metal-assisted salphen organic frameworks (masofs) with ...c58 h42 n2zno 2·h 2o: c 78.95 h 5.05 n...

16
S1 Metal-assisted Salphen Organic Frameworks (MaSOFs) with High Surface Areas and Narrow Pore-Size Distribution -Supporting Information- Michael Mastalerz,* a Hans-Jochen S. Hauswald b and Raphael Stoll b a Institute of Organic Chemistry II & Advanced Materials, Ulm University, 89081 Ulm, Germany. Fax: +49(731-50-22840); Tel: +49(731- 50-22855); E-mail: [email protected] b RUBiospek, Ruhr-University of Bochum, D-44780 Bochum, Germany. Table of Content Page General Remarks…………………………………………………………..…………………...………………………………………….S2 Synthesis of nickel salphen 3a…………………………….………..………………………………………………………………...S2 Synthesis of zinc salphen 3b……………………….………..………..………………………………………..………………….….S2 Synthesis of MaSOF-1………………………………………………………………….……………………….….…………………..…S3 Synthesis of MaSOF-2………………………………………………………..……………………………………..…………..……..…S3 Figure S1. 1 H NMR spectrum of 3a….…………………………………………………………………………….………...….……S4 Figure S2. 13 C NMR spectrum of 3a………………………………………………….…………………………….………..………S4 Figure S3. MALDI TOF mass spectrum of 3a.….……………………………………………………..……….…………………S5 Figure S4. TGA of 3a in nitrogen atmosphere………………………………………………………………………...………..S5 Figure S5. 1 H NMR spectrum of 3b. …………………………………………….………………………………………...………..S6 Figure S6. 13 C NMR spectrum of 3b. ……………………………………………………………………………………...………..S6 Figure S7. MALDI TOF mass spectrum of 3b……………………………………………………………………………………..S7 Figure S8. FT-IR spectrum of 3b………………………………………………………………………………………………………..S7 Figure S9. 13 C MAS NMR spectrum of MaSOF-1………………………………………………………………………………..S8 Figure S10. TGA of as synthesized MaSOF-1 in measured N 2 -atmosphere………………………………………..S8 Figure S11. TGA of ” activated” MaSOF-1 measured in N 2 -atmosphere. …………………….………………..….S9 Figure S12. TGA of MaSOF-1 measured in O 2 -atmosphere. ………………………………….………………………....S9 Figure S13. BET plot of nitrogen sorption of MaSOF-1 at 77K……………………………….……………………..…S10 Figure S14. Langmuir plot of nitrogen sorption of MaSOF-1 at 77K………………………..…………………..….S10 Figure S15. Horvath-Kawazoe model derived pore size distribution of MaSOF-1………………..……..…..S11 Figure S16. 13 C MAS NMR spectrum of MaSOF-2…………………………………………………………………..……….S11 Figure S17. FT-IR spectrum of as-synthesized MaSOF-2………………………………………………………..………..S12 Figure S18. FT-IR spectrum of “activated” MaSOF-2……………………………………………………………..……….S12 Figure S19. TGA of as synthesized MaSOF-2 measured N 2 -atmosphere. ……………………………..…………S13 Figure S20. Nitrogen sorption of MaSOF-2 at 77K…………………………………………………………………..……..S13 Figure S21. BET plot of nitrogen sorption of MaSOF-2 at 77K………………………………………….………..……S14 Figure S22. Langmuir plot of nitrogen sorption of MaSOF-2 at 77K…………………………………………..……S14 Figure S23. NL-DFT derived pore size distribution of MaSOF-2……………………………………………………….S15 Figure S24. HK derived pore size distribution of MaSOF-2………………………………………………………………S15 Figure S25. Comparison of hydrogen adsorption of MaSOF-1 and MaSOF-2 at 77 and 87 K…..…..….S16 Figure S26. Heat of hydrogen adsorption forMaSOF-1 and MaSOF-2 …..…..…………………………………..S16 References……………………………………………………………….……………………………………………………………………S16 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Upload: others

Post on 24-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

S1

Metal-assisted Salphen Organic Frameworks (MaSOFs) with

High Surface Areas and Narrow Pore-Size Distribution

-Supporting Information-

Michael Mastalerz,*a Hans-Jochen S. Hauswald

b and Raphael Stoll

b

a Institute of Organic Chemistry II & Advanced Materials, Ulm University, 89081 Ulm, Germany. Fax: +49(731-50-22840); Tel: +49(731-

50-22855); E-mail: [email protected] b RUBiospek, Ruhr-University of Bochum, D-44780 Bochum, Germany.

Table of Content Page

General Remarks…………………………………………………………..…………………...………………………………………….S2

Synthesis of nickel salphen 3a…………………………….………..………………………………………………………………...S2

Synthesis of zinc salphen 3b……………………….………..………..………………………………………..………………….….S2

Synthesis of MaSOF-1………………………………………………………………….……………………….….…………………..…S3

Synthesis of MaSOF-2………………………………………………………..……………………………………..…………..……..…S3 Figure S1. 1H NMR spectrum of 3a….…………………………………………………………………………….………...….……S4 Figure S2. 13C NMR spectrum of 3a………………………………………………….…………………………….………..………S4

Figure S3. MALDI TOF mass spectrum of 3a.….……………………………………………………..……….…………………S5

Figure S4. TGA of 3a in nitrogen atmosphere………………………………………………………………………...………..S5

Figure S5. 1H NMR spectrum of 3b. …………………………………………….………………………………………...………..S6 Figure S6. 13C NMR spectrum of 3b. ……………………………………………………………………………………...………..S6 Figure S7. MALDI TOF mass spectrum of 3b……………………………………………………………………………………..S7

Figure S8. FT-IR spectrum of 3b………………………………………………………………………………………………………..S7

Figure S9. 13C MAS NMR spectrum of MaSOF-1………………………………………………………………………………..S8 Figure S10. TGA of as synthesized MaSOF-1 in measured N2-atmosphere………………………………………..S8 Figure S11. TGA of ” activated” MaSOF-1 measured in N2-atmosphere. …………………….………………..….S9 Figure S12. TGA of MaSOF-1 measured in O2-atmosphere. ………………………………….………………………....S9

Figure S13. BET plot of nitrogen sorption of MaSOF-1 at 77K……………………………….……………………..…S10

Figure S14. Langmuir plot of nitrogen sorption of MaSOF-1 at 77K………………………..…………………..….S10

Figure S15. Horvath-Kawazoe model derived pore size distribution of MaSOF-1………………..……..…..S11 Figure S16. 13C MAS NMR spectrum of MaSOF-2…………………………………………………………………..……….S11 Figure S17. FT-IR spectrum of as-synthesized MaSOF-2………………………………………………………..………..S12 Figure S18. FT-IR spectrum of “activated” MaSOF-2……………………………………………………………..……….S12 Figure S19. TGA of as synthesized MaSOF-2 measured N2-atmosphere. ……………………………..…………S13

Figure S20. Nitrogen sorption of MaSOF-2 at 77K…………………………………………………………………..……..S13 Figure S21. BET plot of nitrogen sorption of MaSOF-2 at 77K………………………………………….………..……S14

Figure S22. Langmuir plot of nitrogen sorption of MaSOF-2 at 77K…………………………………………..……S14

Figure S23. NL-DFT derived pore size distribution of MaSOF-2……………………………………………………….S15 Figure S24. HK derived pore size distribution of MaSOF-2………………………………………………………………S15 Figure S25. Comparison of hydrogen adsorption of MaSOF-1 and MaSOF-2 at 77 and 87 K…..…..….S16 Figure S26. Heat of hydrogen adsorption forMaSOF-1 and MaSOF-2 …..…..…………………………………..S16 References……………………………………………………………….……………………………………………………………………S16

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S2

General Remarks: Melting points (not corrected) were measured with a Büchi Melting Point B-545. IR-Spectra were recorded as KBr-pellets on a Perkin Elmer Spectrum 2000 FT-IR spectrometer. Thermal gravimetric analyses were measured on a Mettler Toledo, TGA/SDTA 851 with a heating rate of 10 °C/min and a nitrogen (or oxygen) flow of 50 mL/min. NMR spectra were recorded on a Bruker DRX 400 at 278 K at 400 MHz (1H) and 100 MHz (13C) or on a Bruker DRX 500 at 500 MHz (1H) or 125 MHz (13C). 13C MAS NMR spectra were measured on a Bruker DS400WB calibrated on adamantane as external standard (38.48 ppm) with the pulse program CP4C.98 (parameters are as follows: rotational frequence: 10 KHz and 12KHz, 7000 scans, D1: 3s, Aq: 50ms, contact puls: 4ms, broadband decoupling: TPPM, BF1: 100.564993 MHz, O1p 100ppm, SW 267.3 ppm, BF2 399.94, O2p: 8ppm, p3: 3us).S1 MALDI-TOF MS experiments were carried out on a Bruker Daltonik Reflex III with DCTB (98.5%, Aldrich) as matrix. Elemental analyses were determined with an Elementar Vario EL. PXRD-measurements were taken on a PANalytical X’Pert MPD Pro using copper radiation (Kα1 =1.5405980 Å).The surface areas and porosities of cage compounds were characterized by nitrogen adsorption and desorption analysis at 77.35 K with an autosorb computer controlled surface analyzer (AUTOSORB-1, Quantachrome). Each sample was degassed at 200 °C for 24 h before analysed. The Brunauer-Emmett-Teller (BET) surface area was calculated assuming a value of 0.162 nm2 for the cross-sectional area of the nitrogen molecules in the pressure range P/P0 = 0.01-0.1. The Non linear–differential function theory (NL-DFT model) and isotherm data were used to calculate the pore size distribution. Salicylaldehydes 1 and 4 were synthesized by procedures published before.S2

Synthesis of nickel salphen 3a: In a screw-capped vessel salicylaldehyde 1 (116 mg, 0.32 mmol), o-

phenylenediamine 2 (20 mg, 0.18 mmol) and nickel acetate tetrahydrate (48 mg, 0.17 mmol) were

suspended in ethanol (8 mL) and heated to 100 °C for 17 h. After cooling to room temperature, the

red colored precipitate was collected by filtration, washed with ethanol (2 x 2 mL) and dried in

vacuum (9.7·10-2 mbar) to give 112 mg (82%) of nickel salphen 3a as wine red solid. Mp. > 410 °C. 1H

NMR (500 MHz, DMSO-d6, 375 K) δ (ppm) = 8.61 (s, 2H), 8.06 (dd, J = 6.3, 3.3 Hz, 2H), 7.45 (d, J = 2.6

Hz, 2H), 7.31 (t, J = 7.7 Hz, 12H), 7.27-7.17 (m, 20H), 7.02 (dd, J = 9.1, 2.6 Hz, 2H), 6.81 (d, J = 9.1 Hz,

2H). 13C NMR (126 MHz, CDCl3) δ = 165.5, 154.4, 146.6, 142.8, 139.9, 134.3, 133.4, 131.1, 127.6,

127.2, 126.1, 121.3, 118.7, 114.9, 64.0. FT-IR (KBr) ṽ (cm-1) = 3054 (w), 3026 (w), 1616 (vs), 1600 (s),

1574 (s), 1520 (s), 1490 (s), 1459 (s), 1445(m), 1419 (w), 1389 (w), 1360 (w), 1335 (w), 1255 (w), 1189

(m), 1164 (w), 1111 (w), 1083 (w), 1035 (w), 1001 (w), 969 (w), 943 (w), 834 (m), 744 (m), 706 (s), 647

(w), 632 (m), 563 (m), 541 (m), 506 (w). MALDI-TOF MS (DCTB) m/z = 856 (M+), Elemental analysis

calcd. for C58H42N2NiO2: C 81.22 H 4.94 N 3.27, found 80.95 H 4.93 N 3.23

Synthesis of zinc salphen 3b: In a screw-capped vessel salicylaldehyde 1 (110 mg, 0.30 mmol), o-

phenylenediamine 2 (19 mg, 0.18 mmol) and zinc acetate dihydrate (33 mg, 0.15 mmol) were

suspended in ethanol (6 mL) and heated to 80 °C for 3d. After cooling to room temperature, the

bright yellow precipitate was collected by filtration, washed with ethanol (3 x 1 mL) and dried in

vacuum (9.7·10-2 mbar) to give 90 mg (69%) of zinc salphen 3b as bright yellow solid. Mp. 350 °C

(dec.). 1H NMR (500 MHz, DMSO-d6, 375 K): δ = 8.70 (s, 1H), 8.00-7.58 (m, 1H), 7.50-7.12 (m, 18H),

7.04-6.91 (m, 1H), 6.65 (d, J = 9.0 Hz, 1H), 1.85 (s, 1H). 13C NMR (126 MHz, DMSO-d6): δ = 170.5,

162.0, 146.5, 139.0, 136.9, 136.1, 130.1, 130.0, 127.0, 126.5, 125.2, 121.9, 117.6, 115.9, 63.3. FT-IR

(KBr) ṽ (cm-1) = 3055 (w), 3026 (w), 1615 (vs), 1581 (m), 1519 (m), 1474 (m), 1445(m), 1419 (m), 1383

(m), 1286 (w), 1174 (m), 1035 (w), 834 (m), 747 (m), 703 (s), 646 (w), 624 (m), 546 (m). MALDI-TOF

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S3

MS (DCTB) m/z = 863 (M)+, 886 (M+Na)+, 1726 (2M)+, 1749 (2M+Na)+.Elemental analysis calcd. for

C58H42N2ZnO2·H2O: C 78.95 H 5.05 N 3.17, found 78.82 H 4.94 N 3.15

Synthesis of MaSOF-1: In a screw-capped vessel tetrakis salicylaldehyde 4 (25 mg, 0.05 mmol), o-

phenylenediamine 2 (11 mg) and nickel acetate tetrahydrate (29 mg) were suspended in DMF (4 mL)

and heated without stirring at 100 °C for 3d. The mixture was cooled to room temperature and the

dark red solid collected on a Büchner funnel. The solid was extensively washed with several portions

of ethanol until the extraction solution shows no further coloration. Drying in air gives 56 mg of

MaSOF-1as. The brown-red solid was further dried at 200 °C in high vacuum, resulting in 38 mg (98%)

of MaSOF-1 as reddish brown solid. 13C MAS NMR: δ (ppm) = 166, 159-153, 147-110, 62. FT-IR (KBr) ṽ

(cm-1) = 3429 (br, s), 1612 (vs), 1576 (s), 1523 (s), 1489 (s), 1464 (s), 1416 (w), 1377 (w), 1321 (w),

1255 (w), 1195 (m), 814 (m), 751 (m), 642 (w), 550 (m). Elemental analysis calcd. for

C41H24N4Ni2O4·2/3DMF·7H2O (MaSOF-1as): C 55.60 H 4.63 N 7.04, found 55.53 H 3.86 N 7.03.

Synthesis of MaSOF-2: In a screw-capped vessel tetrakis salicylaldehyde 4 (26 mg, 0.05 mmol), o-

phenylenediamine 2 (11 mg) and zinc acetate dihydrate (24 mg) were suspended in DMF (4 mL) and

heated without stirring at 100 °C for 3d. The mixture was cooled to room temperature and the bright

yellow solid collected on a Büchner funnel. The solid was extensively washed with several portions of

ethanol until the extraction solution shows no further coloration. yellow solid was further dried at

200 °C in high vacuum, resulting in 35 mg (91%) of MaSOF-2 as yellow powder. 13C MAS NMR: δ

(ppm) = 166, 159-153, 146-109, 61. FT-IR (KBr) ṽ (cm-1) = 3434 (br, s), 2924 (w), 1615 (vs), 1582 (m),

1523 (m), 1473 (m), 1381 (m), 1308 (w), 1177 (m), 747 (m), 634 (m), Elemental analysis calcd. for

C41H24N4Zn2O4·1/3DMF·3H2O (MaSOF-1as): C 59.64 H 3.85 N 7.18, found 59.63 H 3.90 N 7.58.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S4

2.05

2.48

33.78

2.05

1.98

2.00

6.80

6.82

7.00

7.01

7.02

7.03

7.20

7.21

7.23

7.29

7.31

7.32

7.45

7.46

8.05

8.06

8.06

8.07

8.61

Figure S1. 1H NMR spectrum (400 MHz, DMSO-d6) of 3a.

Figure S2. 13C NMR spectrum (125 MHz, DMSO-d6)of 3a.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S5

85

6.4

0

200

400

600

800

Inte

ns. [a

.u.]

400 600 800 1000 1200 1400 1600 1800m/z

85

6.4

857

.4

85

9.4

85

8.5

860

.4

879

.4

200

400

600

800

Inte

ns. [a

.u.]

850 855 860 865 870 875 880 885 890m/z

Figure S3. MALDI TOF mass spectrum of 3a.

Methodenname: 25-1100°C 10°C/min 50ml/min N2 -BK

Probenhalter: Alox 70ul

Probe: OC2 mas MM 308 roh, 5,6386 mg

Stufe -33,3900 %

-1,8827 mg

Rückstand 58,2325 %

3,2835 mg

Linke Grenze 493,11 °C

Rechte Grenze 519,74 °C

Wendepunkt 511,11 °C

Mittelpunkt 509,16 °C

? Stufe -8,3628 %

-0,4715 mg

Rückstand 91,6224 %

5,1662 mg

Linke Grenze 29,17 °C

Rechte Grenze 493,11 °C

Wendepunkt 493,11 °C

Mittelpunkt 482,71 °C

%

40

50

60

70

80

90

100

min0 10 20 30 40 50 60 70 80 90 100

%

40

50

60

70

80

90

100

°C100 200 300 400 500 600 700 800 900 1000

SSSS T AT AT AT A RRRR eeee SW 9 .3 0 SW 9 .3 0 SW 9 .3 0 SW 9 .3 0La b : M e ssu ngLa b : M e ssu ngLa b : M e ssu ngLa b : M e ssu ng Figure S4. TGA of 3a in nitrogen atmosphere.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S6

Figure S5. 1H NMR spectrum (400 MHz, DMSO-d6)of 3b.

63.27

115.90

117.56

121.91

125.24

126.46

126.96

130.01

130.11

136.14

136.90

138.97

146.51

161.99

170.48

Figure S6. 13C NMR spectrum (125 MHz, DMSO-d6)of 3b.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S7

86

2.8

17

29

.6

88

5.8

17

53

.6

0

200

400

600

Inte

ns. [a

.u.]

400 600 800 1000 1200 1400 1600 1800m/z

862

.8

86

3.8

86

6.7

865

.8

867

.8

86

4.7

88

5.8

86

8.8

887

.8

88

8.8

88

9.8

88

6.8

89

0.8

200

400

600

Inte

ns. [a

.u.]

860 865 870 875 880 885 890m/z

17

29

.6

17

30

.6

172

8.6

173

1.6

17

32

.5

172

6.6

17

33.6

172

7.6

17

25.6

17

53

.6

17

34

.6 17

52.6

17

51

.6

175

0.6

174

8.7

173

5.7

175

5.6

17

56

.6

17

49.6 17

54

.6

0

50

100

150

200

250

300

Inte

ns. [a

.u.]

1720 1725 1730 1735 1740 1745 1750 1755 1760m/z

Figure S7. MALDI TOF mass spectrum of 3b.

Figure S8. FT-IR spectrum of 3b.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S8

Figure S9. 13C MAS NMR spectrum of MaSOF-1.

Probenhalter: Alox 70ul

Methodenname: 25-1100°C 10°C/min 50ml/min N2 -BK

Stufe -8,3878 %

-0,2762 mg

Rückstand 42,9151 %

1,4131 mg

Linke Grenze 764,78 °C

Rechte Grenze 962,23 °C

Wendepunkt 779,76 °C

Mittelpunkt 846,80 °C

Stufe -8,4803 %

-0,2792 mg

Rückstand 51,3028 %

1,6893 mg

Linke Grenze 633,24 °C

Rechte Grenze 764,78 °C

Wendepunkt 662,42 °C

Mittelpunkt 692,59 °C

Stufe -11,3749 %

-0,3746 mg

Rückstand 59,7839 %

1,9686 mg

Linke Grenze 398,42 °C

Rechte Grenze 633,23 °C

Wendepunkt 603,38 °C

Mittelpunkt 551,52 °C

Stufe -2,8185 %

-92,8091e-03 mg

Rückstand 71,1612 %

2,3432 mg

Linke Grenze 312,92 °C

Rechte Grenze 398,36 °C

Wendepunkt 354,56 °C

Mittelpunkt 354,31 °C

Stufe -0,9931 %

-32,7021e-03 mg

Rückstand 73,9797 %

2,4360 mg

Linke Grenze 274,68 °C

Rechte Grenze 312,92 °C

Wendepunkt 289,65 °C

Mittelpunkt 293,82 °C

Stufe -15,2289 %

-0,5015 mg

Rückstand 74,9730 %

2,4687 mg

Linke Grenze 86,64 °C

Rechte Grenze 274,67 °C

Wendepunkt 161,97 °C

Mittelpunkt 166,28 °C

? Stufe -9,7981 %

-0,3226 mg

Rückstand 90,2019 %

2,9702 mg

Linke Grenze 23,77 °C

Rechte Grenze 86,64 °C

Wendepunkt 45,23 °C

Mittelpunkt 46,06 °C

%

40

50

60

70

80

90

100

min0 10 20 30 40 50 60 70 80 90 100

%

40

50

60

70

80

90

100

°C100 200 300 400 500 600 700 800 900 1000

Probe: OC2 MM 314a-as, 3,2928 mg

OC2 M M 314 a -asOC2 M M 314 a -asOC2 M M 314 a -asOC2 M M 314 a -as 1 2 .1 0 . 2 01 0 12 : 16 :421 2 .1 0 . 2 01 0 12 : 16 :421 2 .1 0 . 2 01 0 12 : 16 :421 2 .1 0 . 2 01 0 12 : 16 :42

Figure S10. TGA of as synthesized MaSOF-1 measured in N2-atmosphere.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S9

Methodenname: 25-1100°C 10°C/min 50ml/min N2 -BK

Probe: OC2 mim MM 314a-act, 4,0910 mg

%

50

55

60

65

70

75

80

85

90

95

100

min0 10 20 30 40 50 60 70 80 90 100

%

50

55

60

65

70

75

80

85

90

95

100

°C100 200 300 400 500 600 700 800 900 1000

M M 314 a -actM M 314 a -actM M 314 a -actM M 314 a -act 2 6 .1 1 . 2 01 0 13 : 56 :302 6 .1 1 . 2 01 0 13 : 56 :302 6 .1 1 . 2 01 0 13 : 56 :302 6 .1 1 . 2 01 0 13 : 56 :30

SSSS T AT AT AT A RRRR eeee SW 9 .3 0 SW 9 .3 0 SW 9 .3 0 SW 9 .3 0La b : M e ssu ngLa b : M e ssu ngLa b : M e ssu ngLa b : M e ssu ng Figure S11. TGA of ” activated” MaSOF-1 measured in N2-atmosphere.

Probenhalter: Alox 70ul

Stufe -71,9706 %

-2,3284 mg

Rückstand 20,0310 %

0,6480 mg

Linke Grenze 278,31 °C

Rechte Grenze 440,24 °C

Wendepunkt 316,19 °C

Mittelpunkt 347,40 °C

? Stufe -7,9753 %

-0,2580 mg

Rückstand 91,9355 %

2,9743 mg

Linke Grenze 24,72 °C

Rechte Grenze 279,51 °C

Wendepunkt 43,54 °C

Mittelpunkt 60,59 °C

Methodenname: 25-1100°C 10°C/min 50ml/min O2-Blind

Probe: OC2 mim mm314a-act, 3,2352 mg

%

20

30

40

50

60

70

80

90

100

min0 10 20 30 40 50 60 70 80 90 100

%

20

30

40

50

60

70

80

90

100

°C100 200 300 400 500 600 700 800 900 1000

SSSS T AT AT AT A RRRR eeee SW 9 .3 0 SW 9 .3 0 SW 9 .3 0 SW 9 .3 0La b : M e ssu ngLa b : M e ssu ngLa b : M e ssu ngLa b : M e ssu ng Figure S12. TGA of MaSOF-1 measured in O2-atmosphere.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S10

relative pressure, P/P0

1/[W

((P

0/P

)-1)

]

y = 5,3661x + 0,0089R² = 1,C = 605

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14

Figure S13. BET plot of nitrogen sorption of MaSOF-1 at 77K.

relative pressure, P/P0

(P/P

0)/W

y = 4,6993x + 0,0217R² = 0,999

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14

Figure S14. Langmuir plot of nitrogen sorption of MaSOF-1 at 77K.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S11

pore width, [Å]

Pore

vo

lum

e, [

cm3/Å

/g]

0

0,01

0,02

0,03

0,04

0,05

0,06

2 4 6 8 10 12 14 16 18 20

Figure S15. Horvath-Kawazoe model derived pore size distribution of MaSOF-1.

Figure S16. 13C MAS NMR spectrum of MaSOF-2.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S12

Figure S17. FT-IR spectrum of as-synthesized MaSOF-2.

Figure S18. FT-IR spectrum of “activated” MaSOF-2.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S13

Methodenname: 25-1100°C 10°C/min 50ml/min N2 -BK

Probenhalter: Alox 70ul

Probe: OC2 MM 314B-as, 3,6896 mg

Stufe -9,9419 %

-0,3668 mg

Rückstand 65,6751 %

2,4231 mg

Linke Grenze 473,08 °C

Rechte Grenze 653,15 °C

Wendepunkt 603,93 °C

Mittelpunkt 582,40 °C

Stufe -3,5089 %

-0,1295 mg

Rückstand 75,6171 %

2,7899 mg

Linke Grenze 315,49 °C

Rechte Grenze 473,08 °C

Wendepunkt 419,29 °C

Mittelpunkt 408,71 °C

Stufe -12,6912 %

-0,4682 mg

Rückstand 79,1260 %

2,9194 mg

Linke Grenze 94,63 °C

Rechte Grenze 315,49 °C

Wendepunkt 171,59 °C

Mittelpunkt 179,30 °C

? Stufe -7,9899 %

-0,2948 mg

Rückstand 91,8172 %

3,3877 mg

Linke Grenze 26,27 °C

Rechte Grenze 94,63 °C

Wendepunkt 42,44 °C

Mittelpunkt 48,93 °C

%

30

40

50

60

70

80

90

100

min

°C100 200 300 400 500 600 700 800 900 1000

0 10 20 30 40 50 60 70 80 90 100

OC2 M M 31 4 B-asOC2 M M 31 4 B-asOC2 M M 31 4 B-asOC2 M M 31 4 B-as 0 2 .0 8 . 2 01 1 17 : 14 :050 2 .0 8 . 2 01 1 17 : 14 :050 2 .0 8 . 2 01 1 17 : 14 :050 2 .0 8 . 2 01 1 17 : 14 :05

Figure S19. TGA of as synthesized MaSOF-2 measured N2-atmosphere.

0

50

100

150

200

250

300

350

400

450

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

relative pressure, P/P0

Vo

lum

e@ST

P, c

m3 /

g

Figure S20. Nitrogen sorption of MaSOF-2 at 77K.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S14

y = 5,5195x + 0,0049R² = 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,02 0,04 0,06 0,08 0,1 0,12

relative pressure, P/P0

1/[W

((P

0/P

)-1)

]

Figure S21. BET plot of nitrogen sorption of MaSOF-2 at 77K.

y = 4,8951x + 0,0169R² = 0,9993

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,02 0,04 0,06 0,08 0,1 0,12

relative pressure, P/P0

(P/P

0)/W

Figure S22. Langmuir plot of nitrogen sorption of MaSOF-2 at 77K.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S15

0

0,01

0,02

0,03

0,04

0,05

0,06

0 10 20 30 40 50 60

pore width, [Å]

Pore

vo

lum

e, [

cm3 /

Å/g

]

Figure S23. NL-DFT derived pore size distribution of MaSOF-2.

0

0,01

0,02

0,03

0,04

0 1 2 3 4 5 6 7 8 9

pore width, [Å]

Pore

vo

lum

e, [

cm3 /

Å/g

]

Figure S24. HK derived pore size distribution of MaSOF-2.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

S16

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

MaSOF-1, 77K

MaSOF-1, 87K

MaSCOF-2, 77K

MaSCOF-2, 87K

Vo

lum

e@

ST

P, c

m3/g

pressure, mmHg

Figure S25. Comparison of hydrogen adsorption of MaSOF-1 and MaSOF-2 at 77 K and 87 K.

5,00

5,50

6,00

6,50

7,00

7,50

8,00

8,50

9,00

20 30 40 50 60 70 80

MaSOF-2

MaSOF-1

Adsorbed Volume, cm3/g

He

ats

of

Ad

sorp

tio

n,

kJ/

mo

l

Figure S26. Heat of hydrogen adsorption of MaSOF-1 and MaSOF-2 at 77 K and 87 K.

References: S1

E. O. Stejskal, J. D. Memory, High-Resolution NMR in the solid state, Fundamentals of CP MAS

NMR. Oxford University Press, 1994. S2 M. Mastalerz, I. M. Oppel, Eur. J. Org. Chem., 2011, DOI5971-5980.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011