methods in cell biology proteomics _ hong ki et al lecture

Upload: pradeep

Post on 30-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    1/39

    Methods in Cell Biology

    ProteomicsHong Li, Associate Professor Center for Advanced Proteomics Research(www.umdnj.edu/proweb)NJMS Cancer Center 973-972-8396

    [email protected]

    Where are we? What do we do?

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    2/39

    Major services at CAPR

    Protein identificationPeptide sequencingPost translational modification (PTM)

    Protein purity/mass determination

    Proteomics2D gel

    iTRAQ

    Metabolomics

    Overview

    Proteomics: definition and scopesProtein structure and functionWorkflow and technologies

    ApplicationsData interpretationAdvanced developments

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    3/39

    Human Genome = 30,000 to 60,000 genes

    Human Proteome = 300,000 to 1,200,000protein variants

    The human proteome

    Functional classification of human proteins (many unknown)(Lars Juhl Jensen, embl)

    Proteomics

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    4/39

    Definition and scopesProteomics: systematic & comparativeanalysis of protein function

    Objectives:Activities (function)ExpressionPost-translational modifications (PTM)LocalizationComplex formation

    Definition and scopes

    Techniques:Handling protein mixtures: separationMass spectrometry: protein ID & quantification

    Edman sequencing: protein/peptide N-terminal sequencingBioinformatics: changes of protein function in biologicalcontext

    Applications: biology and disease researchMolecular event description(signaling molecules, biomarkers)Finding disease mechanisms and drug targets

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    5/39

    Compared with Genomics

    Similarities:Static picture of dynamic processesHigh throughput analysisTechnology-drivenComputation intensive

    Differences:Proteomics: closer to activity (function: PTM, location,turnover, protein complex, enzyme function)Protein dynamics and RNA dynamics do not always

    correlate

    Protein Structure

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    6/39

    Structural Elements Affecting FunctionPost-Translational Modifications

    Proteolytic Processing

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    7/39

    Protein Function

    Two broad types of protein functionCatalytic proteins, including enzymes,transporters, chaperons, etc.Structural proteins

    Catalytic Enzymatic Function

    substrates

    3 Substrates, bonded together,leave enzyme; enzyme isready for new set of substrates.

    active siteof enzyme

    1 Substrates enter active site in aspecific orientation.

    2 Substrates and active sitechange shape, promotingreaction between substrates.

    enzyme

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    8/39

    Structural Proteins are Functional

    Proteomics work flow and technologies

    2-dimensional gel based technologiesMass spectrometry for protein identificationMass spectrometry for protein quantification

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    9/39

    2-dimensional gel based technologies

    Human Proteome

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    10/39

    Theoretical pI and M r map of yeast cell proteins

    1

    10

    100

    1000

    2 4 6 8 10 12 14

    Theoretical pI

    M r / k D a

    From: Wildgruber et al. Electrophoresis. 21 (2000) 2610-2616 .

    2-D Gel Electrophoresis

    1 st dimension: isoelectric focusing (IEF)- separate proteins based on their isoelectric point (pI) byusing immobilized pH gradient (IPG) gel strips.

    2nd dimension: SDS PAGE- separate proteins based on their molecular mass

    A powerful technique for protein separation

    IEFSDS

    pI 3 10

    25

    37

    50

    75

    100

    150200

    MW kDa

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    11/39

    2-D image analysis

    Control Treated

    Difference in Gel Electrophoresis (DIGE)

    ProteinExtract 1

    Label withCy2

    ProteinExtract 2

    Label withCy3

    ProteinExtract 3

    Label withCy5

    Mix labeled extracts

    2D gel separation

    Cy2 Cy3 Cy5

    Analysis of Differences

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    12/39

    Protein Expression -Bioinformatics

    Expression Analysis

    B

    Excise spot; elute; digestExtract peptides;MS analyzeProtein identification

    A

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    13/39

    Ions formation

    ion source mass analyzer ion detector

    Data System

    m/z

    Separation Detection

    Inlet

    Sample Introduction

    mass spectrum

    Overview of Mass Spectrometry

    Amino Acid Residue Mass: crucial for mass spectrometry-based protein identification and peptide sequencing

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    14/39

    tryptic digestioncleaves protein atR and K residues

    Peptide Mass Fingerprinting(PMF) spectrum

    Sample Preparation

    Gel Electrophoresis

    Cut spots

    (peptides are fragmentedin mass spectrometer)

    MS/MS analysis

    MS/MS Peptide Sequencing Spectra

    MS Analysis

    Peptide Mass Mapping

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    15/39

    1901.872

    1875.97

    1838.932

    1707.789

    1499.816

    1498.81

    1493.742

    1490.765

    1489.751

    1488.756

    1475.757

    1418.816

    1417.729

    1404.783

    1401.795

    1353.7

    1350.694

    1320.608

    1308.659

    1236.56

    1235.564

    1234.663

    1180.588

    1179.593

    1060.516

    1058.51

    1045.558

    1000.446

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    16/39

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    17/39

    How does the search engine works?

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    18/39

    How does the search engine works?

    842.509

    870.461

    882.43

    886.448

    886.959

    898.453

    905.657

    927.475

    937.456

    965.484

    974.44

    1003.44

    1011.52

    1018.75

    1026.59

    1027.54

    1034.45

    1042.57

    1046.58

    1068.42

    1072.49

    1088.59

    1089.61

    1150.61

    1163.61

    1165.59

    1198.59

    1212.59

    1249.6

    1271.65

    1283.69

    1305.69

    1394.67

    1410.67

    1419.67

    1435.73

    1439.79

    1479.78

    1502.59

    1511.82

    1554.64

    1567.73

    1576.74

    1639.92

    1724.84

    1731.66

    1740.82

    1747.69

    1749.66

    1880.91

    1907.91

    1927.8

    1956.95

    1959.01

    2038.92

    2076.06

    2100.05

    2169.97

    2212.1

    2225.12

    2239.14

    2344.09

    2359.18

    2458.18

    2566.18

    2807.31

    2985.48

    Bovine Serum Albumin peptide2-oxoglutarate dehydrogenase peptide

    An example of a spectrum in which not all of the major peaks matched theprimary identification. A second component search reveals the identity of the other protein.

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    19/39

    Tandem Mass Spectrometry

    Tandem Mass Spectrum: An Example

    Secondary Fragmentation

    Ionized parent peptide

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    20/39

    Tandem Mass Spectrometer

    massanalyzer

    fragment

    precursor ions fragment ions

    MPSER

    SG

    +

    PAK +

    +

    P + AK PAK +

    PAK + PA + K

    AK +P

    K +PA

    P +K +

    PA+

    AK +

    PAK +

    PAK +

    d e n o v o s e q u e n c i n g

    massanalyzer

    ionsdetector

    N- and C-terminal Peptides

    N - t e r

    m i n a

    l p e p t i

    d e s

    C - t e

    r m i n a

    l p e p t i d

    e s

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    21/39

    How Does a Peptide Fragment?

    m(y 1)=19+m(A 4)m(y 2)=19+m(A 4)+m(A 3)m(y 3)=19+m(A 4)+m(A 3)+m(A 2)

    m(b 1)=1+m(A 1)m(b 2)=1+m(A 1)+m(A 2)m(b 3)=1+m(A 1)+m(A 2)+m(A 3)

    MS/MS Peptide Sequencing

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    22/39

    Peptide sequencing by MS/MS

    Peptide: [Glu1

    ]-Fibrinopeptide B (EGVNDNEEGFFSAR MW 1569.7844)

    MS/MS database search

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    23/39

    A-D-L-V-I-P-N-D-F-K

    1320.584225.102

    233.189

    255.192261.144382.237399.228

    434.255462.279

    632.300

    649.399662.368

    688.550809.452

    843.397

    860.417

    1320.589178.117

    195.104

    223.147251.210258.162436.213

    450.349484.248

    485.234

    545.357920.441

    953.4501057.401

    1066.465

    1075.395

    1320.560200.382

    219.491

    251.040282.611290.432490.740

    506.642544.779

    545.888

    613.5261035.496

    1072.6311189.576

    1199.773

    1320.583169.745185.934

    212.659239.403246.028415.711

    429.182461.488

    462.428

    519.725877.180

    908.6381007.703

    1016.341

    1320.586164.046179.690

    205.518231.364237.767401.752

    414.771445.992

    446.900

    502.273847.726

    878.128973.867

    982.215

    1320.584225.102233.189

    255.192261.144382.237399.228

    434.255462.279

    632.300

    649.399662.368

    688.550809.452

    843.397

    860.417

    1320.589178.117195.104

    223.147251.210258.162436.213

    450.349484.248

    485.234

    545.357920.441

    953.4501057.401

    1066.465

    1075.395

    1320.560200.382219.491

    251.040282.611290.432490.740

    506.642544.779

    545.888

    613.5261035.496

    1072.6311189.576

    1199.773

    1320.583169.745185.934

    212.659239.403246.028415.711

    429.182461.488

    462.428

    519.725877.180

    908.6381007.703

    1016.341

    1320.586164.046179.690

    205.518231.364237.767401.752

    414.771445.992

    446.900

    502.273847.726

    878.128973.867

    982.215

    1320.585178.128

    195.166

    258.121312.219

    329.204436.219

    450.330466.292

    545.365

    694.343

    920.455

    1057.4271066.477

    1075.6491283.684

    vs.

    Database Search of MS/MS Data

    Databases:

    Protein databases:

    Swiss-Prot: Curated protein databasehigh quality, low coverage, modification information

    TrEMBL: translated EMBL cDNA databasemedium quality, medium coverage

    Nucleotide database:

    Expressed sequence tag (dbEST)low quality, high coverage

    Genome sequencehigh quality, everything included, needs prediction

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    24/39

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    25/39

    Protein Databases

    Compiled from a variety of resources:Translations from annotated codingregions in GenBank and RefSeq.SwissProtPIR (Protein Information Resource)PDB (Protein DataBank 3D structures)

    6,417,545Total

    67,416PDB

    234,946PIR12,079PRF

    185,800Swiss Prot

    4,168Third Party Annotation

    1,616,076RefSeq4,297,060GenPept

    IPI database

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    26/39

    Application 1: Protein Expression Level Changes

    Use Proteomics to Investigate Molecular Mechanismsof Aging and Gender differences in the Heart

    Yan et al. J Mol Cell Cardiol. 2004 Nov;37(5):921-9.

    Objective

    To reveal aging and gender-associated alterations inprotein expression and function that could explain whyfemale life expectancy is generally greater than malesand particularly why their cardiovascular risk is less.

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    27/39

    pH 5 8

    25

    37

    50

    75

    100150200

    kDa

    3-Oxoacid CoA transferase

    Acyl-CoA dehydrogenase

    -enolase

    Triosephosphate isomerase

    Oxoglutarate dehydrogenase

    1

    2

    3

    4

    5 1

    2

    3

    4

    5

    YM OM YF OF

    Spot No. Proteins1 3-Oxoacid CoA transferase2 Acyl-CoA dehydrogenase3 -enolase4 Triosephosphate isomerase5 Oxoglutarate dehydrogenase

    Alterations in LV total protein expression in aging monkeys

    a

    b

    c

    a

    b

    c

    1 1 1 1

    2 2 2 2

    3 3 3 3

    4 4 4 4

    YM OM YF OF

    Spot No. Proteins1 ATP-spec if ic succ inyl -CoA synthetase subunit2 Pyruvate dehydrogense E1 subunit3 ATP synthase subunit4 Acyl-CoA dehydrogenase

    25

    37

    50

    75

    100

    150200

    kDa

    pH 5 8

    Alterations in mitochondrial protein expression in aging monkeys

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    28/39

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    29/39

    Table 1. Alterations in Protein Expression Related to Metabolic Pathways

    Proteins AccessionNo.MetabolicPathway OM

    vs YM * OF vs YF * OM vs OF * DetectionMethods

    3-Oxoacid CoA transferase P55809 Fatty acid oxidation 2DGE(T,M)

    Acyl-CoA dehydrogenase P16219 Fatty acid oxidation 2DGE(T)Alpha-enolase P06733 glycolysis 2DGE(T)

    Triosephosphate isomerase P00938 glycolysis 2DGE(T)

    Pyruvate kinase P14618P14786 glycolysis WBPyruvate dehydrogense E1 subunit P11177 Glucose oxidation 2DGE(M)

    Oxoglutarate dehydrogenase Q02218 TCA cycle 2DGE(T)ATP Specific succinyl-Co Asynthetase subunit Q9P2RT TCA cycle 2DGE(M)

    ATP synthase subunit P25705 ETS 2DGE(M), WB

    2DGE(T) Two-dimensional gel electrophoresis of total protein extracts

    2DGE(M) Two-dimensional gel electrophoresis of isolated mitochondrial proteins

    WB Western blotting

    indicates increased levels of the protein

    indicates decreased levels of the protein

    indicates unchanged levels of the protein

    * Average change fold was described in Results section of the paper

    Decreased expression of metabolic enzymes related to energyproduction in aging male monkeys

    Proteomic Alterations of Cardiac Troponin T, a Novel Mechanismfor the Transition from Hypertrophy to Heart Failure

    Application 2: Protein Post-translational Modification (proteolysis)

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    30/39

    Background

    Clinically, the decompensated stage of heart failure (HF) isusually preceded by chronic, compensatory cardiachypertrophy.

    The molecular mechanisms that precipitate the transitionfrom stable hypertrophy to failure remain largely unknown.

    A Proteomic Approach to Determine the Alterations in ProteinExpression in Canine Model

    Protein ID

    LV tissues: Normal, LVH, LVH/HF

    Protein extracts

    2D gel electrophoresis (1 st : IEF 2 nd : SDS-PAGE)

    Gel comparison by computer image analysis

    Selected protein spots

    Tryptic peptides

    Peptide masses

    Sequence database search

    Homogenization

    Protein visualization by Sypro Ruby

    Spots excisionIn-gel digestion with trypsin

    MALDI-TOF MSPeptide sequence

    Q-TOF MS/MSMALDI-TOF/TOF MS/MS

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    31/39

    75

    50

    37

    25

    MW (kDa)

    CB

    37

    25

    B C

    LVH LVH/HFNormal

    pH 5 8 5 8 5 8

    pH 5 5.5 5 5.5 5 5.5

    89 10

    7

    12345

    6

    A

    7

    12345

    6

    Alterations of Cardiac Troponin T (cTnT) Expressionin Hypertrophy (LVH) and Heart Failure (LVH/HF)

    Identification of cTnT

    MALDI mass spectrum of in-gel trypsin digest of spot 5 shown on last slide

    796.0 1191.8 1587.6 1983.4 2379.2 2775.0

    Mass (m/z)

    0

    5.8E+4

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % I

    n t e n s

    i t y

    Voyager Spec #1 MC[BP = 1943.0, 58237]

    1943.0047

    1535.8264

    906.49302466.1986

    1945.98421629.7696

    1683.8241

    1538.8141 2416.18421622.81521155.6182 2469.20211408.8022

    842.4784 1812.89271632.7437

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    32/39

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    33/39

    Data interpretation and advanced application

    Phosphorylation site identificationProtein complex identificationProtein isoform problemLimitation of current technologiesEstimation of sample requirement

    MS-based peptide quantification

    Phosphorylation 80Acetylation 42Methylation 14Hydroxy amino acids 16Acylation

    Myristic acid 228Palmitic acid 256

    PrenylationFarnesol 204Geranylgeranol 272

    Nitrosylation 39 or 45Oxidation 16Other oxidation -32 loss of SH

    Dityrosine formationIsoaspartate 1 (+shift of peptide bond)

    Glycation variableGlycoxidation variableLipid peroxide adduction variable

    Posttranslational Modifications (PTM)

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    34/39

    Isolating Modified Peptides by Affinity Chromatography Prior to Tandem Mass Spectrometric Characterization

    Selective enrichment of phosphopeptides with Immobilized Metal AffinityChromatography (IMAC)

    Proteintrypsin

    Tryptic peptidesIMAC

    Purified phosphopeptides

    MS/MSsequencing

    Phosphorylation sites

    HPLC MALDI-TOF MS

    before IMAC before IMAC

    after IMACafter IMAC

    (A)

    (B)

    (C)

    1100 1490 1880 2270 2660 3050Mass(m/z)

    3336.9

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % I

    n t e n s i

    t y

    4700Reflector Spec#1[BP = 1591.9,3337]

    1100 1490 1880 2270 2660 3050Mass(m/z)

    8366.3

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % I

    n t e n s

    i t y

    4700Reflector Spec#1[BP = 2061.8,8366]

    276 655 1034 1413 1792 2171Mass(m/z)

    921.4

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % I

    n t e n s

    i t y

    4700MS/MS Precursor2062 Spec#1=>NR(30.00)=>NR(50.00)[BP = 1965.3,921]

    1 1 3 7

    . 5 6

    1 2 6 7

    . 7 1

    1 3 8 4

    . 7 3

    1 5 9 1

    . 9 4

    1 8 8 1

    . 0 8

    2 0 6 1

    . 8 4

    2 1 3 2

    . 0 7

    2 1 8 6

    . 1 7

    2 3 3 0

    . 5 7

    2 4 2 4

    . 1 6

    2 6 2 6

    . 4 9

    2 9 0 9

    . 6 1

    2 0 6 1

    . 8 4

    1 9 5 8

    . 1 8

    2 0 8 3 . 8 1

    2

    3 3 0

    . 5 7

    2 4 2 4

    . 1 6

    2 9 0 9

    . 6 1

    1 2 1 3

    . 0 7

    1 6 6 0

    . 7 9

    503.37

    632.43 747.47876.53

    977.59

    1105.68

    1233.74

    1361.841490.98

    1619.97

    1786.93

    1964.39

    y4

    y5 y6

    y7

    y8

    y8

    y10y11

    y12y13

    y142061.8

    KDQL E D E T Q Q Q E E pS QF

    Before IMAC

    After IMAC

    H3

    P O

    4

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    35/39

    Study of Protein-Protein Interactions using MassSpectrometry-Based Methods

    Isolation of protein complexes by affinity approaches

    1D/2D GE or HPLC

    Trypsin digestion

    Protein identification by mass spectrometry

    Affinity purification + Mass spectrometry identification

    Affinity approaches for the retrieval of proteincomplexes

    ImmunoprecipitationEpitope-tagging (Myc, HA, Flag, KT3)GST-pulldown

    Tandem affinity purification (TAP)

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    36/39

    2D gel of spliceosome-associated proteins

    SPF45

    GFP-SPF 45

    Localization of SPF 45 in nucleus

    GST

    GST-S14 GST beads

    Meaning of identifying a protein

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    37/39

    Protein isoform problem

    Meaning of quantifying a protein

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    38/39

    Limitation of Current Technology

    Protein detection on gel

  • 8/14/2019 Methods in Cell Biology Proteomics _ Hong Ki Et Al Lecture

    39/39

    How Much Sample is Enough?