mems fabrication i : process flows and bulk micromachining · pdf filemems fabrication i :...

23
U. Srinivasan © EE C245 Dr. Thara Srinivasan Lecture 2 MEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan © EE C245 Lecture Outline Reading Reader is in! (at South side Copy Central) Kovacs, “Bulk Micromachining of Silicon,” pp. 1536-43. Williams, “Etch Rates for Micromachining Processing,” pp. 256-60. Senturia, Chapter 3, “Microfabrication.” Today’s Lecture Tools Needed for MEMS Fabrication Photolithography Review Crystal Structure of Silicon Bulk Silicon Etching Techniques

Upload: buikhanh

Post on 04-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

1

U. Srinivasan ©

EE

C24

5

Dr. Thara SrinivasanLecture 2

MEMS Fabrication I :Process Flows and Bulk

Micromachining

Picture credit: Alien Technology

U. Srinivasan ©

EE

C24

5

Lecture Outline

• Reading• Reader is in! (at South side Copy Central)• Kovacs, “Bulk Micromachining of Silicon,” pp. 1536-43.• Williams, “Etch Rates for Micromachining Processing,” pp.

256-60.• Senturia, Chapter 3, “Microfabrication.”

• Today’s Lecture• Tools Needed for MEMS Fabrication• Photolithography Review• Crystal Structure of Silicon• Bulk Silicon Etching Techniques

Page 2: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

2

U. Srinivasan ©

EE

C24

5IC Processing

Cross-section

Jaeger

Masks Cross-section Masks

N-type Metal Oxide Semiconductor (NMOS) process flow

U. Srinivasan ©

EE

C24

5

CMOS Processing

• Processing steps• Oxidation• Photolithography• Etching• Chemical Vapor

Deposition• Diffusion• Ion Implantation• Evaporation and

Sputtering• Epitaxy

Complementary Metal-Oxide-SemiconductorJaeger

deposit

patternetch

Page 3: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

3

U. Srinivasan ©

EE

C24

5MEMS Devices

StaplePolysilicon level 2

Polysilicon level 1

Silicon substrate

Polysilicon level 1

Polysilicon level 2

Hinge staple

Plate

Silicon substrate

Support arm

Prof. Kris Pister

U. Srinivasan ©

EE

C24

5

MEMS Devices

Microoptomechanicalswitches, Lucent

Analog DevicesIntegrated

accelerometer Microturbine, Schmidt group MIT

Thermally isolated RMS converter Reay et al.

Caliper

Page 4: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

4

U. Srinivasan ©

EE

C24

5MEMS Processing

• Unique to MEMS fabrication• Sacrificial etching• Mechanical properties critical• Thicker films and deep etching• Etching into substrate• Double-sided lithography• 3-D assembly• Wafer-bonding• Molding• Integration with electronics, fluidics

• Unique to MEMS packaging and testing• Delicate mechanical structures

• Packaging: before or after dicing?• Sealing in gas environments

• Interconnect - electrical, mechanical, fluidic• Testing – electrical, mechanical, fluidic

PackageDice

Release

sacrificial layerstructural layer

U. Srinivasan ©

EE

C24

5

Photolithography: Masks and Photoresist

dark-fieldlight-field

• Photolithography steps• Photoresist spinnning, 1-10 µm spin coating• Optical exposure through a photomask• Developing to dissolve exposed resist• Bake to drive off solvents• Remove using solvents (acetone) or O2 plasma

• Photomasks• Layout generated from CAD file• Mask reticle: chrome or emulsion on fused silica• 1-3 $k

Page 5: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

5

U. Srinivasan ©

EE

C24

5Photoresist Application

• Spin-casting photoresist• Polymer resin, sensitizer, carrier

solvent• Positive and negative photoresist

• Thickness depends on• Concentration• Viscosity• Spin speed• Spin time

www.brewerscience.com

U. Srinivasan ©

EE

C24

5

Photolithography Tools

• Contact or proximity• Resolution: Contact - 1-2 µm,

Proximity - 5 µm• Depth of focus poor

• Projection• Reduce 5-10×, stepper mode• Resolution - 0.5 (λ/NA) ~ ≤ 1 µm• Depth of focus ~ Few µms

• Double-sided lithography• Make alignment marks on both sides of wafer • Use IR imaging to see through to back side• Store image of front side marks; align to back

Page 6: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

6

U. Srinivasan ©

EE

C24

5Materials for MEMS

• Substrates• Silicon• Glass• Quartz

• Thin Films• Polysilicon• Silicon Dioxide,

Silicon Nitride• Metals• Polymers

Wolf and Tauber

Silicon crystal structureλ = 5.43 Å

U. Srinivasan ©

EE

C24

5

Silicon Crystallography

• Miller Indices (h k l)• Planes

• Reciprocal of plane intercepts with axes• Intercepts of normal to plane with plane• (unique), {family}

• Directions • Move one endpoint to origin• [unique], <family>

x x x

yy y

z z z

(100) (110) (111)

{111}

[001]

[100]

[010]

(110)

<100>

Page 7: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

7

U. Srinivasan ©

EE

C24

5Silicon Crystallography

• Angles between planes, ∠• ∠ between [abc] and [xyz] given by:

ax+by+cz = |(a,b,c)|*|(x,y,z)|*cos(Θ)

• {100} and {110} – 45°• {100} and {111} – 54.74°• {110} and {111} – 35.26, 90 and 144.74°

0 1/2 0

0 1/2 0

3/41/4

1/43/4

01/2 1/2

))3)(1/()001((1)111(),100( ++= −Cosθ

U. Srinivasan ©

EE

C24

5

Silicon Crystal Origami

• Silicon fold-up cube• Adapted from Profs. Kris

Pister and Jack Judy• Print onto transparency• Assemble inside out• Visualize crystal plane

orientations, intersections, and directions

{111}(111)

{111}(111)

{111}(111)

{111}(111)

{111}(111)

{111}(111)

{111}(111)

{111}(111)

{100}(100)

{110}(110){100}

(010)

{110}(011)

{110}(011)

{110}(110)

{110}(110){100}

(010)

{110}(011)

{110}(011)

{110}(110)

{110}(101)

{100}(001)

{100}(100)

{110}(101)

{110}(101)

{100}(001)

{110}(101)

[010] [010]

[001][001]

[100][100]

[101

][101

]

[011

][011

]

[110][110]

Judy, UCLA

Judy

Page 8: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

8

U. Srinivasan ©

EE

C24

5Silicon Wafers

• Location of primary and secondary flats shows• Crystal orientation• Doping, n- or p-type

Maluf

U. Srinivasan ©

EE

C24

5

Mechanical Properties of Silicon

• Crystalline silicon is a hard and brittle material that deforms elastically until it reaches its yield strength, at which point it breaks.• Tensile yield strength = 7 GPa (~1500 lb suspended from 1

mm²)• Young’s Modulus near that of stainless steel

• {100} = 130 GPa; {110} = 169 GPa; {111} = 188 GPa • Mechanical properties uniform, no intrinsic stress• Mechanical integrity up to 500°C• Good thermal conductor, low thermal expansion coefficient• High piezoresistivity

Page 9: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

9

U. Srinivasan ©

EE

C24

5

What is Bulk Micromachining?

U. Srinivasan ©

EE

C24

5

Bulk Etching of Silicon• Etching modes

• Isotropic vs. anisotropic• Reaction-limited

• Etch rate dependent on temperature• Diffusion-limited

• Etch rate dependent on mixing• Also dependent on layout and

geometry, “loading”

• Choosing a method • Desired shapes• Etch depth and uniformity• Surface roughness• Process compatibility• Safety, cost, availability,

environmental impact

adsorption desorptionsurfacereaction

slowest step controls rate of reaction

Maluf

Page 10: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

10

U. Srinivasan ©

EE

C24

5Wet Etch Variations, Crystalline Si• Etch rate variation due to wet etch set-up

• Loss of reactive species through consumption• Evaporation of liquids• Poor mixing (etch product blocks diffusion of reactants)• Contamination• Applied potential• Illumination

• Etch rate variation due to material being etched• Impurities/dopants

• Etch rate variation due to layout • Distribution of exposed area ~ loading• Structure geometry

U. Srinivasan ©

EE

C24

5

Anisotropic Etching of Silicon

• Etching of Si with KOHSi + 2OH- → Si(OH)2

2+ + 4e-

4H2O + 4e- → 4(OH) - + 2H2

<100>Maluf

• Crystal orientation relative etch rates• {110}:{100}:{111} = 600:400:1

• {111} plane has three of its bonds below the surface

• {111} may form protective oxide quickly

• {111} smoother than other crystal planes

Page 11: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

11

U. Srinivasan ©

EE

C24

5KOH Etch Conditions

• 1 KOH : 2 H2O (wt.), stirred bath @ 80°C• Si (100) → 1.4 µm/min• Etch masks

• Si3N4 → 0• SiO2 → 1-10 nm/min• Photoresist, Al ~ fast

• “Micromasking” by H2 bubbles leads to roughness• Stirring displaces bubbles• Oxidizer, surfactant additives

Maluf

U. Srinivasan ©

EE

C24

5

Undercutting

• Convex corners bounded by {111} planes are attacked

Maluf

Ristic

Page 12: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

12

U. Srinivasan ©

EE

C24

5Undercutting

• Convex corners bounded by {111} planes are attacked

U. Srinivasan ©

EE

C24

5

Corner Compensation• Protect corners with “compensation”

areas in layout• Mesa array for self-assembly test

structures, Smith and coworkers (1995)

Alien TechnologyHadley

Chang

Page 13: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

13

U. Srinivasan ©

EE

C24

5Corner Compensation

• Self-assembly microparts, Alien Technology

U. Srinivasan ©

EE

C24

5

Other Anisotropic Etchants• TMAH, Tetramethyl ammonium hydroxide, 10-40 wt.% (90°C)

• Etch rate (100) = 0.5-1.5 µm/min• Al safe, IC compatible • Etch ratio (100)/(111) = 10-35• Etch masks: SiO2 , Si3N4 ~ 0.05-0.25 nm/min• Boron doped etch stop, up to 40× slower

• EDP (115°C)• Carcinogenic, corrosive• Etch rate (100) = 0.75 µm/min• Al may be etched• R(100) > R(110) > R(111)• Etch ratio (100)/(111) = 35• Etch masks: SiO2 ~ 0.2 nm/min, Si3N4 ~ 0.1 nm/min • Boron doped etch stop, 50× slower

Page 14: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

14

U. Srinivasan ©

EE

C24

5Boron-Doped Etch Stop

• Control etch depth precisely with boron doping (p++)• [B] > 1020 cm-3 reduces KOH etch

rate by 20-100ו Gaseous or solid boron diffusion• At high dopant level, injected

electrons recombine with holes in valence band and are unavailable for reactions to give OH-

• Results• Beams, suspended films• 1-20 µm layers possible• p++ not compatible with CMOS• Buried p++ compatible

U. Srinivasan ©

EE

C24

5

Micronozzle

Maluf

Page 15: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

15

U. Srinivasan ©

EE

C24

5Microneedles

Ken Wise group, University of Michigan

U. Srinivasan ©

EE

C24

5

Microneedles

Wise group, University of Michigan

Page 16: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

16

U. Srinivasan ©

EE

C24

5Microneedles

Wise group, University of Michigan

U. Srinivasan ©

EE

C24

5

Electrochemical Etch Stop

• Electrochemical etch stop• n-type epitaxial layer grown on p-type wafer forms p-n diode• p > n → electrical conduction• p < n → reverse bias current • Passivation potential – potential at which thin SiO2 layer

forms, different for p- and n-Si

• Set-up• p-n diode in reverse bias• p-substrate floating → etched• n-layer above passivation

potential → not etched

Maluf

Page 17: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

17

U. Srinivasan ©

EE

C24

5

• Electrochemical etching on preprocessed CMOS wafers• N-type Si well with circuits suspended from SiO2 support beam• Thermally and electrically isolated• TMAH etchant, Al bond pads safe

Electrochemical Etch Stop

Reay et al. (1994)Kovacs group, Stanford U.

U. Srinivasan ©

EE

C24

5

Pressure Sensors• Bulk micromachined pressure

sensors• Piezoresistivity – change in

electrical resistance due to mechanical stress

• In response to pressure load on thin Si film, piezoresistive elements change resistance

• Membrane deflection < 1 µm

Maluf

n-type epilayer, p-typesubstrate

(111)

R1R3

Bondpad(100) Sidiaphragm

P-type diffusedpiezoresistor

n-typeepitaxiallayer

Metalconductors

Anodicallybonded Pyrexsubstrate

Etchedcavity

Backsideport

(111)

R2 R1R3

Depositinsulator

Diffusepiezoresistors

Deposit &pattern metal

Electrochemicaletch of backsidecavity

Anodicbondingof glass

Page 18: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

18

U. Srinivasan ©

EE

C24

5

• Only 150 × 400 × 900 µm3

Pressure Sensors

Catheter-tip pressure sensor, Lucas NovaSensor

U. Srinivasan ©

EE

C24

5

Isotropic Etching of Silicon• HNA: hydrofluoric acid (HF),

nitric acid (HNO3) and acetic (CH3COOH) or water• HNO3 oxidizes Si to SiO2

• HF converts SiO2 to soluble H2SiF6

• Acetic prevents dissociation of HNO3

• Etch masks• SiO2 etched at 30-80 nm/min• Nonetching Au or Si3N4

Robbins

pure HNO3diffusion-limited

pure HFreaction-limited

Page 19: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

19

U. Srinivasan ©

EE

C24

5

• 5% (49%) HF : 80% (69%) HNO3 : 15% H2O (by volume)• Half-circular channels for chromatography• Etch rate 0.8-1 µm/min• Surface roughness 3 nm

Isotropic Etching Examples

• Pro and Con• Easy to mold from rounded channels• Etch rate and profile are highly agitation sensitive

Tjerkstra, 1997

U. Srinivasan ©

EE

C24

5

Dry Etching of Silicon

e - + CF4 → CF3+ + F + 2e-

• Dry etching • Plasma phase• Vapor phase

• Parameters• Gas and species generated ~

ions, radicals, photons• RF frequency, 13.56 MHz• RF power, 10’s to – 1000’s W• Pressure, mTorr – >100 Torr

sheath

Page 20: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

20

U. Srinivasan ©

EE

C24

5Plasma Etching of Silicon

• Crystalline silicon• Etch gases ~ fluorine, chlorine-

based• Reactive species ~ F, Cl, Cl2• Products ~ SiF4, SiCl4

• Plasma phase etching processes• Sputtering

• Physical, nonselective, faceted• Plasma etching

• Chemical, selective, isotropic• Reactive ion etching (RIE)

• Physical and chemical, fairly selective, directional

• Inductively-coupled RIE• Physical and chemical, fairly selective,

directional

(physical)

U. Srinivasan ©

EE

C24

5

• Deep reactive ion etching (DRIE) with inhibitor film• Inductively-coupled plasma• Bosch method for anisotropic etching,

1.5 - 4 µm/min

• Etch cycle (5-15 s) SF6 (SFx

+) etches Si• Deposition cycle (5-15 s)

C4F8 deposits fluorocarbon protective polymer (-CF2-)n

• Etch mask selectivity: SiO2 ~ 200:1, photoresist ~ 100:1

• Sidewall roughness: scalloping < 50 nm• Sidewall angle: 90 ± 2°

High-Aspect-Ratio Plasma Etching

Maluf

Page 21: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

21

U. Srinivasan ©

EE

C24

5

• Etch rate is diffusion-limited and drops for narrow trenches• Adjust mask layout to eliminate large

disparities• Adjust process parameters (etch rate

slows to < 1 µm/min)

• Etch depth precision• Etch stop ~ buried layer of SiO2

• Lateral undercut at Si/SiO2 interface ~“footing”

DRIE Issues

Maluf

U. Srinivasan ©

EE

C24

5

DRIE Examples

Comb-drive Actuator

Keller, MEMS Precision Instruments

Page 22: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

22

U. Srinivasan ©

EE

C24

5Electrospray Nozzle

Advanced BioAnalytical ServicesG. A. Schultz et al., 2000.

U. Srinivasan ©

EE

C24

5

Vapor Phase Etching of Silicon• Vapor-phase etchant XeF2

2XeF2(v) + Si(s)→ 2Xe(v) + SiF4(v)

• Set-up• Xe sublimes at room T• Closed chamber, 1-4 Torr• Pulsed to control exothermic heat of

reaction• Etch rates: 1-3 µm/min (up to 40),

isotropic• Etch masks: photoresist, SiO2, Si3N4, Al,

metals• Issues

• Etched surfaces have granular structure, 10 µm roughness

• Hazard: XeF2 reacts with H2O in air to form Xe and HF

Xactix

Page 23: MEMS Fabrication I : Process Flows and Bulk Micromachining · PDF fileMEMS Fabrication I : Process Flows and Bulk Micromachining Picture credit: Alien Technology U. Srinivasan

23

U. Srinivasan ©

EE

C24

5Etching with Xenon Difluoride

• Post processed CMOS inductor

Pister group

U. Srinivasan ©

EE

C24

5

Laser-Driven Etching• Laser-Assisted Chemical Etching

• Laser creates Cl radicals from Cl2; Siconverts to SiCl4.

• Etch rate: 100,000 µm3/s; 3 min to etch 500×500×125 µm3 trench

• Surface roughness: 30 nm RMS• Serial process: patterned directly

from CAD file

Revise, Inc.

Laser-assisted etching of a 500×500 µm2

terraced silicon well. Each step is 6 µm deep.