methods of the circuit analysis overview - die.ing.unibo.it · 5...

8
1 ! Topology Equations (r equations) (KCL: n-1 equations) (KTL: r-n+1 equations) ! Element Equations (r equations) The number of these equations is equal to the number of the branches as they are the equation modeling each element of the circuit, and hence any branch. The circuit analysis problem is described by 2r equations in 2r unknowns. The equations are the topology equations and the element equations. The unknowns are the branch tensions and the branch currents. Circuit with n nodes and r branches ! ! = = m r n r 0 v 0 i Methods of the Circuit Analysis Overview General method ! General Method of the Circuit Analysis: (r branches, 2r unknowns, 2r equations) ! Method of the Tension Substitution: (r branches, r unknowns, r equations) k 0, k k k m k n k V i R v 0 v 0 i + = = = ! ! These equations are for a generic element with a resistors and a tension source ! ! = + = m k 0, k k n k 0 V i R 0 i (n-1) eq.s (r-n+1) e q.s r eq.s (n-1) eq.s (r-n+1) eq.s Methods of the Circuit Analysis Department of Electrical, Electronic, and Information Engineering (DEI) > University of Bologna

Upload: vanthu

Post on 16-Jul-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

1

! Topology(Equations( (r equations)

(KCL: n-1 equations)

(KTL: r-n+1 equations)

! Element(Equations((r equations)The$number$of$these$equations$is$equal$to$the$number$of$the$branches$as$they$are$the$equation$modeling$each$element$of$the$circuit,$and$hence$any$branch.$

The$circuit$analysis$problem$is$described$by$2r$equations$in$2r$unknowns.$The$equations$are$the$topology$equations$and$the$element$equations.$The$unknowns$are$the$branch$tensions$and$the$branch$currents.

Circuit with n nodes and r branches

!!

=

=

m r

n r

0v0i

Methods of the Circuit AnalysisOverview

General method

! General'Method'of'the'Circuit'Analysis:(r'branches,*2r'unknowns,*2r'equations)

! Method'of'the'Tension'Substitution:(r'branches,*r'unknowns,*r'equations)

k0,kkk

m k

n k

ViRv

0v0i

+=

=

=

!!

These%equations%are%for%a%generic%element%with%a%resistors%and%a%tension%source

!!

=+

=

m k0,kk

n k

0ViR0i

(n-1) eq.s

(r-n+1) e q.s

r eq.s

(n-1) eq.s

(r-n+1) eq.s

Methods of the Circuit Analysis

Department*of*Electrical,*Electronic,*and*Information*Engineering*(DEI)*> University*of*Bologna

Page 2: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

2

Superposition+Principle:As#a#consequence#of#the#linearity#of#the#equations#which#describe#the#circuit#the#solution#of#the#equations#of#the#Tension#Substitution#Method#is#given#by#the#branch#currents#expressed#by#a#linear#combination#of#the#independent#sources#of#the#circuit.

ir = Gr1V01 + Gr2V02 + … + GrlV0l + αr,l+1I01 + αr,l+2I02 +…+ αr,gI0g

We#must#stress#that#this#is#only#valid#in#the#linear#case.#In#order#to#be#in#this#case,#the#element#equations#must#be#linear.

V0k and#I0k are#the#input#of#the#circuit,#ir is#an#output.##Usually#the#source#voltages#and#source#currents#are#the#inputs#of#the#circuit.#The#branch#voltages#and#branch#currents#are#the#outputs.

The#superposition#principle#states#that#any#branch#current#is#the#algebraic#sum#of#the#currents#through#the#branch#due#to#each#independent#source#acting#alone#(the#same#statement#holds#for#the#branch#voltages#also).#

Methods of the Circuit Analysis

In Out

=Out$$F$ $In

Methods of the Circuit Analysis

The transfer function can be defined in the time domain [voltages and currents: v(t) and i(t)], in the frequency domain [voltages and currents: V and I ] or in the Laplace transform-domain.

Transfer FunctionIn#a#circuit#we#will#distinguish#between#input& and##output.#The#inputs#are#the#independent#current#and#voltage#sources,#also#said#excitations.#The#output#are#the#branch#currents#and#the#tensions#(branch#voltages,#node#voltages#or#any#potential#difference#between#two#nodes).

In#a#linear,#time#independent#circuit#for#an#input=output#pair#a#transfer&function&(or#network&function)#is#defined.#The#transfer#function#is#the#ratio#between#an#output#and#an#input#when#the#other#sources,#except#the#one#considered,#are#switched#off.##

Linear,,time.independent

network

Department&of&Electrical,&Electronic,&and&Information&Engineering&(DEI)&; University&of&Bologna

Page 3: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

3

As#it#had#been#stated#by#the#superposition#principle,#in#a#linear#circuit#any#voltage#vrand#any#current#is can#be#expressed#as#a#linear#combination#of#the#p independent#tension#sources#and#the#q independent#current#sources#:

vr =# αr1 V01 +#αr2 V02 +#….#+#αrp V0p +#Rr1 I01 +#Rr2 I02 +#….#+#Rrq I0qis =#Gs1 V01 +#Gs2 V02 +#….#+#Gsp V0p +#βs1 I01 +#βs2 I02 +#….#+#βsq I0q

The#coefficients#αri,#Rrj,#Gsi,#βsj are#the#transfer#functions#of#the#r voltages#and#the#stensions#when##coupled#two#by#two#to#the#p tension#sources#and#the#q current#sources.#The#transfer#functions##αri and#βsj are#dimensionless.##The#Rrj have#the#dimension#of#a#resistance#or#an#impedance#(Ω).#The#Gsi have#the#dimension#of#a#conductance#or#an#admittance#(S#=#1/Ω).

Voltage Gain: αrp = vr

V0p V0i = 0 per i≠pI0j = 0 ∀ j

Transf. Imped.: Rrq = vr

I0q V0i = 0 ∀ iI0j = 0 per j ≠ q

Transf. Admitt.: Gsp = is

V0p V0i = 0 per i≠pI0j = 0 ∀ j

Current Gain: βsq = isI0q V0i = 0 ∀ i

I0j = 0 per j ≠ q

Transfer Function

Department)of)Electrical,)Electronic,)and)Information)Engineering)(DEI))6 University)of)Bologna

Methods of the Circuit Analysis

! The$n&1$node$voltages$are$determined$by$the$solution$of$a$linear$non&homo&geneous$system$of$n&1$equations.$As$the$node$voltages$are$known,$the$branch$currents$are$obtained$from$eq.$3$and$the$branch$voltages$are$derived$from$eq.$2.

Nodal Analysis (n"1$$equations,$n"1$unknowns)

Step$to$determine$the$node$voltages1.//Define/the/reference/node/and/assign/the/n71/node/voltages/which/are/the/voltage/of/the/non7reference/nodes/with/respect/to/the/reference/one.

2.///Apply/KCL/to/each/non7reference/node.3.///Apply/KTL/to/refer/the/node/voltages/to/the/branch/voltages.

4. Express/the/branch/currents/in/terms/of/the/node/voltages/through/the/element/equations/and/substitute/them/in/the/cur7rents/equations/given/by/KCL/in/step/2./

5.///Solve/the/resulting/simultaneous/equations/to/obtain/the/node/voltages.

k1h

32

uh

+&vr

h k

uk0

• •

• •

Page 4: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

4

! The$method$is$based$on$the$node%voltages,$uk (k=$1,2,..,n61),$that$are$the$potential$differences$between$each$non6reference$node$and$the$reference$node$(ground).$Hence$each$node$voltage$is$the$voltage$of$that$node$with$respect$to$the$reference$node." KCL$$is$applied$to$each$non6reference$node$k,$k$=$1,2,…,$n61$(figure$above):

i1+i2+….+ih = 0 (1)" KTL$is$applied$to$relate$the$node$voltages$to$the$branch$voltages$(figure$below):

vr = uk-uh (2)

" The$currents$are$expressed$by$the$element$equations

(3)

" By$substituting$eq.$3$into$eq.$1$a$set$of$n61$equations$in$n61$unknowns$(uk,$for$k=1,2,…,$n61)$is$obtained.

Methods of the Circuit Analysis

This method is utilized in the AC regime where Ir , Uk and Zr replaces ir ,vr , and Rr .

r

hk

r

rr R

uuRvi !

==

Nodal Analysis (n"1$$equations,$n"1$unknowns)

k1h

32

uh

+6vr

h k

uk0

• •

• •

In#the#circuit#there#are#branches#that##contain#only#voltage#sources#(independent#or#controlled#sources).#For#these#branches#the#currents#cannot#be#expressed#in#terms#of#the#voltages.#A#branch#with#only#a#voltage#source#can#be##incorporated#into#a#closed#surface.#Thereafter#KCL#is#applied#to#this#surface.#This#branch#is#said#supernode.#As#it#results#from#KTL,#the#difference#of#the#node#voltages#at#the#terminals#of#the#source#branch,#is#given#by#the#source#voltage:

uk-uh = V0

!"

!#$

==+

=++

032

5432

541

Vu-u0 i-i -i i

0 i i i

• •

i4

i2

R4

R2

0

u2 u3

i3

R3

-+

V0u1 i5 R5

i1

R1

By expressing the 5 currents by means of the 3 node voltages, the system of equations is given by three equations with three unknowns which are the node voltages.

Nodal AnalysisSupernode

•••

Department-of-Electrical,-Electronic,-and-Information-Engineering-(DEI)-8 University-of-Bologna

Page 5: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

5

Tellegen’s Theorem! The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$for$each$branch$is$equal$to$zero.

! Alternatively$it$can$be$stated$that$the$total$power$delivered$by$the$sources$is$equal$to$the$power$absorbed$by$the$loads.

0 iv 1k

kk =!=

r

Tellegen’s theorem is a consequence of the energy conservation principle. It fulfills the topology equations (KCL and KTL).

Methods of the Circuit Analysis

Department)of)Electrical,)Electronic,)and)Information)Engineering)(DEI))6 University)of)Bologna

Consider)an)independent)current)source)connected)to)the)port)AB)of)circuit)N.)Due)to)the)linearity)of)N)the)voltage)v is)given)by)the)linear)combination)of)the)p voltage)sources)V0i (i=1,..,p),)the)q current)sources)I0j (j=1,2,…,q))of N,)and)the)current)source)i. The)linear)combination)coefficients)are)the)transfer)functions:

j 0 Ii 0 Veq0 ieq

q

1j0jj

p

1i0iieqeqeq

q

1j0jj

p

1i0iieq

oj0i

iv R v V

I R V V V i R v

I R V i R v

!=!==

==

==

==

+=+="

++=

##

##

;or:

where $

$

Equivalent CircuitsThévenin’s Theorem

A

B

v i

Circuit'N •

Department)of)Electrical,)Electronic,)and)Information)Engineering)(DEI))6 University)of)Bologna

Page 6: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

6

Therefore'the'following'relation'is'obtained:'

This'relation'is'the'element'equation'that'describes'the'series'between'an'independent'voltage'source'and'a'resistor.'It'defines'the'current'controlled'Thévenin equivalent-circuit.

Thévenin’s theorem:

! A#linear,#time-independent#circuit#N#with#an#highlighted#port#is#considered.#The#circuit#is#equivalent#to#an#independent#voltage#source#in#series#with#a#resistor.#The#voltage#of#the#source#is#the#open#circuit#voltage#between#A#and#B.#The#resistor#is#the#equivalent#resistor#seen#from#the#port#AB#when#all#independent#sources#of#N#are#switched#off.#

Thévenin’s Theorem

eqeq V i R v +=

Req

Veq•

• B

A

v

i

+-

Thévenin’s equivalentcircuit

A

B

v

Circuit'N

Department-of-Electrical,-Electronic,-and-Information-Engineering-(DEI)-> University-of-Bologna

j 0 Ii 0 Veq0 veq

q

1j0jj

p

1i0iieqeqeq

q

1j0jj

p

1i0iieq

oj0i

vi G i I

I V G I I vG i

I V G vG i

!=!==

==

==

==

+=+="

++=

##

##

;or

where $

$

Norton’s TheoremConsider)an)independent)voltage)source)connected)to)the)port)AB)of)circuit)N.)Due)to)the)linearity)of)N)the)current)i is)given)by)the)linear)combination)of)the)pvoltage)sources)V0i (i=1,..,p),)the)qcurrent)sources)I0j (j=1,2,…,q))of N,)and)the)by)the)voltage)source)v.)The)linear)combination)coefficients)are)the)transfer)functions:

A

B

v

i

+-

Circuit'N

Equivalent Circuits

Department)of)Electrical,)Electronic,)and)Information)Engineering)(DEI))6 University)of)Bologna

Page 7: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

7

eqeq I vG i +=

Norton’s TheoremTherefore'the'following'relation'is'obtained:'

This'relation'is'the'element'equation'that'describes'the'parallel'between'an'independent'current'source'and'a'resistor.'It'defines'the'current'controlled'Norton&equivalent&circuit.

Norton’s&theorem.! A#linear,#time-independent#circuit#N#with#a#highlighted#port#is#considered.#The#circuit#N#is#equivalent#to#the#parallel#between#an#independent#current#source#and#a#resistor.#The#current#of#the#source#is#that##flowing#through#N#when#the#port#AB#is#short#circuited.#The#resistor#is#the#equivalent#resistor#seen#from#the#port#AB#when#all#independent#sources#of#N#are#off.#

Norton’s equivalent circuit

eq eqi G v I= +

GeqIeq

• B

A

v

i

Geq = 1/Req

A

B

i

v

Circuit'N

Department&of&Electrical,&Electronic,&and&Information&Engineering&(DEI)&= University&of&Bologna

Summary

(2) I vG i :circuit equivalent sNorton'

(1) V i R v:circuit equivalent sThévenin'

eqeq

eqeq

+=

+=

When%eq.%1%is%divided%by%Req,%eq.%2%is%obtained.%When%eq.%2%is%divided%by%Geqeq.%1%is%obtained.%%If%Veq of%Thévenin’s circuit%is%known,%Ieq of%Norton’s%circuit%can%be%derived%by%subtracting%eq.%1%from%eq.%2%multiplied%by%Req.%Alternatively%from%Ieq of%Norton’s%circuit,%Veq of%Thévenin’s circuit%can%be%derived.%

0G ( GI

V G1 R

0R ( RV

I R1 G

eqeq

eqeq

eqeq

eqeq

eqeq

eqeq

)ifnin n to Thévefrom Norto;

)ifton nin to Norfrom Théve;

!"==

!"==

Equivalent Circuits

Department)of)Electrical,)Electronic,)and)Information)Engineering)(DEI))6 University)of)Bologna

Page 8: Methods of the Circuit Analysis Overview - die.ing.unibo.it · 5 Tellegen’sTheorem!The$Tellegen’s theorem$states$that$in$an$insulated$circuit$(not$connect$ to$other$circuits$or$networks)$the$algebraic$sum$of$the$power$calculated$

8

Maximum Power Transfer

Req

Veq

•B

A

RL

i

+-

RL=Req

P (RL)

RL

PMax

The$Thévenin equivalent$circuit$can$be$used$in$finding$the$maximum$power$which$a$linear$circuit$can$deliver$to$a$load.$

The&entire&circuit&is&replaced&by&the&Théveninequivalent&&except&for&the&load&which&is&an&adjustable&load&resistor&RL.&The&power&delivered&to&the&load&is

For&a&given&circuit,&Veq and&Req are&fixed.&&By&varying&RL,&the&power&delivered&to&the&load&varies.&The&power&is&small&or&large&for&small&or&large&values&of&RL.&The&maximum&power&transfer&theorem&states&that:

! Maximum$power$is$transferred$to$the$load$when$the$load$resistance$is$equal$to$the$Thévenin equivalent$resistance$.

2

eq2L L

eq L

Vp R i R

R R! "

= = # $# $+% &

Department&of&Electrical,&Electronic,&and&Information&Engineering&(DEI)&; University&of&Bologna