mesh learning for classifying cognitive processes · mesh learning for classifying cognitive...

39
Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman Vural* * Middle East Technical University, Ankara ** Koc University, Istanbul *** Google

Upload: others

Post on 16-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Mesh Learning for Classifying

Cognitive Processes

Mete Özay*, Orhan Fırat*

İlke Öztekin**, Uygar Öztekin***,

Fatoş T. Yarman Vural*

* Middle East Technical University, Ankara

** Koc University, Istanbul

*** Google

Page 2: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Motivation:

Can we model the brain

activities measured by fMRI as

a machine learning system?

Algorithms

that can

learn

Human Machine

2

Page 3: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Focus: Design a classifier to

model the distributed patterns of

activity in memory

Machine Human _

1.Training 1. Encoding: subject studies

objects from a category

2.Test 2. Retrieval: subject is

asked to recognize a test

object

3

Page 4: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

fMRI Data Acquisition

4

(Öztekin & McElree, 2007; Öztekin et al., 2009; Öztekin & Badre, 2011)

Page 5: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Image samples

5

Page 6: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

fMRI dataset

10 semantic categories:

animals, colors, furniture, body parts, fruits,

herbs, clothes, chemical elements, vegetables

and tools.

Dataset:

24 samples /category

240 training + 240 test samples from the encoding and retrieval phase and

Number of voxels:

Memory: 8142

Whole Brain: 82 600

6

Page 7: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

fMRI intensity values of a voxel

7

Page 8: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Spatial Distribution of Voxel

Intensities for a time instant t

8

Page 9: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

fMRI intensity values as a

function of time

9

State of the art

performance

~25-30% (e.g. Öztekin & Badre,

2011)

Page 10: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Spatio-temporal Distribution of

Voxel Intensities

10

Page 11: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Voxel intensity values for 10 class at 10

neighboring voxels

11

Page 12: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Difference of intensity values

between two neighboring voxels

12

Page 13: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Neurons are massively

interconnected Relationships among the voxels are more

discriminative then the individual voxel

intensity values to represent a certain

category

Need to model the relationships among the

voxels

13

Page 14: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

A Local Mesh Model:

1 , { , : , , }i j i k j k j l i lv t s v t s s s s s v t s D

1 1, { , , : , , , }c

p i j i k p i j j k j l i l p i jv t s v t s v t s s s s s v t s v t s

, , ,, ,k p

i j i j k i k i j

s

v t s a v t s

, ,, , ,p i j i j p i j kM v t s v t s a A

14

A voxel is represented in

a neighborhood system

Page 15: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Local Relational Features: LRF

1, 2, , . . . T

j j j N jA a a a

ε2ij

, , ,1 , ,2 , , ...i j i j i j i j pa a a a

Page 16: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Mesh Learning with Spatial

Neighborhood

16

Page 17: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Performance of Mesh Learner with Spatial

Neighborhood 10 class classification performances using 8142 voxels.

17

ICA: Independent component analysis

PCA: Principal Component Analysis

KPCA: Kernel Principal Component Analysis

Page 18: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Experiments on Mesh Learner with

Spatial Neighborhood

Single voxel performance for 10 classes. 18

Page 19: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

19

Page 20: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

20

Page 21: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Discussion on Mesh Learning

with Spatial Neighborhoods Spatial neighborhood with

L2-norm implies

anatomical surroundings

of a voxel; which may not

be the case in cognitive

process.

Selecting the optimal

value of p is not validated

and introduced as a user

parameter.

Employ functional

connectivity.

Find voxels which are

highly correlated to other

voxel. p changes for each

voxel.

21

Page 22: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Mesh Learning with Functional

Neighborhood

1. Need to define functional connectivity among

the voxels

2. Define Functional Neighborhood

3. Apply functional neighborhood to k-nn to and

select k-functionally-closest neighbors which

implies coupled-activation in cognitive

process

22

Page 23: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Functional Connectivity

Statistical association or

dependency among the

time series of voxels

23

Page 24: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Modeling Methods of Brain Using Connectivity

1. Find correlation between time series of two voxels, using a

correlation metric .

2. Construct correlation matrix by using correlation measure of

each pair of voxels. 24

Page 25: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Cross Correlation Metric

Cross-correlation of any two individual time-

series (i,j), at lag h, ρij(h) , is defined as

25

Page 26: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Scalability of Functional

Connections

Connectivity matrices are expensive in voxel

level, when no approximations are made

Considering functional relations of a voxel with

all other voxels;

8142 voxels makes 33M functional relations

26

Page 27: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Design and Use of Functional

Connectivity Cluster voxels by their locations

Measure correlation metric within clusters to

generate connectivity matrices

Use connectivity matrices to find functionally-

nearest neighbors

27

Page 28: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

k=256 sub-regions

k=256 of each

sub-regions

s≅35 voxels

. ...

.

Functional

connectivity map

among the clusters

Functional connectivity for each cluster, for a given class

28

Page 29: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Design of New Neighborhood System

Rather then selecting p-spatially closest points by

L2-norm; select p-functionally closest points

Select p-functionally closest points analyzing rows of

within-cluster connectivity matrix

Construct neighborhood-set with p-functionally

closest voxels and calculate LRF accordingly

29

Page 30: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Given a voxel Select p-Functionally

Closest Voxel(s)

Selecting p=4 functionally

closest voxels vj

For voxel vi in cluster ck

where i=1 and k=26;

Resulting neighbor indexes by

considering highly correlated

voxels in the cluster:

j={3,6,9,14}

30

Page 31: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Classification Performances (%) with Spatial and

Functional connectivity

% LRF Order Values with Functional Connectivity (p) Without FC (raw LRF)

2 3 4 5 6 7 8 9 10 8 9 10

k-nn 61,9384 62,3732 62,3551 64,4565 62,7899 64,0399 60,2717 61,9384 61,1051 56 56 57

Page 32: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Performance of Mesh Learning with

Functional Connectivities, p=10

32

Page 33: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

0,6250

0,7500

0,7917

0,6957

0,5417

0,6250

0,6667

0,7083 0,7083

0,5417

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10

Perf

orm

an

ce (

%)

Class Label

Knn Classification for Each Class with Best FC Aware LRF

Her sınıf için elde edilen en yüksek performans

değeri

Page 34: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Conclusion

Mesh Learning model

allows us to identify and differentiate classes

of information represented in the brain during

memory encoding and retrieval processes

Functional connectivity represents the mesh

better than the spatial connectivity

34

Page 35: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Implications

We ultimately aim to read minds

Better understand intention

Better interpret feedback

...

Although we are not there yet, we are as

close as we can get!

35

Page 36: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Thanks to Google

Project Website:

neuro.ceng.metu.edu.tr

36

Page 37: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman

Open Issues

Estimating the true number of clusters

Hierarchical neighbor selection

Network measures will be incorporated

Combination and use of between cluster

metrics

37

Page 38: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman
Page 39: Mesh Learning for Classifying Cognitive Processes · Mesh Learning for Classifying Cognitive Processes Mete Özay*, Orhan Fırat* İlke Öztekin**, Uygar Öztekin***, Fatoş T. Yarman