/158

    Targets

    NMDA receptor sites as targets Ketamine, phencyclidine, dizocilpine block

    channel and have anticonvulsant properties but

    also dissociative and/or hallucinogenic properties;

    open channel blockers.

    AMPA receptor sites as targets Since it is the workhorse receptor can anticipate

    major sedative effects

    Felbamate

  • 5/20/2018 Membrane Structure and Function.pptx

    101/158

    Felbamate

    Antagonizes the glycine site on the NMDAreceptor and blocks Na+ channels*

    Very potent AED lacking sedative effect (unlike

    nearly all other AEDs)Associated with rare but fatal aplastic anemia,

    hence is restricted for use only in extreme

    refractory epilepsy

  • 5/20/2018 Membrane Structure and Function.pptx

    102/158

    Topiramate

  • 5/20/2018 Membrane Structure and Function.pptx

    103/158

    Topiramate

    Acts on AMPA receptors, blocking the glutamate bindingsite, butalso blocks kainate receptors and Na+

    channels, and enhances GABA currents (highly

    pleiotropic*)

    Used for partial seizures, as an adjunct for absence andtonic-clonic seizures (add-on or alternative to phenytoin)

    Very long half-life (20h)

    EpilepsyGABA

  • 5/20/2018 Membrane Structure and Function.pptx

    104/158

    Epilepsy GABA

    Major inhibitory neurotransmitter inthe CNS

    Two types of receptorsGABAApost-synaptic, specific

    recognition sites, CI-channel

    GABAB presynaptic autoreceptors,

    also postsynaptic, mediated by K+

    currents

    GABAA Receptor

  • 5/20/2018 Membrane Structure and Function.pptx

    105/158

    GABAAReceptor

    Clonazapam

  • 5/20/2018 Membrane Structure and Function.pptx

    106/158

    Clonazapam

    -Benzodiazepine used for absence seizures(and sometimes myoclonic): fourth-line AED

    -Most specific AED among benzodiazepines,

    appearing to be selective for GABAA activationin the reticular formation leading to inactivationof T-type Ca2+ channels, hence its useful forabsence seizures

    -Sedating; May lose effectiveness due todevelopment of tolerance (6 months)

    Lorazapam and Diazepam

  • 5/20/2018 Membrane Structure and Function.pptx

    107/158

    Lorazapam and Diazepam

    Benzodiazepines used as first-line treatmentfor status epilepticus (delivered IVfastacting)

    Lorazepam and diazepam binds to an

    allosteric site on GABA-A receptors, which arepentameric ionotropic receptors in the CNS.Binding potentiates the effects of the inhibitoryneurotransmitter GABA, which upon binding

    opens the chloride channel in the receptor,allowing chloride influx and causinghyperpolerization of the neuron.

    Sedating

    Phenobarbital

  • 5/20/2018 Membrane Structure and Function.pptx

    108/158

    Phenobarbital

    Barbiturate used for partial seizures, especially inneonates.

    Very strong sedation; Cognitive impairment;

    Behavioral changes

    Very long half-life (up to ~5days); #Induces P450 Primidone, another barbiturate metabolized to

    Phenobarbital, and Phenobarbital are now seldom

    used in initial therapy, owing to side-effects

    It promotes binding to inhibitory gamma-aminobutyricacid subtype receptors, and modulates chloride

    currents through receptor channels. It also inhibits

    glutamate induced depolarizations

    AEDs That Act Primarily onGABA

  • 5/20/2018 Membrane Structure and Function.pptx

    109/158

    GABA

    Tiagabine Interferes with GABA re-uptake

    Vigabatrin (not currently available in US)

    elevates GABA levels by irreversiblyinhibiting its main catabolic enzyme, GABA-transaminase

  • 5/20/2018 Membrane Structure and Function.pptx

    110/158

    Principios del tratamiento de laepilepsia

  • 5/20/2018 Membrane Structure and Function.pptx

    111/158

    epilepsia

    Aumentar la neutrotransmisin inhibitoria

    Na+ Channels as AED Targets

  • 5/20/2018 Membrane Structure and Function.pptx

    112/158

    g

    Neurons fire at high frequencies duringseizures

    Action potential generation is dependent on

    Na+ channels Use-dependent or time-dependent Na+

    channel blockers reduce high frequency firing

    without affecting physiological firing

    Anticonvulsants:

  • 5/20/2018 Membrane Structure and Function.pptx

    113/158

    A = activation gate

    I = inactivation gate

    McNamara JO. Goodman & Gilmans. 9th ed. 1996:461-486.

    Mechanisms of Action

    Na+ Na+

    Carbamazepine

    Phenytoin

    Lamotrigine

    ValproateNa+ Na+

    I I

    Voltage-gated sodium channelOpen Inactivated

    X

    AEDs That Act Primarily on Na+Channels

  • 5/20/2018 Membrane Structure and Function.pptx

    114/158

    Channels

    Phenytoin, Carbamazepine Block voltage-dependent sodium channels at high firing

    frequenciesuse dependent

    Oxcarbazepine Blocks voltage-dependent sodium channels at high firing

    frequencies

    Also effects K+ channels

    Zonisamide

    Blocks voltage-dependent sodium channels and T-typecalcium channels

    Phenytoin

  • 5/20/2018 Membrane Structure and Function.pptx

    115/158

    First-line for partial seizures; some use fortonic-clonic seizures

    Highly bound to plasma proteinsdisplaced

    by Valproate; #Induces P450 resulting inincrease in its own metabolism, but its

    metabolism is also increased by alcohol,

    diazepam

    Sedating

    Fosphenytoin:Prodrug for Phenytoin, usedfor IM injection

    Carbamazapine

  • 5/20/2018 Membrane Structure and Function.pptx

    116/158

    p

    A tricyclic antidepressant used for partial

    seizures; some use in tonic-clonic seizures

    #Induces P450 resulting in increase in its ownmetabolism;

    Sedating; Agranulocytosis and Aplastic anemia

    (elderly); Leukopenia (10% of patients);

    Hyponatremia; Nausea and visual

    disturbances

    Oxcarbazapine

  • 5/20/2018 Membrane Structure and Function.pptx

    117/158

    p

    Newer drug, closely related toCarbamazapine, approved for monotherapy, or

    add-on therapy in partial seizures

    May also augment K+ channels* Some #induction of P450 but much less than

    that seen with Carbamazapine

    Sedating but otherwise less toxic than

    Carbamazapine

    Zonisamide

  • 5/20/2018 Membrane Structure and Function.pptx

    118/158

    Used as add-on therapy for partial and

    generalized seizures

    -Also blocks T-type Ca2+ channels* -Very long half-life (1-3days)

    Lamotrigine

  • 5/20/2018 Membrane Structure and Function.pptx

    119/158

    g

    Add-on therapy, or monotherapy for refractory

    partial seizures

    Also inhibits glutamate release and (perhaps)Ca2+ channels (=pleiotropic*)

    Metabolism affected by Valproate,

    Carbamazapine, Phenobarbital, Phenytoin

    Less sedating than other AEDs; (Severe

    dermatitis in 1-2% of pediatric patients)

    Ca2+Channels as Targets

  • 5/20/2018 Membrane Structure and Function.pptx

    120/158

    g

    General Ca2+ channel blockers have notproven to be effective AEDs.

    Absence seizures are caused by oscillations

    between thalamus and cortex that aregenerated in thalamus by T-type (transient)

    Ca2+currents

    Ethosuximide

  • 5/20/2018 Membrane Structure and Function.pptx

    121/158

    Acts specifically on T-type channels in

    thalamus, and is very effective against

    absence seizures. Long half-life (~40h)

    Causes GI disturbances; Less sedating than

    other AEDs

    Gabapentin and its second generationderivative Pregabalin

  • 5/20/2018 Membrane Structure and Function.pptx

    122/158

    derivativePregabalin

    -Act specifically on calcium channel subunits

    called a2d1. It is unclear how this action leads

    to their antiepileptic effects, but inhibition ofneurotransmitter release may be one

    mechanism

    -Used in add-on therapy for partial seizures

    and tonic-clonic seizures

    -Less sedating than classic AEDs

    What about K+ channels?

  • 5/20/2018 Membrane Structure and Function.pptx

    123/158

    K+ channels have important inhibitory controlover neuronal firing in CNSrepolarizesmembrane to end action potentials

    K+ channel agonists would decrease

    hyperexcitability in brain So far, the only AED with known actions on K+

    channels is valproate

    Retiagabine is a novel AED in clinical trials that

    acts on a specific type of voltage-dependent K+channel (M-channel)

    Valproate (Valproic Acid)

  • 5/20/2018 Membrane Structure and Function.pptx

    124/158

    First-line for generalized seizures, also used

    for partial seizures

    Also blocks Na+ channels and enhancesGABAergic transmission (highly pleiotropic*)

    Highly bound to plasma proteins; #Inhibits

    P450

    CNS depressant; GI disturbances; hair loss;

    weight gain; teratogenic; (rare: hepatotoxic)

    Regulation of Neurotransmitter release

  • 5/20/2018 Membrane Structure and Function.pptx

    125/158

    Several AED have actions that result in theregulation of neurotransmitter release from the

    presynaptic terminal, such as lamotrigine, in

    addition to their noted action on ion channels

    or receptors.

    Levetiracetam appears to have as its primary

    action the regulation of neurotransmitter

    release by binding to the synaptic vesicleprotein SV2A:

    Levetiracetam

  • 5/20/2018 Membrane Structure and Function.pptx

    126/158

    -Add-on therapy for partial seizures

    -Short half-life (6-8h)

    -CNS depression

    AED Treatment Options

  • 5/20/2018 Membrane Structure and Function.pptx

    127/158

    MyoclonicTonic

    Primary generalized seizuresPartial seizures

    Simple

    Complex

    SecondaryGeneralized

    Ethosuximidephenytoin, carbamazepine, phenobarbital,

    gabapentin, oxcarbazepine, pregabalin

    valproic acid, lamotrigine, topiramate,

    (levetiracetam, zonisamide)

    Tonic-

    ClonicAtonic Absence

    Check notes

    Mecanismo de accin de antepilpticos

  • 5/20/2018 Membrane Structure and Function.pptx

    128/158

    Status Epilepticus

  • 5/20/2018 Membrane Structure and Function.pptx

    129/158

    More than 30 minutes of continuous seizure

    activity

    Two or more sequential seizures spanning

    this period without full recovery betweenseizures

    Medical emergency

    Status Epilepticus

  • 5/20/2018 Membrane Structure and Function.pptx

    130/158

    Treatment

    Diazepam, lorazapam IV (fast, short acting)

    Followed by phenytoin, fosphenytoin, or

    phenobarbital (longer acting) when control is

    established

    Alternative Uses for AEDs

  • 5/20/2018 Membrane Structure and Function.pptx

    131/158

    Gabapentin/pregabalin, carbamazepineneuropathic

    pain

    Lamotrogine, carbamazepinebipolar disorder

    Leviteracitam, valproate, topirimate, gabapentin

    migraine

  • 5/20/2018 Membrane Structure and Function.pptx

    132/158

    Expresin alternat iva de NR1 y c r is is ind uc idas po r

    N-Metil -D-Aspartato despus del tratam ien to

    neonatal con g lutamato monosdico.

    EPILEPSIA

  • 5/20/2018 Membrane Structure and Function.pptx

    133/158

    ALTERACION FUNCIONAL CRISIS

    INFARTO CEREBRAL

  • 5/20/2018 Membrane Structure and Function.pptx

    134/158

    TUMORES CEREBRALESTRAUMA CRANEOENCEFALICO

    DAO NEURONALINFECCIONES

    esequilibrio Inhibicin-Excitaci

  • 5/20/2018 Membrane Structure and Function.pptx

    135/158

    Dao NeuronalExcitotxico

    CrisisConvulsivas

    Glu

    GABA

    E X C I T O T O X I C I D A DActivacin de los Receptores

  • 5/20/2018 Membrane Structure and Function.pptx

    136/158

    Sobre-activacin de

    R-Glu

    Aumento de la concentracin

    intracelular de Ca++

    pGlutamatrgicos (R-Glu)

    Produccin de Oxido Ntrico

    Liberacin de PoliaminasEndgenas

    Liberacin deGlutamato

    Generacin deradicales libres

    Dao neuronal

    excitotxico

    DaoOxidativoActivacin de la Sintasadel Oxido Ntrico

    GENERACION DE CRISISCONVULSIVAS

    Receptores a glutamato

  • 5/20/2018 Membrane Structure and Function.pptx

    137/158

    Ca2+/Na+ Na+

    NMDA AMPA KAINATO

    NR1

    NR2A

    NR2B

    NR2C

    NR2D

    NR3

    RGLU1

    RGLU2

    RGLU3

    RGLU4

    RGLU5

    RGLU6RGLU7

    KA1

    KA2

    Ca2+

    CLASE

    I

    AMPc AMPc

    CLASE

    II

    CLASE

    III

    GLURm1

    GLURm5

    GLURm2

    GLURm3

    GLURm4

    GLURm6GLURm7

    GLURm8

    IP3 Ca2+

    Receptor NMDA

  • 5/20/2018 Membrane Structure and Function.pptx

    138/158

    138

    Variantes de la subunidad NR1Cassette C1NH Dominios transmembranales Cassette C2NR1 1a COO

  • 5/20/2018 Membrane Structure and Function.pptx

    139/158

    Cassette C1NH2 Dominios transmembranales Cassette C2NR1-1a

    NR1-3a Cassette C1NH2 Dominios transmembranales

    NR1-4a NH2 Dominios transmembranales

    NR1-2a NH2

    Dominios transmembranales Cassette C2

    NR1-4b Cassette NNH2 Dominios transmembranales

    NR1-1b Cassette NNH2 Dominios transmembranales Cassette C1 Cassette C2

    NR1-2bCassette NNH2 Dominios transmembranales Cassette C2

    NR1-3b Cassette NNH2 Dominios transmembranales CassetteC1

    COO

    COO

    COO

    COO

    COO

    COO

    COO

    COOCassette C2

    Cassette C2

    Cassette C2

    Cassette C2

    Efecto del tratamiento neonatal con GMS

    sobre la densidad de clulas GABA

  • 5/20/2018 Membrane Structure and Function.pptx

    140/158

    GMS

    Intacto

    CORTEZA CEREBRAL

    CAMPOS DE PROFUNDIDAD CORTICAL

    1 2 3 4 5 6

    5

    10

    15

    *

    No.C

    ELULAS/CAMPO

    * **

    *

    * HIPOCAMPO

    10

    20

    30

    40

    50

    CA1 CA2-3 GD

    No.CELULAS/C

    AMPO

    *

    * *

    DIAGRAMA EXPERIMENTALRatas Wistar

    Recin Nacidas

  • 5/20/2018 Membrane Structure and Function.pptx

    141/158

    Recin Nacidas

    Grupo ExperimentalTratamiento Neonatal Excitotxico(GMS 4 mg/g de peso corporal; va

    subcutnea; los das 1,3,5 y 7 de edad)

    Grupo TestigoTratamiento Neonatal Hiperosmtico

    (NaCl equimolar: 1.38 mg/g de peso corporal;va subcutnea; los das 1,3,5 y 7 de edad)

    Grupo Intacto

    EVALUACION DE LASUSCEPTIBILIDAD CONVULSIVA

    Registro de la actividad EEG epileptiformey conductas convulsivas generadas por

    la infusin ICV de NMDA y 4 AP

    Estudios de biologa molecularRT-PCR (8, 14, 30 y 60 das de edad posnatal)

    Corteza Cerebral

    I. Evaluacin de la susceptibilidadconvulsiva

  • 5/20/2018 Membrane Structure and Function.pptx

    142/158

    1.Convulsionantes: NMDA, 4-AP2.Va de administracin:Infusin intracerebroventricular (ICV) por inyeccin en elhemisferio derecho

    3.Implante electrodos monopolares bilaterales en la cortezacerebral; y de una gua de infusin en el ventrculo lateralderecho

    4.Parmetros a evaluar:

    Patrn de descargas electroencefalogrficasepileptiformes, latencia, duracin, intensidad yfrecuencia, de las mismas

    Patrn conductual convulsivo

  • 5/20/2018 Membrane Structure and Function.pptx

    143/158

    C O N D U C T A S

    Clonos faciales

    Extensin tnica de extremidades delanteras

    Clonos de las extremidades delanteras (CED)

    Extensin de los msculos del cuello

    CED, levantamiento del cuerpo y cada

    Sacudidas de perro mojado

    Carreras alocadas

    Convulsiones tnico-clnicas generalizadas

    Status epilepticus (SE)

    Porcentaje de animales que present SE

    1.25 nmol

    Int/GMS

    +/+

    - /+

    - / -

    - / -

    - / -

    - / -

    - / -

    - / -

    - / -

    0/0

    2.5 nmol

    Int/GMS

    +/+

    - /+

    +/+

    - /+

    - / -

    - / -

    - / -

    - / -

    - / -

    0/0

    3 nmol

    Int/GMS

    +/+

    - /+

    +/+

    +/+

    +/+

    +/ -

    - /+

    - / -

    - / -

    0/0

    5 nmol

    Int/GMS

    +/+

    - /+

    +/+

    +/+

    +/+

    +/ -

    - /+

    +/ -

    +/ -

    33/0

    10 nmol

    Int/GMS

    +/+

    - /+

    +/+

    +/+

    +/+

    +/ -

    - /+

    +/ -

    +/ -

    66/0

    TABLA 8

    Conductas estimuladas por la infusin ICV de NMDA en ratas adultas

  • 5/20/2018 Membrane Structure and Function.pptx

    144/158

  • 5/20/2018 Membrane Structure and Function.pptx

    145/158

    CONCLUSIONES

  • 5/20/2018 Membrane Structure and Function.pptx

    146/158

    1. El tratamiento neonatal con GMS altera el patrn de crisis

    convulsivas producidas por NMDA y 4-AP.

    2. La generacin de crisis convulsivas a travs de la infusinde 4AP es favorecida despus del tratamiento con GMS.

    3. La generacin de crisis convulsivas por la infusin ICVde NMDA en ratas adultas, tratadas con GMS, requiereuna dosis mayor de dicho convulsivante que las intactas;lo que puede deberse, al menos en parte, a cambios en la

    composicin de las subunidades del R-NMDA, y por endede su funcionalidad.

  • 5/20/2018 Membrane Structure and Function.pptx

    147/158

  • 5/20/2018 Membrane Structure and Function.pptx

    148/158

  • 5/20/2018 Membrane Structure and Function.pptx

    149/158

  • 5/20/2018 Membrane Structure and Function.pptx

    150/158

  • 5/20/2018 Membrane Structure and Function.pptx

    151/158

  • 5/20/2018 Membrane Structure and Function.pptx

    152/158

  • 5/20/2018 Membrane Structure and Function.pptx

    153/158

  • 5/20/2018 Membrane Structure and Function.pptx

    154/158

  • 5/20/2018 Membrane Structure and Function.pptx

    155/158

    NEURONAS PIRAMIDALES DE TERCERA CAPA DELA CORTEZA CEREBRAL PREFRONTAL

  • 5/20/2018 Membrane Structure and Function.pptx

    156/158

    Impregnacin Metlica (Tcnica de Golgi Modificada) Prez-Vega y col., 2000

    Olvera-Corts y col., 1998

    NEURONA PIRAMIDAL DE TERCERA CAPA DE LA CORTEZACEREBRAL PREFRONRAL

    Dendrita Apical

  • 5/20/2018 Membrane Structure and Function.pptx

    157/158

    Perz-Vega, y cols. 2000

    Dendrita Apical

    Dendrita Basal

    Dendrita Oblicua

    Efecto del tratamiento neonatal con GMS

    sobre la densidad de clulas GABA

  • 5/20/2018 Membrane Structure and Function.pptx

    158/158

    Intacto

    CORTEZA CEREBRAL

    CAMPOS DE PROFUNDIDAD CORTICAL

    1 2 3 4 5 6

    5

    10

    15

    *

    No.CELULAS/CAMPO

    * **

    *

    * HIPOCAMPO

    30

    40

    50

    ULAS/CAMPO

    *

    * *