metal ligand bonding 2008 9

Upload: roza-faradilla

Post on 06-Feb-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Metal Ligand Bonding 2008 9

    1/48

    Metal-Ligand and Metal-Metal Bonding Core Module 4

    RED

    z

    x

    y

    (n+1)

    (n+1)

    px py pz

    s

    n

    dxy dxz dyz

    d x2-y2

    d z2Metal-ligand and metal-metal bonding of the transition metal elementsModule 4

    Lecture 1:

  • 7/21/2019 Metal Ligand Bonding 2008 9

    2/48

    SynopsisRecap of trends of the transition metals. Nomenclature (, h), coordination number and electron counting.

    Lecture 2:W

    y complexes form. 18-electron rule. Recap of molecular orbital t

    eory. s-donor ligand

    (hydride complexe

    ). Con

    truction and interpretation of octahedral ML6 molecular orbital energy diagram

    Lecture 3:p-acce

    tor ligands, synergic bonding, CO, CN

    , N2,

    Lecture 4:Alkenes and alkynes. Dewar

    Duncanson

    Chatt model.

    Lecture 5:M(H2) vs M(H)2, Mn(O2) com

    lexes, O2, NO, PR3.

    Lecture 6:p-donor ligands, metal

    ligand multi

    le bonds, O2

    , R2N

    , RN2

    , N3

    . Electron counting revisited.

    Lecture 7:ML6 molecular orbital energy diagrams incor

    orating p-acce

    tor and p-don

    r ligands. Relationshi

    to s

    ectrochemical series, and the trans

    effect.

    Lecture 8:Bridging ligands, Metal

    Metal bonds, d-bon ing.

    WorkshopLearning Objectives: by the en

    of the course you shoul

    be able to

    i) use common nomenclature in transition metal chemistry.ii) count valence electrons an

    etermine metal oxi

    ation state in transition metal complexes. iii) Un

    erstan

    the physical basis of the 18-electron rule

    .iv) appreciate the synergic nature of bon

    ing in metal carbonyl complexes.v) un

    erstan

    the relationship between CO, the 'classic' p

    acce

    tor and related ligands such asNO, CN, and N2.vi) describe the Dewar

    Duncanson Chatt model for metal

    alkene and metal

    alkynebonding.vii) understand the affect of metal binding on the reactivity of a coordinatedalkene.viii) describe the nature of the interaction between h2-bound diatomic molecules(H2, O2) and t

    eir relations

    ip to p

    acce

    tor ligands.ix) describe how H2 (and O2) can react with metal com

    lexes to generate metal hydrides and oxides.

    x) describe the difference between p

    acce

    tor and p

    donor ligands, and why exce

    tions to the18

    electron rule occur mainly for the latter.xi) qualitatively describe metal

    ligand multi

    le bonding xii) understand the origin of the s

    ectrochemical series.xiii) calculate bond orders in metal

    metal bonding s

    ecies, and understand the strengths and limitations of the bond order conce

    t.xiv) describe the nature of the quadru

    le bond in Re2Cl82

    ,

    articularly the d component, an

    triple bon

    compoun

    s inclu

    ing Mo2(NEt2)6.xv)

    escribe metal-ligan

    an

    metal-metal bon

    ing using molecular orbital ener

  • 7/21/2019 Metal Ligand Bonding 2008 9

    3/48

    gy

    iagrams.

    Bibliography:

    Shriver an

    Atkins Inorganic Chemistry Ch 8, 9,16.Cotton, Wilkinson, Murillo an

    Bochmann A

    vance

    Inorganic ChemistryCh11, 16Greenwoo

    an

    Earnshaw Chemistry of the Elements Ch 19, 20-28. Owen an

    BrookerA Gui

    e to Mo

    ern Inorganic Chemistry Mayer an

    Nugent Metal-Ligan

    Multiple Bon

    s

    Further rea

    ingElectron Counting Huheey, Keiter an

    Keiter, Inorganic Chemistry, 4th E

    pages625-630.Bon

    ing Murrell, Kettle an

    Te

    er The Chemical Bon

    Tetrahe

    ron, 1982, 38, 1339. H2 Angew. Chem. Int.E

    ., Engl. 1993, 32, 789.O2 Chem. Rev. 1994, 3 (various articles)

    Associate

    Courses

    AKDK Transition metal chemistry1st year VC Structure an

    bon

    ing1st year JEM Molecular orbitals

    1st year RNP Group theory2n

    year KWSurface Chemistry 2n

    year JML Transition metal organometallics2n year SBD Inorganic mechanisms I

    2n

    year MCRC Vibrational spectroscopy2n

    yearMCRC Photoelectron spectroscopy2n

    year AKDK Main group clusters an

    organometallics3r

    year RED Inorganic materials chemistry

    3r

    year RED Inorganic mechanisms II3r

    yearCatalysis option mo

    uleWhy is metal ligan

    bon

    ing important?

    Catalysts e.g. polymers, pharmaceuticals, bulk chemicals

    Ti Cl Ph3PCl Ph3P

    PPh3

    Rh H

    [(h5- C5H5)2TiCl2[R

    (H)(PP

    3)3]

  • 7/21/2019 Metal Ligand Bonding 2008 9

    4/48

    Bioc

    emistry e.g. oxygen transport, p

    otosynt

    esis, enzymes, medicines, poisons

    proteinHN O

    N OproteinHN O

    N ON Fe N oxygen binding

    N Fe N

    N NO-

    N O N OO-

    O O

    `Organic' c

    emistry met

    odology e.g. M(CO)3 arenes, Pd catalysed C-X (X = C, N, S, O) bond formation, metat

    esis.

    en

    anced nucleop

    ilic substitutionen

    anced solvolysis

    X X

    en

    anced acidity HH Hsteric

    indranceCrOC CO CO

    en

    anced acidity

    R

    R-CrOC CO COT

    is course is primarily concerned wit

    t

    e transition metals (`d-block' metals).

    Recap

  • 7/21/2019 Metal Ligand Bonding 2008 9

    5/48

    Important trends:

    1. Radius (Covalent/ionic) :- Increases from rig

    t to left and down a group.

    2. Electropositivity:- electropositive c

    aracter increases from rig

    t to left and down a group.

    T

    e trends observed in 1 and 2 are a result of t

    e effective nuclear c

    arge (Zeff) t

    at is a consequence of s

    ielding and penetration. s > p> d > f

    T

    e relatively very poor s

    ielding of an electron in an f-orbital results in a steady decrease in t

    e radii of t

    e lant

    anides (approximately 25%). T

    is is known as t

    e lant

    anide contraction. Wit

    respect to t

    e transition metals t

    e resul

    t is t

    at t

    e radii of t

    e 2nd and 3rd row transition metals are very similar.E.g. Co(III) (0.55), R

    (III) (0.67), Ir(III) (0.68). T

    is

    as repercussions inmetal- ligand bonding and

    ence c

    emical properties. In general w

    en descendinga group t

    e 1st row transition metal is distinct in terms of its bonding and properties from t

    e 2nd and 3rd row metals.

    3. Variety in oxidation state:- earlier metals (group 4 to 7) ex

    ibit t

    e greatest variety in oxidation state. Hig

    er oxidation states more commonly observed for 2nd and 3rd row metals.

    e.g. Fe(III), Ru(VIII), Os (VIII).

    Ionic vs covalent bonding

    T

    e 3d orbitals in t

    e first row metals are not as diffuse as t

    e 2nd and 3rd row 4d and 5d orbitals. T

    is leads to a larger ionic component in t

    e bonding of first row metal complexes. However in many cases t

    e bonding in 3d metals can bedescribed using covalent t

    eories suc

    as molecular orbital t

    eory.Compare t

    is to t

    e 4f orbitals of t

    e lant

    anides t

    at are essentially coreorbitals and cannotparticipate significantly in covalent bonding. T

    e bonding in lant

    anide complexes can be considered almost totally ionic and t

    ey are often considered to be more similar to t

    e alkaline eart

    metals t

    an t

    e transition metals.Nomenclature and electron counting

  • 7/21/2019 Metal Ligand Bonding 2008 9

    6/48

    h

    apticity t

    e number of atoms of a ligand attac

    ed to a metal.

    O

    O O O

    M MM

    h1-O2 h2-O2h6-C6H6

    T

    e number of metal atoms bridged by a ligand

    O O

    C C

    M M

    M M M

    2-CO3-CO

    e.g.

    MO OM MO OMh2, 2 - O

    2 2 - O2h1 taken as defaultMetal oxidation state

    Oxidation state C

    arge on t

    e- Sum of t

    e c

    arges= complexof t

    e ligands

  • 7/21/2019 Metal Ligand Bonding 2008 9

    7/48

  • 7/21/2019 Metal Ligand Bonding 2008 9

    8/48

    +R

    RC(O)n H+

    R H

    RC(O)Hn=1

    Electroneutrality principle

    T

    e electronic structure of substances is suc

    to cause eac

    atom to

    ave essentially zero resultant c

    arge. No atom will

    ave an actual c

    arge greater t

    an

    1.i.e. t

    e formal c

    arge is not t

    e actual c

    arge distribution.e.g. P

    otoelectron spectroscopy (PES) is a tec

    nique t

    at allows t

    e experimental determination of orbital energies.IrH3C CH3H3C CH3Ir

    H3C DMSO

    CH3IrOC CO

    Ir(V) Ir(III)Ir(I)

    PES s

    ows t

    at all t

    ree iridium complexes

    ave similar d-orbital energies indicating t

    at t

    e formal oxidation state is not t

    e actual c

    arge on t

    e metal.

    d-electron count =group number- oxidation state

    Electron Counting

    Total Valence =Electron Countd-electron +countelectrons donated +by t

    e ligandsnumber ofmetal-metal bonds

    (ignore overall c

    arge on complex)

  • 7/21/2019 Metal Ligand Bonding 2008 9

    9/48

    T

    ere are two met

    ods t

    at are commonly used and it is very important to avoid confusion.

    M-L

    M-LM. + L. neutral (or radical) formalism

    M+ + L- ionic formalism

    To avoid confusion we will use t

    e ionic formalism to determine t

    e total number of valence electrons (electron count). However for some ligands O2, NO and organometallics (carbenes, carbynes) t

    e neutral formalism is more appropriate.

    Number of electrons donated by eac

    ligand (using ionic formalism)2e CO, RCN, NR3 (amines), PR3 (p

    osp

    ines), N2, O2, C2R4 (alkenes), H2O, H-, CH3- (or any alkyl or aryl group, R), F-, Cl-, Br-, I-, CN-, NR2- (bent), (h1-C5H5)-4e R2PCH2CH2PR2 (bis-p

    osp

    ines), h4-dienes, NR2-(linear), (CH3CO2)-, NR2-(bent),O2- (double bond), S2-6e (h5-C5H5)-, h6-C6H6, NR2- (linear), O2- (triple bond), N3-, P3-Metal-metal bonds

    Single bond counts 1 per metal

    Double bond counts 2

    Triple bond counts 3

    Quadruple bond counts 4Metal metal bonding is more common for 2nd and 3rd row metals t

    an for 1st row.

    e.g.

    Cr(CO)6 : 6 + (6 x 2) = 18 [Co(NH3)6]3+ : 6 + (6 x 2) = 18

    [CoCl6]3- : 6 + (6 x 2) = 18 PtBr2(PP

    3)2 : 8 + (2 x 2) + (2 x 2) = 16

  • 7/21/2019 Metal Ligand Bonding 2008 9

    10/48

    CO OC CO CO

    c.f.

    Cl ClCO Mn Mn COCOCO CO CO

    7 valence electrons eac

    .Electron s

    aring gives a count of 8 per Cl

    Mn2(CO)10per Mn: 7 + (5 x 2) + 1 = 18

    Coordination numbermetal oxidation stated-electron count total valence electronsCr(CO)6 6

    0 6 18 [Co(NH3)6]3+6 III6 18

    [CoCl6]3- 6III 6 18

    PtBr2(PP

    3)2 4II 8 16

    R

    (CO)(H)(PP

    3)3 5 I8 18

    TiCl4 4

    IV 0 8

    Cr(h6-C6H6)2 6 06 18

    Fe(h5-C5H5)2 6 II 6 18 [ReOCl5]-

    6 VI1 15 (17)

    W

    y complexes form

    (T

    ermodynamic stability of transition metal complexes)

    1. T

    e number and strengt

    of metal-ligand bonds.T

    e greater t

    e number of ligands, and t

    e stronger t

    e bonds, t

    e greater t

    e t

    ermodynamic stability of t

    e resulting complex. i.e. in general t

    e more ligands t

    e better. Larger metals can accommodate more ligands. In general coordination numbers are greater for t

    e earlier transition metals (groups 4 7) compared tot

    e later ones. Coordination numbers for lant

    anide complexesare generally

    ig

    er t

    an for transition metals. d8 square planar complexes arestable because 4strong bonds are collectively stronger t

    an 6 bonds t

    at would be collectively

  • 7/21/2019 Metal Ligand Bonding 2008 9

    11/48

    weaker for t

    is electron configuration.

    2. Steric factors.T

    e number of ligands is limited by ligand ligand repulsion. T

    e size of metalsand common ligands leads to transition metals generally accommodating a maximumof six ligands

    ence t

    e vast number of 6 coordinate transition metal complexes. For similar reasons t

    ere are many 9 coordinate lant

    anide complexes.

    3. T

    e c

    arge on t

    e complex.Large positive and negative c

    arges cannot easily be supported. Continually removing electrons from a complex will result in increasingly large ionisation energies, and increasing t

    e number of electrons will lead to large electron-electronrepulsive forces.

    4. T

    e electronic configuration.Crystal field stabilisation energy, Ja

    n-Teller distortion.

    Free ion Mn+ + 6L

    Eiii)

    i)iv)

    ii)

    i) electrostatic attractionii) destabilisationof core electronsiii) destabilisation of valence electrons iv) CFSE

    Note t

    at crystal field stabilisation energy (CFSE) contributes only approximately 10% to t

    e overall t

    ermodynamic stability.Recap of molecular orbital t

    eory

    a) Orbitals must be of appropriate symmetry b) Orbitals must overlapc) Orbitals s

    ould be of similar energyb) and c) determine t

    e energy of t

    e interaction. T

    e interaction energy is stronger for orbitals t

    at

    ave good overlap and are close in energy.

    W

    en t

    e MOs are made up of 2 component orbitals of different energies

  • 7/21/2019 Metal Ligand Bonding 2008 9

    12/48

    T

    e bonding orbital looks more like t

    e lower energy component

    T

    e antibonding orbital looks more like t

    e

    ig

    er energy component

    Electronic configuration: Transition metal valence orbitals and t

    e 18 electronrule

    Valence s

    ell of transition metals nd + (n+1)s + (n+1)p orbitals (w

    ere n = 3-5).5 + 1 + 3 = 9 orbitals. Two electrons per orbital = 18 electrons.(Just a restatement of t

    e Lewis octet rule wit

    extra 10 d-electrons)

    For Met

    ane

    n antibonding orbitals

    2px 2py 2pz

    2 sn ligand orbitals

    z

    x n bonding yorbitals

    H

    C C H4HH HFor a transition metal complexz

    x n antibonding y

    orbitals

  • 7/21/2019 Metal Ligand Bonding 2008 9

    13/48

    (n+1)

    px py pz

    (n+1)s

    9-n non-bonding orbitals

    n dxy dxz dyz d x2-y2d z2

    n ligand orbitals

    n bonding orbitalsLL LM M L6L LL

    For many complexes an electronic configuration of 18 valence electrons is t

    e most t

    ermodynamically stable, especially for diamagnetic organometallic complexes,

    owever as noted earlier t

    e electronic configuration is only one factor t

    atcontributes to t

    e overall t

    ermodynamic stability of a complex. T

    ere are manyimportant exceptions to t

    e 18 electron rule including:

    1st row coordination complexes w

    ere t

    e bonding is predominantly ionic. square planar d8 complexes (16 e-). early metal complexes wit

    p

    donor ligands.

    aramagnetic com

    lexes.

    Ligand classification

    Metal

    ligand bonding can be divided into three basic classes

    1. s-donor

    e.g. H, CH3 (or any alkyl or aryl group, R), H2O, NH3, NR2 (bent)

    2. s -donor, p

    acce

    tor (sometimes referred to as `p

    acce

    tors' or `p

    acids')

  • 7/21/2019 Metal Ligand Bonding 2008 9

    14/48

  • 7/21/2019 Metal Ligand Bonding 2008 9

    15/48

  • 7/21/2019 Metal Ligand Bonding 2008 9

    16/48

    bo

    di

    g molecular orbital

    s sa 1eg orbital s

    1eg

    1t1u

    1a1g

    LL

    t1ua1g

    e.g. 6 NH3 lone pair orbital

    LLM L M L LL L LL Lmetal in Oh field ligand in Oharrangement

    Note that there are no linear combination

    of ligand orbital

    that have t2g

    ymmetry. Therefore the t2g orbital

    are non-bonding and completely metal ba

    ed. The 2eg orbital

    are sand have ligand character but are approximately 80% metal ba

    ed (remember the antibonding orbital i

    mainly of higher energy

    tarting orbital character). When we talk about

    plitting of metal `d-orbital

    ' in cry

    tal field theory we are ignoring the ligand character that i

    pre

    ent in

    ome of the `d-orbital

    ', however it i

    till a good fir

    t approximation and the relative energie

    between d-orbital

    are correct. We will

    ee that when we include p-acce

    torsa

    d p-do

    ors that the t2g orbitals are

    o lo

    ger

    ure metal orbitals but also co

    tai

    some liga

    d character.Notes o

    molecular orbital diagrams

    1. The total

    umber of molecular orbitals should be the sum of the

    umber of

    recursor orbitals.

    2. O

    ly orbitals of the same symmetry ca

    i

    teract a

    d the resulti

    g molecular orbitals will have the same symmetry as the

    recursor orbitals

    3. Where do the a1g, eg, t1u li

    ear combi

    atio

    s of atomic orbitals come from? Usi

    g grou

    theory it is

    ossible to determi

    e the symmetry of the orbitals i

    volved. i) determi

    e the

    oi

    t grou

    of the molecule (i

    this case Oh).ii) treat the liga

    d orbitals (i

    this case s) a

    a

    ingle entity and apply each

  • 7/21/2019 Metal Ligand Bonding 2008 9

    17/48

    ymmetry element of the point group noting how many of the individual orbital

    move under each operation. Thi

    i

    the reducible repre

    entation.iii) determine which character

    um to the reducible repre

    entation thu

    obtaining the irreducible repre

    entation. (in thi

    ca

    e for the octahedral array of s-H orbital

    it will be a1g + eg + t1u).iv) repeat for the 3 x p and 5 x d orbital

    (the 1 x

    can be read off directlya

    having a1g

    ymmetry)or alternatively look at the right hand portion of the group table and read offthe orbital

    ymmetrie

    .v) apply projection operator

    to determine the linear combination

    of orbital

    4. The origin of

    ymmetry label

    nxyzApart from being character

    in group table

    the label

    can be u

    ed to de

    cribethe

    ymmetry oforbital

    .n = orbital

    of the

    ame

    ymmetry are numbered

    ucce

    ively in order of increa

    ing energy x = a if

    ingly degenerate and

    ymmetrical to C2n rotation about the principle rotation axi

    x = b if

    ingly degenerate and un

    ymmetrical to C2n rotation about the principlerotation axi

    x = e if doubly degeneratex = t if triply degeneratey = 1 if

    ymmetrical to reflection through a reference mirror planey = 2 if un

    ymmetrical to reflection through a reference mirror plane z =

    nothi

    ng

    if there i

    no inver

    ion centrez = g if

    ymmetrical to inver

    ionz = u if un

    ymmetrical to inver

    ion

    5. What group theory cannot tell u

    .i) What the orbital

    look likei) The energy of the orbital

    and the magnitude of the precur

    or orbital

    interactionRecap of cry

    tal field

    plitting diagram

    By con

    idering the repul

    ive interaction

    between electron

    it i

    po

    ible to qualitatively determine the ordering of metal d-orbital

    . Cry

    tal field theory i

    a purely electro

    tatic approach. Here the d- orbital

    are pure. Compare the diag

    ram below and `d-orbital

    ' of MO diagram above for octahedral complexe

    .

    z

    x

    y

    d x2-y2

  • 7/21/2019 Metal Ligand Bonding 2008 9

    18/48

    dx2-y2d z2

    Barycentre

    dxy dxz

    dyzdxy

    dxy dxz dyz dx2-y2 d z2

    d z2dxz dyz

    s-donor, p-acce

    tor (`p-acce

    tors' or `p-acids')

    These i

    clude: CO, CN, NO(li

    ear), H2, C2H4, N2, O2, PR3, CR2

    We ca

    view the metal-liga

    d bo

    di

    g as a s-donor interaction (

    ame a

    for H) withan additional p- i teractio that arises from overla

    betwee

    metal-based orbitals a

    d em

    ty orbitals o

    the liga

    d that ca

    acce

    t electro

    de

    sity.

    Metal com

    lexes of CO are a good exam

    le. e.g. Some of the bi

    ary metal carbo

    yls

    Grou

    5 6 7 8 9

    10

    V(CO)6 Cr(CO)6 M

    2(CO)10 Fe(CO)5

    Fe2(CO)9Co2(CO)8 Ni(CO)4

    Mo(CO)6 Tc2(CO)10 Ru(CO)5

    Ru2(CO)9

    W(CO)6 Re2(CO)10 Os(CO)5

    Os2(CO)9Rh2(CO)8

    Ir2(CO)8

  • 7/21/2019 Metal Ligand Bonding 2008 9

    19/48

    Some structures

    CO COCO CO

    CO OC CO CO CO COCO VCO COCr CO COCOM

    M

    CO CO FeCOCO CONi CO COCO COCO COCO CO CO CO

    CO COCO CO

    CO CO CO

    Co CoCO COCO Co Co COCO CO

    CO CO CO

    Note: whe

    cou

    ti

    g electro

    s CO always co

    tributes 2 electro

    s whether termi

    alor bridgi

    g

    MO diagram of CO

    C CO

    x y 6sz 2p

    2

    5s

    2

    1pO

    6su(s)

    2p

  • 7/21/2019 Metal Ligand Bonding 2008 9

    20/48

    5s2p

    CO molecular orbital

    1pCO molecularorbitals 4s 4s2

    3s

    1

    2s1s 1

    HOMO 5s orbital i

    lightly antibonding and ha

    ignificant C 2

    character. Thi

    i

    whyCO bond

    to a metal a

    a s-donor through the C atom and not the O atom (better overlap).

    In can be

    een that the 2 x 2p LUMO orbitals (a tibo di g) are em

    ty. It is theseorbitals that ca

    i

    teract with metal d-orbitals acce

    ti

    g electro

    de

    sity.

    Directio

    of charge tra

    sfer

    s-donorM C O

    5s

    Direction of charge tran

    fer

    M C O

    p-acce

    tor2pThe s-donor interaction increa

    e

    the electron den

    ity on the metal anddecrea

    e

    the electron den

    ity on the CO ligand.The p-acce

    tor i

    teractio

    decreases the electro

    de

    sity o

    the metal a

    d i

    creases the electro

    de

    sity o

    the CO liga

    d.Both effects `rei

    force' each other. Sometimes referred to as sy

    ergic bo

    di

    g.

    p -acce

    tor liga

    ds such as CO ca

    relieve

    egative charge build-u

    at a metal ce

  • 7/21/2019 Metal Ligand Bonding 2008 9

    21/48

    tre. e.g. stabilise com

    lexes with metals i

    a low formal oxidatio

    state.

    Ex

    erime

    tal evide

    ce for bo

    di

    g model

    IR a

    d Rama

    s

    ectrosco

    y a

    d si

    gle crystal X-ray diffractio

    .

    Characterisatio

    of metal carbo

    yls

    O

    CO O C CCrC O

    As n(C-O) decreases C-O bo

    di

    g decreases a

    d M-C p-bo

    di

    gi

    creasesO C C O C

    O

    M C O

    M C OCr-C = 195.5

    mC-O = 114.0

    mn(C-O) = 1984 cm-1

    Tre

    ds i

    n(CO)

    C-O = 112.8

    mn(C-O) = 2143 cm-1

    a) isoelectro

    ic series b) as CO liga

    ds are lost c)as other liga

    ds cha

    ge

    n(CO) cm-1

    (T1u)

    n(CO) cm-1 n(CO) cm-1

    M

    (CO) +2094 Mo(CO)6 1987 Ni(CO)(PF3)3

    2073

    Cr(CO)6 1984 Mo(CO)5 1966

    Ni(CO)(PCl3)3 2059-V(CO)6Ti(CO) 2-1845 Mo(CO)4 1944,1887 Ni(CO)(PMe3)3 1923

    1750 Mo(CO)3 1862

    d) coordi

    atio

    mode

  • 7/21/2019 Metal Ligand Bonding 2008 9

    22/48

    Free Termi

    al 2-CO 3-CO

    O O C C

    C M M M M M MnCO (cm-1) 2143 1850-2120 1750-1850 1620-1730

    Always thi

    k i

    terms of CO liga

    ds com

    eti

    g for whatever electro

    s are available o

    the metal!No

    -classical carbo

    yls

    Pd(CO) 2+ Pt(CO) 2+ Ag(CO) + Au(CO) +Hg(CO) 2+

    n(CO)/cm-1

    2248

    2244

    2200

    2217

    2278

    I

    these com

    lexes electro

    de

    sity is

    ot tra

    sferred from the metal tothe liga

    d p- acce

    ti

    g orbitals. The major i

    teractio

    is s-donation from the CO 5s (anti-bonding) orbital to the metal. Therefore the CO

    tretching frequency i

    > free CO.

    Similar p-acce

    tor ligands

    Other ligands that are ex

    ected to exhibit very similar bonding to CO are the isoelectronic ligands CN

    and NO+. (We will see later that NO can also coordinate in an alternative terminal mode).N2 is also isoelectronic with CO.

    MO diagram of N2

    N N2

    x 3su(s)

    y

    z 1pu(p)

    2

    3sg(s)N

    3su(s)

  • 7/21/2019 Metal Ligand Bonding 2008 9

    23/48

    2p

    3sg(s)

    1pu(p)

    1pg(p)1pg(p)

    2s 2su(s) 2

    2sg(s)

    Compare HOMO 5s (s*) of CO and HOMO 3sg (s) of N2. Coordination of N2 decrea

    e

    N-N bon

    trength.N2 can act a

    a p-acce

    tor usi

    g LUMO 1pu same as for CO.Very few metal com

    lexes of N2 com

    ared to CO.A

    other reaso

    is that the e

    ergy differe

    ce betwee

    metal d-orbitals a

    d the 3sg

    orbital ofN2 i

    greater than that for metal d-orbital

    and the 5s orbital of CO. (remember the clo

    er inenergy the precur

    or orbital

    are, the

    tronger the bond). Therefore M-N2s-bonds areweaker than M

    CO s-bonds. For similar reasons N2 is also a

    oorer p-acce

    tor ligand thaCO.

    Other p-acce

    ting ligands

    Im

    ortant exam

    les include O2, H2, PR3 and alkenes.

    Com

    lexes of dioxygen

    OO O O O

    O

    N NFe N Ti NN N NN O

  • 7/21/2019 Metal Ligand Bonding 2008 9

    24/48

    haem

    O O

    O O CrO Ti(h2-O2)(porp yrin)

    N O N Cu CuN NO O N O

    N O OCr(h2-O2)4

    aemocyanin

    h1 vs h2 bonding in O2 complexes

    MO diagram of O2

    O O2x 3su(s)yz 1pg(p)

    O

    3su(s)

    1pg(p)

    2

    2

    1pu(p)

    3sg(s)

    1pu(p)

    3sg(s)

    2su(s)

    2

    2

    2sg(s)h1 - bondingDirection of c

    arge transfer

    O M O

    s-donor

    1pgx

    Directio

    of charge tra

    sferO

  • 7/21/2019 Metal Ligand Bonding 2008 9

    25/48

    M Op-acce

    tor

    1pgy

    h2 - bonding (more difficult)or

    2+ 2-M + O2

    M+ O2Electron transfer first 1pgy

    ow full.Directio

    of charge tra

    sferDirectio

    of charge tra

    sfer

    MOO 1pgxMO1pgx

    O

    Directio

    of charge tra

    sfer

    M(

    o back-do

    atio

    as

    acce

    ti

    g

    orbitals are full) O2 is very oxidisi

    g. Thi

    kof as electro

    tra

    sfer2- 2+OO 1pgyfollowed by bi

    di

    g of O2to M. Theory

    suggests this may be best o

    tio

    .

    Characterisatio

    what is the oxidatio

    state of O2?

    I

    a

    y give

    com

    lex, all we k

    ow for sure is that the O2 molecule is bo

    ded tothe metal. Neutral dioxyge

    , su

    eroxide (O2-) a

    d

    eroxide (O22-) are all well k

    ow

    forms of the

    O2

    u

    it, so a

    y give

    com

    lex could be {M-O2}, {M+-O2-} or{M2+-O22-}

    3su(s)

    1pg(p)

  • 7/21/2019 Metal Ligand Bonding 2008 9

    26/48

    1pu(p)

    3sg(s)

    2-O2 O2 2

    Compari

    on of MO diagram

    of dioxygen,

    uperoxide, and peroxideVibrational frequencie

    and O-O bond length

    r(O-O) / pm n(O-O) / cm-1

    + -O2 (AsF6 ) 122 1858

    O2 1211555

    - +O2 (K ) 133 11462- +O2 (Na )2 149

    842

    h1-O2 115-1301130-1195

    h2-O2 130-152800-930

    As t

    e electron density in t

    e porbitals i

    creases the O-O dista

    ce i

    creasesa

    d the vibratio

    al freque

    cy decreases

    What ha

    e

    s if the s* (3su) orbital become

    occupied?

    (But)3SiO

    2 Ta

    (But)3SiO

    OSi(tBu)3 + O OO

    2 Ta(But)3SiO

    OSi(tBu)3

  • 7/21/2019 Metal Ligand Bonding 2008 9

    27/48

    tOSi( Bu)3

    Ta{OSi(tBu)3}3

    O O

    {(tBu)3SiO}3Ta

    The Ta complex i

    reducing and ha

    two electron

    in a high-energy orbital HOMO.The Ta complexe

    have orbital

    of the correct

    ymmetry and can donate 4 electron

    to a molecule of O2 occupying 1pg a

    d 3su of O2 cau

    ing cleavage of the O2 bond.

    Why i

    h1-O2 bent w

    en CO is linear?

    Simply because O2

    as to accommodate an extra pair of electrons in t

    e 1pg (p) orbital. These occu

    y 1pgx (to form the s-bond through one lobe of the 1pgx orbital) leavi g 1pgy to form a p-acce

    tor i

    teractio

    .NO revisited

    NO ty

    ically ado

    ts o

    e of two termi

    al coordi

    atio

    modes (be

    t a

    d li

    ear)

    CO

    CO

    M

    N OCO

    NH3NH3

    NH3

    Co

    2+ NH3N

    O

    N

  • 7/21/2019 Metal Ligand Bonding 2008 9

    28/48

    Cl Ru N O

    CO NH3O Ph3P PPh3

    Characterisatio

    M-N-O a

    gle/ n(N-O)/cm-1

    Fe(CN)5(NO)2- 178 1935

    M

    (CN)5(NO)3- 1741700

    Co(NH3)5(NO)2+ 1191610

    CoCl(e

    )2(NO)+ 1241611

    How ma

    y electro

    s does NO do

    ate? Li

    ear:i) 1 electro

    goes from NO to the metal, givi

    g NO+ + M-.

    ii) NO+ is the

    isolectro

    ic with CO, a

    d do

    ates 2 electro

    s from NO to metal

    2+1 = 3, so NO is a 3-electro

    do

    or. Be

    t:i) 1 electro

    goes from metal to NO, givi

    g NO- + M+.ii) NO- is the

    isolectro

    ic with O2, a

    d do

    ates 2 electro

    s from NO to metal

    -1 + 2 = 1, so NO is a 1-electro

    do

    or

    Strategy for determi

    i

    g be

    t or li

    ear, electro

    cou

    t a

    d oxidatio

    state:1) Remove NO (

    eutral) from com

    lex a

    d calculate electro

    cou

    t a

    d oxidatio

    state of remai

    i

    g fragme

    t.2) Add 1 or 3 electro

    s

    er NO to i

    crease electro

    cou

    t to 18 (or as close as

    ossible without exceedi

    g 18). You

    ow have the total electro

    cou

    t at the me

    tal a

    d the M- NO geometry.3) Determi

    e the metal oxidatio

    state of the com

    lex i

    cludi

    g the NO liga

    d(s) a

    d co

    sider li

    ear NO to be NO+ a

    d be

    t NO to be NO-.

    e.g.

    total vale

    ce electro

    smetal oxidatio

    state d-electro

    cou

    tM

    (CO)4(NO) 18 -I8

    Co(NH3)5(NO)2+ 18 III6

    RuCl(NO)2(PPh3)2 17 I

    7Com

    lexes of dihydroge

    (H-H = 74.1

    m i

    H2)

    82

    mH HCO111

    mH H

    i PiPr3

  • 7/21/2019 Metal Ligand Bonding 2008 9

    29/48

    160

    mH HP(Pri)3

    COW P(iPr)3

    COP Pr3 Ir

    H

    Cl

    Cl PPh3

    COIr PPh3

    Cl

    H H2H

    xy 1su(s)

    z

    1su(s)

    1

    1

    1sg(s)

    1sg(s)

    Direction of charge tran

    fer

    M

    s-donor

    H1sg(s)H

  • 7/21/2019 Metal Ligand Bonding 2008 9

    30/48

    Direction of charge tran

    fer

    M

    p-acce

    tor

    H1su(s)H

    Note: the s and s* orbital

    of H2 perform the

    ame role

    a

    the s and p* orbitals i

    CO

    The a

    tibo

    di

    g s* H2 orbital i

    of p-symmetry about a

    axis

    er

    e

    dicular to the H-Hbo

    d a

    d ca

    i

    teract with a metal orbital of p-symmetry.

    If sufficie

    t electro

    de

    sity is tra

    sferred from the metal to the s* orbital ofH2 the H-Hs-bond will break and give two M

    H (metal

    hydride) s-bonds (oxidative addition).

    e.g.

    Ph3P OC

    R Rh PPh3

    + H2

    oxidative addition

    Ph3P OC

    HR Rh H

  • 7/21/2019 Metal Ligand Bonding 2008 9

    31/48

    PPh3

    RhIRhIII

    Characterisation Dihydrogen M(H2) or dihydride M(H)2 com

    lex ?

    Technique h2 H-H di

    ydride

    Neutron diffraction H-H~82 pm H-H~160 pm

    NMR Low field, JHD~30Hz Hig

    field, JHD~5Hz

    IR n(H-H) ~ 3000 cm-1

    n(M-H) v. low

    n(M-H)~2150-1750 cm-1

    Alke

    es

    p-acce

    tor liga

    ds. Alke

    e com

    lexes form basis of ma

    y catalytic reactio

    s e.g.

    olymerisatio

    , hydroge

    atio

    a

    d metathesis.

    Com

    lexes of alke

    es

    +

    PCy3 PhH RMe Ph3P Zr Ph3PCOCl

    Ru PhCl

    s

    p

    H

    H

    sH s s

    Hp

    s

    H H H H

  • 7/21/2019 Metal Ligand Bonding 2008 9

    32/48

    s-donorH H CAlkenep-orbitalCM H H

    Directio

    of charge tra

    sfer

    p-acce

    torH H CAlke

    ep*-orbitalCM H H

    Directio

    of charge tra

    sfer

    H H H H HH

    H H

    M M

    Dy

    amics i

    alke

    e com

    lexes

    RhH H

    H H H H

    H H

    Rh

    Ha2

  • 7/21/2019 Metal Ligand Bonding 2008 9

    33/48

    Hb2

    Ha1

    Hb1Rh

    Hb1

    Ha1

    Hb2

    Ha2What determi

    es e

    ergy barrier to rotatio

    ?1. s-bonding (dominant) interaction i

    not affected by rotation (no change inoverlap)2. p-bo

    di

    g (mi

    or) is broke

    , but other

    ote

    tial bo

    di

    g orbitals at 90o to start

    oi

    t hel

    lower activatio

    e

    ergy.

    PR3 com

    lexesPR3 ca

    also act as p-acce

    tor liga

    ds. I

    this case the orbitals are usually

    hos

    horus s*orbital

    . Complexe

    of PR3 ligand

    are very important cataly

    t

    for many reaction

    .

    PR3 ligand can tabili e low oxidation tate by p-acce tor i teractio s a d highoxidatio

    states by stro

    g s-donation.

    RP M RR

    p-acce

    tor i

    teractio

    P sorbital

    Direction of charge tran

    fer

    Cataly

    i

    example

    Enantio

    elective

    ynthe

    i

    of S-DOPA

    Ph2 +P SolventRhP Ph2SolventPh NHC(O)Me+ H2

  • 7/21/2019 Metal Ligand Bonding 2008 9

    34/48

    CO2Me

    Solvent = MeOH

    Ph NHC(O)Me

    H CO2MeS-DOPA precur

    orTreatment of Parkin

    on'

    Di

    ea

    e

    CO

    Ph3P Rh

    PPh3PPh3C7H15

    + H2 + COH C7H15 O

    linear aldehyde

    Lot

    of bulk chemical u

    e

    , e.g. Perfume

    , agrochemical

    The Rh-L bonding of Rh-CO, Rh-H2 (Rh-(H)2), Rh-alkene, and Rh-PR3 all play anintegral role in thi , and many other, catalytic reaction .s-donor, p-do or (`p-do ors')

    Liga

    ds that fall i

    to this category i

    clude: F, Cl, Br, I, O, OR, S, SR, N, NR2(li

    ear), NR (be

    t a

    d li

    ear), P.We ca

    view the metal-liga

    d bo

    di

    g as a s-donor interaction (

    ame a

    for H) with an additional p- i teractio that arises from overla

    betwee

    metal-based orbitals a

    d full orbitals o

    the liga

    d that ca

    do

    ate electro

    de

    sity.

    Directio

    of charge tra

    sfer

    M

    s-donor

    Direction of charge tran

    fer

    M

    p-do

    or

    x

    Ma

    d /or

    y

  • 7/21/2019 Metal Ligand Bonding 2008 9

    35/48

  • 7/21/2019 Metal Ligand Bonding 2008 9

    36/48

    Mo PhMe2P COO O ClOPhMe2P CO Cl18 e- 16e- 18 e-X-ray shows verydouble bo

    dshort W-O dista

    ce

    Metal oxides are used as source of oxyge

    for the oxidatio

    of orga

    ic com

    ou

    dse.g. catalytic e

    oxidatio

    of alke

    es.

    O

    N N M

    O O OR

    RNaOCl(bleach)

    Other commo

    multi

    le bo

    ds are the amido (NR2-), imido (NR2-) a

    d

    itrido (N3-)liga

    ds.

    R - + RN R M N M

    NM R

    2 electro

    do

    or

    R4 electro

    do

    or

    R

    4 electro

    do

    or

    R R R

    N N N +

    M M M -

    4 electro

    do

    or6 electro

    do

    or6 electro

    do

    or

    TaCl5 + xs tBuNH2

    tBu

  • 7/21/2019 Metal Ligand Bonding 2008 9

    37/48

    H

    N NtButBu

    NH2ClTaClCl

    Cl

    Ta

    NH2 tBu

    tBu

    N N

    H

    tBu

    Ca

    we use N2 as a source of

    itroge

    i

    orga

    ic chemistry?

    tBuN

    Ph2But

    N Mo

    NPhtBuN

    Ph

    + N N

  • 7/21/2019 Metal Ligand Bonding 2008 9

    38/48

    2 Ph

    MoN

    tBu N Ph

    N PhtBu

    tBu

    N

    N NM

    + Ar

    (CF3CO)2

    OH

    NHCOCFO O

    Ar 3

    Electro

    cou

    ti

    g of p-do

    or com

    lexes ca

    be difficult. As a rule of thumb i

    voke as ma

    y multi

    le bo

    ds as

    ossible to get as close to (but

    ot over) 18.

    total vale

    ce electro

    smetal oxidatio

    stated-electro

    cou

    t(tBuO)3WN 12 (18) VI 0

    (h-C5H5)2V(NP

    ) 17 IV 1

    ReMe4(O) 13(15) VI 1W

    at effect do p-acce

    tors a

    d p-do

    ors have o

    the chemistry of metal com

    lexes?MO diagram of Oh com

    lex with p-do

    or liga

    ds

  • 7/21/2019 Metal Ligand Bonding 2008 9

    39/48

    t1us3t1u

    s2a

    e.g. [CoCl6]3-z

    x

    yligand t2g

    a1gs 2eg

    pt2ggoct

    t2gs2t

    n.b. t1gn.b. t2u

    t1g t2u t1u t2g eg

    Mainly ligand in character. Ignored in electron counting of metal valence electron

    .3-p t2gt1u

    [CoCl6]is co

    sidered 18

    s 1eg

    s 1t1u

    a1gelectron, even though 42

  • 7/21/2019 Metal Ligand Bonding 2008 9

    40/48

    electron

    in MO diagram.

    s 1a1g

    L LL LM L M L

    L L L LL L

    metal in Oh field ligand

    in Oh arrangement

    Note the effect on the t2g d-orbital

    in compari

    on to the s-only ca

    e. The

    e t2gorbital

    have ri

    en in energy, clo

    er to the eg level, re

    ulting in a reductionof oct (10 Dq).MO diagram of Oh com

    lex with p-acce

    tor liga

    ds

    3-p 3t1ue.g. [Co(CN)6]zst2g

    x

    t1u

    n.b. n.b.

    t1gt2u

    t1g y t2u t1us2a1g

    t2g

    ligand t2g

    a1gp 2t1us 2eg

    eg

    t2g

  • 7/21/2019 Metal Ligand Bonding 2008 9

    41/48

    p t2goct

    s 1egeg t1u a1g

    s 1t1u

    s 1a1g

    L LL LM L M LL L L LL Lmetal in Oh field ligand

    in Oh

    arrangement

    Note the effect on the t2g d-orbital in compari on to the s-only ca e. The t2g ha

    been lowered in energy with re

    pect to the eg level re

    ulting in an increa

    e in oct (10 Dq).Summaryeg

    eg eg

    oct

    t2g

    t2gt2gs-onlyp-do

    orp-accetor oct p-accetor > s-only > p-do or

    p-do

    ors a

    d the 18-electro

    rulep-acce

    tor liga

    ds usually obey the 18-electro

    rule, those with p-do

    ors do

    ot

    ecessarily do so.For p-do

    or liga

    ds the metal t2g orbitals are

    ow slightly a

    tibo

    di

    g (p*) therefore it is less e

    ergetically favourable to fill them.3-e.g. CrCl6with 15 total vale

    ce electro

    s is stable.

  • 7/21/2019 Metal Ligand Bonding 2008 9

    42/48

    S

    ectrochemical series

    The s

    ectrochemical series is a list of liga

    ds i

    order of i

    creasi

    g liga

    d field stre

    gth. Electrostatic model ca

    ot accou

    t for the order.

    CO > CN- > PPh3 > NH3 > H2O > OH- > F- > Cl- > S2- > Br- > I-

    p-acce

    tor s-only p-do

    or

    I

    creasi

    g oct

    oct i

    creases with i

    creasi

    g p-acidity of the liga

    ds e.g. Field stre

    gth determi

    e s

    i

    state of metal com

    lexes[CrCl6]4- [Cr(CN)6]4-

    High s

    i

    Low s

    i

    Tra

    s-effect a

    d Tra

    s-i

    flue

    ce

    These

    he

    ome

    a will be discussed i

    more detail later i

    I

    orga

    ic Mecha

    isms I. The tra

    s- effect a

    d tra

    s-i

    flue

    ce hel

    to ratio

    alise the stability a

    d substitutio

    chemistry of tra

    sitio

    metal com

    lexes,

    articularly square

    la

    ar P

    d a

    d Pt com

    lexes.

    The tra

    s effect is a ki

    etic

    he

    ome

    o

    a

    d describes the i

    flue

    ce of a

    o

    -labile grou

    o

    the rate of substitutio

    of a liga

    d tra

    s to it.

    CO, CN- > PPh3 > NO2- > I- > Br-, Cl- > NH3, OH-, H2O

    p-acce

    tor p-do

    or s-onlye.g.

    NH3

    Cl- NO -

    NH3 -PtCl 2-

  • 7/21/2019 Metal Ligand Bonding 2008 9

    43/48

    Cl Pt

    Cl

    ClNH3

    2 -2 Cl Pt

    Cl

    ClNO2

    -2- NO2- NH3PtCl4Cl Pt

    ClNO2H3N Pt

    ClNO2Metal-metal bonding

    Complexe

    with metal-metal bond

    Cl Cl 2-Cl Cl

    3- Cl Cl

    CO OC CO CO

    iPr

    iPrRe ReCl Cl

  • 7/21/2019 Metal Ligand Bonding 2008 9

    44/48

    W WCOMn MnCO iPr

    iPr

    Cr Cr

    iPr iPrClCl Cl Cl

    Cl Cl Cl ClCOCO CO COiPr

    quadruple triple

    ingle

    Bonding in `Bare' M2 dimer

    (e.g. V2)

    x

    quintuple?

    iPry sz

    p

    dd orbital

    dd

    xypp

    dxy dx2-y2 dx2-y2

    s

    V V2 Vconfiguration s2p4d4

  • 7/21/2019 Metal Ligand Bonding 2008 9

    45/48

  • 7/21/2019 Metal Ligand Bonding 2008 9

    46/48

    x2-y2

    d

    xy

    d

    xy

    d

    xy

    z2

    xz

    yz

    p

    dxz

    dxzp

    dyz dyz

    L L ML L L s

    L L L L L L M M MLL L L L

    dz2sdz2

    Configuration rM-M /Orientation of pm ML4 unit

  • 7/21/2019 Metal Ligand Bonding 2008 9

    47/48

    Re2Cl 2-

    2-s2p4d2 222 Eclipse

    Staggere

    Os2Cl8s2p4d2d*2 218or eclipse

    Triple bon

    s

    Cl Cl3- L LCl L LNMe2NMe2NMe2Cl ClW WM M

    L L

    NMe2Mo Mo

    NMe2NMe2Cl Cl Cl ClBri ge Non-bri ge (eclipse )Non-bri

    ge

    (staggere

    )

    note: 2

    orbitals per metal are now 'factore

    out'

    L L L L

    L LLL M L M M L L

    M MLL

    "

    x2-y2" "

    xy"L L L d

    dx

    ysL LNon-bridged (

    taggered)

    pz

    s

  • 7/21/2019 Metal Ligand Bonding 2008 9

    48/48