merged document 2

20
SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Centre for Modern Architecture Studies in Southeast Asia (MASSA) BUILDING SCIENCE 1 Case Study: Identifying innovative passive design strategies Project: GEO Building Architect: Ruslan Khalid Assiociates Tutor : Miss Suja Name IC/MyKad No Student ID No 1 Fam Li Kian 950101135270 0310639 2 Leong Carmen 930819086182 0314953 3 Kian Soon Jean 930318105920 0314978 4 Wong Jian Kai 940304015675 0314794 5 Yiew Qunhe 940920015839 0314809 6 Yaseen Fatima Syed bn806368 0309021

Upload: fam-kian

Post on 25-May-2015

166 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Merged document 2

SCHOOL OF ARCHITECTURE, BUILDING & DESIGN Centre for Modern Architecture Studies in Southeast Asia (MASSA)

BUILDING SCIENCE 1

Case Study: Identifying innovative passive design strategies

Project: GEO Building

Architect: Ruslan Khalid Assiociates Tutor : Miss Suja

Name IC/MyKad No Student ID No

1 Fam Li Kian 950101135270 0310639

2 Leong Carmen 930819086182 0314953

3 Kian Soon Jean 930318105920 0314978

4 Wong Jian Kai 940304015675 0314794

5 Yiew Qunhe 940920015839 0314809

6 Yaseen Fatima Syed bn806368 0309021

Page 2: Merged document 2

Page | 2

CONTENT INTRODUCTION PAGES

General information 3

Building Green Design Strategies 4-5

Orthographic Drawing 6-7

Climate Data 8-9

i. Temperature

ii. Relative Humidity

iii. Psychrometric Chart

Wind Speed and Direction 10-11

Sunpath & Lighting 11-12

i. Shadow Range Diagram

ii. Annual Sunpath

iii. Daily Sunpath Diagram

PASSIVE DESIGN FEATURES

Basic Building Design 13-17 i. Build Orientation ii. Building Configuration iii. Insulation

Windows and Roof light 18-20 i. Window ii. Roof light

REFERENCE 21

Page 3: Merged document 2

Page | 3

INTRODUCTION

The GEO building shows implementation of integrated design concepts, where active and passive

energy systems are interwoven into the building itself, and where several building elements also

serve as energy systems. This helps in bringing the extra costs of the building down. Advanced

computer design tools have been used throughout the design process. Designed at a time when the

awareness of building green is still at its infancy in this country, its energy efficient features scored

full points under the Energy Efficiency and Innovation criteria of the GBI.

Project Information

Type: Low Carbon Emission Office

Location: Bandar Baru Bangi

Climate Zone: Tropical

Site Area : 2 hectares

Building Gross Area : 4,000 m2

Height : 47.50 metres

Number of Rooms : 41 rooms

(Yoong, 2008, p. 67)

Design Philosophy The sustainable green building for today and the future.

Certification Pusat Tenaga Malaysia (Malaysia Energy Centre) is

previously known as ZEO (Zero Energy Office)

Building - officially Malaysia’s first Green Building

Index (GBI) Certified Building. Currently, it is known

as GEO (Green Energy Office) Building. It is also

Malaysia’s first completed green-rated office

building. (Pusat Tenaga Malaysia, 2008)

Page 4: Merged document 2

Page | 4

BUILDING GREEN DESIGN STRATEGIES

The building is lit primarily by daylight, supplemented by electric lighting only during very dark and

overcast periods. Extensive active energy efficiency measures are implemented in the building in

order to reduce the need for electricity to an absolute minimum, without compromising the request

for comfortable temperature and humidity and adequate lighting. These measures include among

others high efficiency pumps and fans, and use of energy efficient office equipment.

The GEO with its many innovative EE features is calculated to consume very little fossil fuels with a

designed building energy index ( BEI) of 65kWh/m2 year. Compared with others conventional office

building of 250-300 kWh/m2 year, GEO has proven its strategies. (Pusat Tenaga Malaysia, 2008)

The use of Renewable Energy ( RE) is also the significant feature of itself. The building incorporates

BiPV system which is architecturally and aesthetically integrated into building design.

GREEN DESIGN FEATURES: (Pusat Tenaga Malaysia, 2008)

- Daylighting (Basic Building Design) :Building uses diffused daylight for 100% natural daylighting.To take advantage of this diffused daylight, building is strategically positioned to ensure that most of its windows face north and south, in order to avoid direct sunlight and extensive heat gain. - Cooling and Energy Efficient Ventilation System: This system is made up of 50% radiant cooling and 50% air cooling (convection) system. The radiant cooling is achieved by the use of floor slab cooling where cold water polyethylene crosslink piping are embedded into the floors. - River Roof :Acts as the cooling tower or heat sink system for the building. It discharges heat into the ambient temperature ultilising the cool night sky radiation, 10-20 degree Celcius. -Building Integrated Photovoltaic System ( BIPW) : This system provides 50% of the electricity the building needs. The solar system provide up to 120,000 kWh/year of energy. -Rain Water Harvesting :The rain water is harvested to help conserve water in the building and reducing the use of treated water from utility. It used for cooling system condenser side, watering the landscaping and for general cleaning purposes.

Page 5: Merged document 2

Page | 5

AIR QUALITY

The perfect quality of air was achieved via the process of dehumidification. A single air handling unit

(AHU) is used for circulating the cool fresh air within the building and also for dehumidification

purposes. Dehumidification of air quality in buildings consumes a great amount of electricity; hence

a green tower is introduced.

The green tower, is a modular cooling tower that uses absolutely no electricity to power the fan. It

instead uses the water flow and pressure, that is already present in the processes. The tower runs at

a greater efficiency, as it replaces incoming humid fresh air with cooler air.

GREEN COOLING TOWER

MAIN CONTRIBUTORS TO LOW ENERGY CONSUMPTION

An energy efficient building envelope with energy efficient double glazing and well insulated

walls and roofs.

Use of daylight as the only source of lighting during daytime.

Use of energy efficient office equipment

Page 6: Merged document 2

Page | 6

ORTHOGRAPHIC DRAWING

SITE PLAN (Derived from Google Map)

Location : Section 9, Bandar Baru Bangi, Bangi, Selangor

Page 7: Merged document 2

Page | 7

SECTION

FLOOR PLAN

Page 8: Merged document 2

Page | 8

CLIMATE DATA TEMPERATURE

Over the course of a year, the maximum daily temperature typically varies from 31 D.C. to 32 D.C.

whereas the minimum daily temperature typically varies from 24 D.C. to 24.5 D.C.

RELATIVE HUMIDITY

The relative humidity typically ranges from 77% to 90% over the course of the year.

0

5

10

15

20

25

30

35

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Annual (2013) Temperature for Sepang, Malaysia

Average Maximum Temperature (Degree Celsius)

Average Minimum Temperature (Degree Celsius)

72

74

76

78

80

82

84

86

88

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Annual (2013) Relative Humidity for Sepang, Malaysia

Average Relative Humidity (%)

Page 9: Merged document 2

Page | 9

ANALYSIS

A RH of 100% denotes a foggy, wet, and saturated atmosphere. Levels below 40% RH suggest

dryness while levels above 80% RH suggest high presence of moisture. Between 40% and 80% RH, it

is a comfortable environment if the temperature is also comfortable. According to the chart above,

Sepang’s climate is rather humid as RH levels are mainly above 80% RH.

PSYCHROMETRIC CHART (Derived from Ecotech 2011 software)

This Psychrometric chart shows that Malaysia's dry bulb temperature is around 10-35 °C ,

which included the comfort zone . Moreover , absolute humidity (AH) is laid between 3-13

(g/m3), which included the comfort zone as well .

Page 10: Merged document 2

Page | 10

WIND SPEED AND DIRECTION (Derived from Ecotech 2011 software)

The wind speed and direction can be analysed using the diagram below.

Basically, winds come from all direction and the stronger winds are moving in from the

South-West direction , while winds blow higher frequency from South-East.

Page 11: Merged document 2

Page | 11

SUNPATH & LIGHTING (Derived from Ecotech 2011 software)

SHADOW RANGE DIAGRAM

0800-1200

1200-1700

Page 12: Merged document 2

Page | 12

ANNUAL SUNPATH DIAGRAM

DAILY SUNPATH DIAGRAM

0700 0900

1100 1300

1500 1700

Page 13: Merged document 2

Page | 13

Passive Design Feature 1 - Basic building design A. Building Orientation

According to the Malaysian Standard 1525 (MS1525), one of the passive design strategy is

orientation of building. The GEO building is considered well orientated because its long facades are

facing north and south, and short facades are facing east and west. (Department of Standards

Malaysia, 2007, p. 5) With this orientation direct sunlight only shines at the shorter facades in the

morning and evening.

West Facade

N

North Facade

South Facade

East Facade

Figure 1 Floor Plan

Figure 2 Geo building Sun Path

Page 14: Merged document 2

Page | 14

To avoid the entering of direct sunlight into the facades facing east and west, the building is

designed to have minimal windows at these two short facades. On the other hand, the longer

facades are filled with windows to allow maximum amount of daylighting to enter the building.

Natural lighting that enters the building through the long facades are diffused light, not direct

sunlight. Diffused light has lesser thermal impact compared to direct sunlight. Hence, with this

design strategy, the building is able to achieve higher thermal comfort. (Ng & Akasah, 2011, p.)

Figure 4 the north and south facade is filled with windows to allow daylighting

(Source: http://www.greenbuildingindex.org/why-green-buildings.html)

Figure 3 The east and west facades have minimal window (Source: http://wikimapia.org/619168/PTM-GEO-Building)

Page 15: Merged document 2

Page | 15

B. Building Configuration

Another passive design strategy mentioned in the MS1525 is the configuration of the

building. (Department of Standards Malaysia, 2007, p. 4) The GEO building has a “step-in” design.

The step-in design enables the building to be self-shaded by its own structure. (Ng & Akasah, 2011,

p. 221) In the section, it can be seen that the width of the floor increases as we go up the floors. This

is done to control glaring from direct sunlight. There are also extended walls that creates a vertical

shading system. Overhangs are also installed to aid the shading and glaring control. The extended

walls and the overhangs create an egg-crate-like design which helps the building to be well-

shaded.

Figure 5 Section of the building

Figure 6 Extended vertical walls at the North Facade

North South

Page 16: Merged document 2

Page | 16

The images below are created using Ecotect. The date was set to be 22nd September and the

façade used is the North facade. From the images, it can be seen that the GEO building is well-

shaded throughout the day. The orientation of the building and the building configuration had

contributed to the success of the shading system.

Figure 9 Shading at 6pm

Figure 8 Shading at 2pm

Figure 7 Shading at 10am

Page 17: Merged document 2

Page | 17

C. Insulation

Referring to the MS1525, the general requirement of the building envelope is to be able to

block out heat gain into buildings via conduction and solar radiation. (Department of Standards

Malaysia, 2007, p. 10) To achieve this, insulations are installed in the walls and the roof of the

building. The internal walls are installed with a layer of rock wool whereas the external walls are

installed with two layers of rock wool. This is because the external walls receive greater thermal

effects compared to the internal walls. (Ng & Akasah, 2011, p. 215)

The roofs are also insulated to reduce thermal transfer. The slanting roofs are insulated with

Mineral wool due to its excellent thermal insulation. However, mineral wool is vapour-permeable

causing it to be unsuitable for flat roof insulation. Hence, Styrofoam insulation is used in flat roofs. (Ng & Akasah, 2011, p. 215)

With the roof and wall insulations, the overall thermal transfer value (OTTV) of the building

can be reduced, hence achieving better thermal comfort. With the aid of air-conditioning and the

radiant cooling, the average temperature of the interior of the building is 24°C to 26°C. (Ng &

Akasah, 2011, p. 225)

Rock wool insulation

Wire Mesh

Cement mortar

Figure 10 internal wall insulation

Rock wool insulation

Wire Mesh

Cement mortar

Figure 11 external wall insulation

Figure 12 installation of Styrofoam during construction of the roof (Source: Malaysia Green Technology Corporation, 2010)

Figure 13 Mineral wool layer is installed on the slanting roof (Source: Malaysia Green Technology Corporation, 2010)

Figure 14 Indoor temperatures (Source : Yoong, 2008, p. 67)

Page 18: Merged document 2

Page | 18

Passive Design Feature 2 - Windows and Roof Light To minimize the use of artificial lighting, windows are placed along the long facades and roof

lights are placed on the top floor for natural lighting to reach the interior. The GEO building uses an

open space concept where the workstations are placed near the windows and use of partition is

minimal to enable light to reach all workstations. (Pusat Tenaga Malaysia, 2008)

The MS1525 also touched on the daylighting. It is mentioned that when designing with the

emphasis of natural daylighting, the solar gain has to be considered. (Department of Standards

Malaysia, 2007, p. 5) This can be controlled by using windows with suitable solar and thermal

properties and external and internal shading devices.

A. Windows

Double glazed windows are used to reduce heat gain in the interior. These windows

reflect ultraviolet and infrared radiation from the building’s exterior surface, reducing the heat transfer by 25%. With the use of radiant cooling through the floor slab and air-conditioning,

there is a maximum difference of 7°C between the indoor and outdoor temperatures. (Yoong, 2008,

p. 67)

The windows also use a unique system to avoid emission of direct sunlight into the

building. Overhangs are installed for shading purposes. On the overhangs, there are

Double pane glass

Argon Gas Gap

Indoor

Figure 16 Double Glazing Window

Reflected Heat

Outdoor

Figure 15 Floor Plan: Workstations are placed near windows.

N

Page 19: Merged document 2

Page | 19

reflective mirrors to reflect the diffused daylight into the building. Blinds are installed on the

upper windows to direct the light upwards to the internal daylight reflector. These reflectors

enables diffused daylight to be thrown deeper into the building. The blinds also act as a

barrier direct sunlight which comes from the above. By preventing direct sunlight from

entering the interior, heat gain in the building can be reduced greatly. The lower surface of

the blinds are white with low gloss whereas the upper surface of the blinds are reflective

aluminium to allow reflection. (Muhammad, 2014)

Blinds

Internal

daylight

reflector

Reflective mirror

Outdoor Indoor

Figure 17 pathway of diffused light through window

Figure 18 Overhangs from the exterior Figure 19 Internal Daylight Reflector (Source: Green Tech Malaysia, 2014)

Page 20: Merged document 2

Page | 20

B. Roof Light

On the highest floor, roof lights are installed to distribute diffused natural lighting which

carry less heat energy compared to direct sunlight. This is achieved through the installation

of mirror reflectors on the insides of the structure which serve to magnify light. A better

thermal comfort is achieve as direct sunlight do not enter the building. (Muhammad, 2014)

Direct Sunlight

Diffused Light Mirror Reflector

Figure 20 Pathway of diffused light from Roof light

Figure 21 Roof light from the roof (Source:http://www.uniten.edu.my/newhome/uplo

aded/coe/arsepe/2008/UNITEN ARSEPE 08 L24.pdf) Figure 22 Roof light from the resource centre